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are determined. In some cases, all these vector fields are critical points for the energy functional

restricted to vector fields. Left-invariant vector fields defining harmonic maps are also classified,
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1. Introduction

Symmetries of the mathematical models play an important role in applied sciences [7, 1, 12].

In [2] it is proved that a (simply-connected) four-dimensional homogeneous Riemannian manifold

is either symmetric or isometric to a Lie group equipped with a left-invariant Riemannian metric.

Indeed, the class of n-dimensional simply connected Lorentzian Lie groups (respectively ,Lorentzian

Lie algebras) coincides with the class of the Riemannian ones. Using this fact, four-dimensional

Einstein Lorentzian Lie groups have been classified [4]. On the other hand, investigating critical

points of the energy associated to vector fields is an interesting problem from different points

of view. In Riemannian settings, it has been proved that critical points of the energy functional

E : X(M) → R, restricted to maps defined by vector fields, are parallel vector fields [11, 10, 9].

Moreover, Gil-Medrano [9] studied when V is a harmonic map. So, it is natural to determine the

harmonicity properties of vector fields on four-dimensional Lorentzian Einstein Lie groups.
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A Riemannian manifold admitting a parallel vector field is locally reducible, and the same is true

for a pseudo-Riemannian manifold admitting an either space-like or time-like parallel vector field.

This leads us to consider different situations, where some interesting types of non-parallel vector

fields can be characterized in terms of harmonicity properties [8, 10, 11].

Let (M, g) be a compact pseudo-Riemannian manifold and gs the Sasaki metric on the tangent

bundle TM . The energy of a smooth vector field V : (M, g) −→ (TM, gs) on M is;

E(V ) =
n

2
vol(M, g) +

1

2

∫
M

||∇V ||2dv (1.1)

(assuming M compact; in the non-compact case, one works over relatively compact domains see [3]).

If V : (M, g) −→ (TM, gs) is a critical point for the energy functional, then V is said to define a

harmonic map. The Euler-Lagrange equations characterize vector fields V defining harmonic maps

as the ones whose tension field θ(V ) = tr(∇2V ) vanishes. Consequently, V defines a harmonic

map from (M, g) to (TM, gs) if and only if

tr[R(∇.V, V ).] = 0, ∇∗∇V = 0, (1.2)

where with respect to a pseudo-orthonormal local frame {e1, ..., en} on (M, g), with εi = g(ei, ei) =

±1 for all indices i, one has

∇∗∇V =
∑
i εi(∇ei∇eiV −∇∇eieiV ).

A smooth vector field V is said to be a harmonic section if it is a critical point of Ev(V ) =

(1/2)
∫
M
||∇V ||2dv, where Ev is the vertical energy. The corresponding Euler-Lagrange equations

are given by

∇∗∇V = 0. (1.3)

Let Xρ(M) = {V ∈ X(M) : ||V ||2 = ρ2} and ρ 6= 0. Then, one can consider vector fields

V ∈ Xρ(M) which are critical points for the energy functional E|Xρ(M), restricted to vector fields

of the same constant length. The Euler-Lagrange equations of this variational condition are given

by

∇∗∇V is collinear to V. (1.4)

In the non-compact case, the condition (1.4) is taken as a definition of critical points for the energy

functional under the assumption ρ 6= 0, that is, if V is not light-like. If ρ = 0, then (1.4) is still

a sufficient condition so that V is a critical point for the energy functional E|X0(M), restricted to

light-like vector fields ([3], Theorem 26).

Following [4], four-dimensional Einstein Lorentzian Lie groups are classified into four types, de-

noted by (a1), (a2), (c1) and (c2). In the present paper using a case-by-case argument we shall

completely investigat the harmonicity of vector fields on these spaces.

The paper is organized as follows. In Section 2, we recall basic properties of Einstein Lorentzian Lie

algebras, as described in [4]. Harmonicity properties of vector fields on four-dimensional Einstein

Lorentzian Lie group of types (a1), (a2), (c1) and (c2) will be investigated in Sections 3-6, respec-

tively. Finally, the energy and the minimality of all these vector fields are explicitly calculated in

Section 7.
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2. Einstein Lorentzian Lie Groups

Let (G, g) be a four-dimensional Lorentzian Lie group. Following [4], the Lie algebra g of G is a

semi-direct product rn g3, where r = span{e4} acts on g3 = span{e1, e2, e3}, and the Lorentzian

inner product on g is described by

(a)


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 , (c)


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

In 2013 Calvaruso and Zaeim [4] obtained the following result:

Theorem 2.1. Let G be a four-dimensional simply connected Lie group. If g is a left-invariant

Lorentzian Einstein metric on G, then the Lie algebra g of G is isometric to g = r n g3, where

g3 = span{e1, e2, e3} and r = span{e4}, and one of the following cases occurs.

(a) {ei}4i=1 is a pseudo-orthonormal basis, with e3 time-like. In this case, G is isometric to one

of the following semi-direct products RnG3:

(a1) R nH, where H is the Heisenberg group and g is described by one of the following sets of

conditions:

(1) [e1, e2] = εAe1, [e1, e3] = Ae1, [e1, e4] = δAe1, [e3, e4] = −2Aδ(εe2 − e3),

(2) [e1, e2] = ε
√
A2−B2

2 e1, [e1, e3] = − εδ
√
A2−B2

2 e1, [e1, e4] = δA+B
2 e1, [e2, e4] = B(e2+δe3), [e3, e4] =

A(e2 + δe3),

(3) [e1, e2] = εA
√
A2−B2

B e1, [e1, e3] = ε
√
A2 −B2e1, [e2, e4] = Be2 −Ae3, [e3, e4] = Ae2 − A2

B e3,

(4) [e1, e2] = ε
√
A2 −B2e1 +Be2, [e3, e4] = Ae3,

(a2) Rn R3, where g is described by one of the following sets of conditions:

(5) [e1, e4] = −(A+B)e1, [e2, e4] = Be2−ε
√
A2 +AB +B2e3, [e3, e4] = ε

√
A2 +AB +B2e2 +

Ae3,

(6) [e1, e4] = −2Ae1, [e2, e4] = −5Ae2 + 6εAe3, [e3, e4] = Ae3,

(7) [e1, e4] = Ae1, [e2, e4] = Ae2 +Be3, [e3, e4] = Be2 +Ae3,

(8) [e1, e4] = εA+B
3 e1, [e2, e4] = ε 5B−A

6 e2 +Be3, [e3, e4] = Ae2 + ε 5A−B
6 e3,

(9) [e1, e4] = 5A
2 e1 + 3εAe3, [e2, e4] = Ae2, [e3, e4] = −A2 e3,

(10) [e1, e4] = Ae1+ε
√
B2 −A2 − C2 −ACe2, [e2, e4] = ε

√
B2 −A2 − C2 −ACe1−(A+C)e2−

Be3, [e3, e4] = Be2 + Ce3,

(11) [e1, e4] = − 2ε
√

2A
3 e1 + δAe3, [e2, e4] = ε

√
2A
3 e2, [e3, e4] = Ae2 − ε

√
2A
6 e3,

(c) {ei}4i=1 is a basis, with the inner product g on g completely determined by g(e1, e1) =

g(e2, e2) = g(e3, e4) = g(e4, e3) = 1 and g(ei, ej) = 0 otherwise. In this case, G is isometric

to one of the following semi-direct products RnG3:

(c1) RnH,where g is described by one of the following sets of conditions

(12) [e1, e2] = ε(A+B)e3, [e1, e4] = Ce1 +Be2 +De3, [e2, e4] = Be1 + Ee3, [e3, e4] = Ce3,

(13) [e1, e2] = Be3, [e1, e4] = (C+D)2−B2

4A e1 + De2 + Fe3, [e2, e4] = Ce1 + Ae2 + Ee3, [e3, e4] =
(C+D)2−B2+4A2

4A e3,

(14) [e1, e2] = ε
√

((A+D)2 + 4B2)e3, [e1, e4] = −Be1 +De2 +Ee3, [e2, e4] = Ae1 +Be2 +Ce3,
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(c2) Rn R3, where g is described by one of the following sets of conditions:

(15) [e1, e2] = Ae2 +Be3, [e2, e4] = −Ae1 + Ce3,

(16) [e1, e4] = Ae1 +Be2 + Ce3, [e2, e4] = De1 + Ee2 + Fe3, [e3, e4] = (B+D)2+2(A2+E2)
2(E+A) e3

In all the cases listed above, ε = ±1, δ = ±1 and A,B,C,D are real constants.

3. Harmonicity of Vector Fields: Type (a1)

All four-dimensional simply connected Einstein Lorentzian Lie groups of type (a1) are sym-

metric [4] and the study of harmonic invariant vector fields on these spaces would be natural

and interesting. The main purpose of this section is to investigat the harmonicity properties of

left-invariant vector fields on four-dimensional Lorentzian Lie group of type (a1). The following

notation is necessary.

Notation 3.1. Let X̃ρ(M) denote the set of all vector fields V ∈ Xρ(M), which are critical points

for the energy functional E|Xρ(M), restricted to vector fields of the same constant length. Remember

that ρ is not necessarily the same for different cases.

Let (G, g) be a four-dimensional Lorentzian Lie group of type (a1) and {ei}4i=1 a pseudo-

orthonormal basis, with e3 time-like. Under these assumptions, we prove the following result.

Theorem 3.2. Let g be the Lie algebra of G and V = ae1 + be2 + ce3 + de4 ∈ g a left-invariant

vector field on G for some real constants a, b, c, d. For the different cases (1)− (4) of type (a1), we

have:

(1) : V ∈ X̃ρ(G) if and only if V = c(e2 − e3 − e4), that is, b = −c = −d. In this case

ε = 1, ∇∗∇V = 3A2V.

(2) : V ∈ X̃ρ(G) if and only if V = c(e2 + e3 − e4), that is, b = c = −d. In this case ε = −1,

δ = 1, ∇∗∇V = − 3
4 (A+B)2V .

(3) : V ∈ X̃ρ(G), in this case, ∇∗∇V = − (A2−B2)2

B2 V .

(4) : V ∈ X̃ρ(G) if and only if a = b = 0, in this case ∇∗∇V = −A2V or c = d = 0, in this

case ∇∗∇V = (B2 −A2)V .

Proof. The above statement is obtained from a case-by-case argument. As an example, we report

the details for case (3) here. Let V ∈ g be a critical point for the energy functional. The components

of the Levi-Civita connection are the following:

∇e1e1 = − εA
√
A2−B2

B e2 + ε
√
A2 −B2e3, ∇e1e2 = εA

√
A2−B2

B e1

∇e1e3 = ε
√
A2 −B2e1 ∇e2e2 = −Be4, ∇e2e3 = −Ae4,

∇e2e4 = Be2 −Ae3, ∇e3e2 = −Ae4,

∇e3e3 = −A
2

B e4, ∇e3e4 = Ae2 − A2

B e3,

(3.1)

while ∇eiej = 0 in the remaining cases. From (3.1) we obtain

∇e1V = ε
√
A2 −B2( cB+bA

b e1 − aA
B e2 + ae3),

∇e2V = dBe2 − dAe3 − (cA+ bB)e4, ∇e4V = 0

∇e3V = dAe2 − dA2

B e3 − A(cA+bB)
B e4.

(3.2)
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Clearly, there are no parallel vector fields V 6= 0 in g. We can now calculate ∇ei∇eiV and ∇∇eieiV
for all indices i and we find

∇e1∇e1V = −(A2−B2)
B2 (a(A2 −B2)e1 + (cB + bA)(Ae2 −Be3)),

∇e2∇e2V = −(cB + bA)(Be2 −Ae3) + d(A2 −B2)e4,

∇e3∇e3V = −A2

B2 ((cB + bA)(Be2 −Ae3) + d(A2 −B2)e4), ∇e4∇e4V = 0,

∇∇e1e1V = ∇∇e3e3V = ∇∇e2e2V = ∇∇e4e4V = 0.

(3.3)

Thus, we get

∇∗∇V =
∑
i εi(∇ei∇eiV −∇∇eieiV ) = −(A2−B2)

B2 (a(A2 −B2)e1+

(cB + bA)(Ae2 −Be3))− (cB + bA)(Be2 −Ae3) + d(A2 −B2)e4−
(−A

2

B2 ((cB + bA)(Be2 −Ae3) + d(A2 −B2)e4)) = − (A2−B2)2

B2 V.

�

As the definitions already show, V is harmonic if ∇∗∇V = 0 and V defines a harmonic map if

and only if

tr[R(∇.V, V ).] = 0, ∇∗∇V = 0.

For case (3) in Theorem 3.2, ∇∗∇V = − (A2−B2)2

B2 V = 0 if and only if A = ±B, that is, V is

harmonic if and only if A = ±B. Let R denote the curvature tensor of (M, g), taken with the sign

convention R(X,Y ) = ∇[X,Y ]− [∇X,∇Y ]. Then, using (3.2), we find

R(∇e1V, V )e1 = ε(A2−B2)3/2

B3 ((A2 −B2)a2 + (bA+ cB)2)(Ae2 −Be3),
A2

B2R(∇e2V, V )e2 = R(∇e3V, V )e3 = A2(A2−B2)
B3 ((A2 −B2)d2 − (cA+ bB)2)e4,

R(∇e4V, V )e4 = 0

and so, when A = ±B clearly,

tr[R(∇.V, V ).] =
∑
i εiR(∇eiV, V )ei = 0.

Hence, tr[R(∇.V, V ).] = 0 if and only if A = ±B. Appling this argument for other cases of type

(a1) proves the following classification result.

Theorem 3.3. Let V be a critical point for the energy functional, described by the conditions (2)

and (3) in Theorem 3.2. Then, for cases (2) and (3), V defines a harmonic map if and only if

A = −B and A = ±B respectively.

A vector field V is geodesic if ∇V V = 0, and is Killing if LV g = 0, where L denotes the Lie

derivative. Parallel vector fields are both geodesic and Killing, and vector fields with these special

geometric features often have particular harmonicity properties. A straightforward calculation

proves the following main classification result.

Corollary 3.4. If g is a left-invariant Lorentzian Einstein metric on G, then for the cases (1)−(4)

in Theorem 3.2, the equivalent properties for V = ae1 + be2 + ce3 + de4 ∈ g are listed in Table 1.

Remark 3.5. Recall that for a Lorentzian Lie group, a left-invariant vector field V is spatially

harmonic if and only if

X̃V = −∇∗∇V −∇V∇V V − divV · ∇V V + (∇V )t∇V V is collinear to V. (3.4)
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Table 1. Equivalent properties for the cases (1)− (4) in Theorem 3.2.

(G, g) Equivalent properties (denoted by ≡)

(1) V is geodesic; ≡ V ∈ X̃ρ(G); ≡ none of these vector fields is harmonic (in

particular, defines a harmonic map); ≡ V = c(e2 − e3 − e4),

(2) V is geodesic; ≡ V is harmonic if and only if A = −B; ≡ V ∈ X̃ρ(G); ≡ V

defines harmonic map if and only if A = −B; ≡ V is Killing if and only if A = −B
and d = 0; ≡ V = c(e2 + e3 − e4),

(3) V is geodesic if and only if A = ±B and b = ∓c; ≡ V is harmonic if and only if

A = ±B; ≡ V ∈ X̃ρ(G); ≡ V defines harmonic map if and only if A = ±B; ≡
V is Killing if and only if A = ±B, b = ∓c and d = 0,

(4) V is geodesic if and only if a = b = c = 0; ≡ V ∈ X̃ρ(G) if and only if a = b = 0;

≡ none of these vector fields is harmonic (in particular, defines a harmonic map).

Clearly, conditions (1.4) and (3.4) coincide for geodesic vector fields. Hence, the results listed in

Table 1 show that for cases (1) and (2), V is spatially harmonic and for case (3), V is spatially

harmonic if and only if A = ±B and b = ∓c. For case (4), V is spatially harmonic if and only if

a = b = c = 0.

4. Harmonicity of Vector Fields: Type (a2)

Let (G, g) be a four-dimensional Lorentzian Lie group of type (a2), g the Lie algebra of G and

V = ae1 + be2 + ce3 + de4 ∈ g a left-invariant vector field on G, for some real constants a, b, c, d.

The Lie algebra g is described by one of the sets of conditions (5) − (11) in Theorem 2.1. As an

example, for case (7) a direct calculation yields that we can describe the Levi-Civita connection as

follows:

∇e1e1 = −Ae4 ∇e1e4 = Ae1, ∇e2e2 = −Ae4 ∇e2e4 = Ae2,

∇e3e3 = Ae4 ∇e3e4 = Ae3, ∇e4e2 = −Be3 ∇e4e3 = −Be2.
(4.1)

Using (4.1) to calculate ∇eiV for all indices i, we get

∇e1V = A(de1 − ae4), ∇e2V = A(de2 − be4),

∇e3V = A(de3 + ce4), ∇e4V = −B(ce2 + be3).
(4.2)

Clearly, there are no parallel vector fields V 6= 0 in g. We can now use (4.2) to obtain ∇ei∇eiV
for all indices i and we find

∇e1∇e1V = −A2(ae1 + de4), ∇e2∇e2V = −A2(be2 + de4),

∇e3∇e3V = A2(ce3 + de4), ∇e4∇e4V = B2(be2 + ce3).
(4.3)

We calculate ∇∇eieiV for all indices i. We obtain

∇∇e1e1V = ∇∇e2e2V = −∇∇e3e3V = AB(ce2 + be3), ∇∇e4e4V = 0. (4.4)

Then, we get

∇∗∇V =
∑
i εi(∇ei∇eiV −∇∇eieiV ) =

−A2ae1 + ((B2 −A2)b− 3ABc)e2 + ((B2 −A2)c− 3ABb)e3 − 3A2de4.
(4.5)



Harmonicity of left-invariant vector fields on Einstein Lorentzian Lie groups 71

Hence, ∇∗∇V = (B2 −A2 − 3AB)V if and only if b = c and a = d = 0.

Using this argument for other cases leads to the following result.

Theorem 4.1. Let G be a four-dimensional simply connected Lie group of type (a2) and V =

ae1 + be2 + ce3 + de4 a left-invariant vector field on G, for some real constants a, b, c, d. For the

different cases (5)− (11) in Theorem 2.1, we have:

(5) : V ∈ X̃ρ(G) if and only if V = ae1, that is, b = c = d = 0. In this case ∇∗∇V =

−(A+B)2V.

(6) : V ∈ X̃ρ(G) if and only if V = b(e2 − e3), that is, c = −b. In this case ε = 1, ∇∗∇V =

−13A2V .

(7) : V ∈ X̃ρ(G) if and only if V = b(e2 + e3), that is, c = b. In this case ∇∗∇V =

(B2 −A2 + 3AB)V .

(8) : V ∈ X̃ρ(G) if and only if V = b(e2−e3), that is, c = −b. In this case ε = −1, ∇∗∇V =
13
36 (A+B)2V.

(9) : V ∈ X̃ρ(G) if and only if V = a(e1 + e3), that is, c = a. In this case ε = 1, ∇∗∇V =

− 13
4 A

2V .

(10) :V ∈ X̃ρ(G) if and only if V = ce3, that is, a = b = d = 0. In this case ∇∗∇V = −C2V .

(11) : V ∈ X̃ρ(G) if and only if V = c(
√

2e1 − 2
3

√
2e2 + e3), that is, a =

√
2c, b = − 2

3

√
2c.

In this case ε = δ = −1, ∇∗∇V = 5
18A

2V .

Applying (1.2) and (4.5) to case (7) in Theorem 4.1, by standard calculations we prove that

∇∗∇V = 0 if and only if a = d = 0 and (B2−A2 + 3AB) = 0, that is, A = ((3−
√

13)/2)B. Using

(4.2) for V = b(e2 + e3), we find

R(∇e2V, V )e2 = R(∇e3V, V )e3 = A2(A+ 2B)c2e4,

R(∇e1V, V )e1 = R(∇e4V, V )e4 = 0

and so,

tr[R(∇.V, V ).] =
∑
i εiR(∇eiV, V )ei = 0.

Following this argument for other cases of type (a2) proves the following result.

Theorem 4.2. Let V = ae1 + be2 + ce3 +de4 be a critical point for the energy functional described

by the different conditions (5)− (11) in Theorem 4.1, then it is easy to check that

• For cases (5) and (8), V is a harmonic map if and only if A = −B.

• For case (7), V is a harmonic map if and only if A = ((−3±
√

13)/2)B.

• For case (10), V is a harmonic map if and only if C = B = 0.

Starting from (4.3), a straightforward calculation proves the following classification result.

Corollary 4.3. If g is a left-invariant Lorentzian Einstein metric on G, then for the different

cases (5)− (11) in Theorem 4.1, the equivalent properties for V are listed in Table 2.

Using Remark 3.5, the results listed in Table 2 show that for cases (6) − (9), V is spatially

harmonic and for case (10), V is spatially harmonic if and only if C = 0.
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Table 2. Equivalent properties for the cases (5)− (11) in Theorem 4.1.

(G, g) Equivalent properties (denoted by ≡)

(5) V is harmonic if and only if A = −B; ≡ V ∈ X̃ρ(G) if and only if V = ae1; ≡ V

defines harmonic map if and only if A = −B; ≡ V is Killing if and only if A = −B
and V = ae1.

(6) V is geodesic; ≡ V ∈ X̃ρ(G); ≡ none of these vector fields is harmonic (in

particular, defines a harmonic map); ≡ V = b(e2 − e3).

(7) V is geodesic; ≡ V is harmonic if and only ifA = ((−3±
√

13)/2)B; ≡ V ∈ X̃ρ(G);

≡ V defines harmonic map if and only if A = ((−3±
√

13)/2)B; ≡ V is Killing

if and only if A = −B; ≡ V = b(e2 + e3).

(8) V is geodesic if and only if A = −B and c = −b; ≡ V is harmonic if and only if

A = −B; ≡ V ∈ X̃ρ(G) if and only if c = −b, a = d = 0; ≡ V defines harmonic

map if and only if A = −B; ≡ V is Killing if and only if A = −B and d = 0; ≡
V = ae1 + be2 + ce3 + de4.

(9) V is geodesic; ≡ V ∈ X̃ρ(G); ≡ none of these vector fields is harmonic (in

particular, defines a harmonic map); ≡ V = a(e1 + e3).

(10) V is geodesic if and only if C = 0; ≡ V is harmonic if and only if C = 0; ≡
V ∈ X̃ρ(G); ≡ V defines harmonic map if and only if C = 0; ≡ V is Killing if

and only if C = 0; ≡ V = ce3.

(11) V ∈ X̃ρ(G); ≡ none of these vector fields is harmonic (in particular, defines a

harmonic map); ≡ V = c(
√

2e1 − 2
3

√
2e2 + e3).

5. Harmonicity of Vector Fields: Type (c1)

Consider a four-dimensional simply connected Lie group G of type (c1) and a basis {Xi}4i=1, with

non-zero inner product g on g determined by g(X1, X1) = g(X2, X2) = g(X3, X4) = g(X4, X3) = 1.

We can construct a pseudo-orthonormal frame field {e1, e2, e3, e4}, putting

e1 = X1, e2 = X2, e3 = −(1/2)X3 +X4, e4 = (1/2)X3 +X4. (5.1)

Clearly, e3 is time-like. A vector field V ∈ g is uniquely determined by its components with respect

to the pseudo-orthonormal basis {ei}. Hence V = ae1 +be2 +ce3 +de4 ∈ g is a left-invariant vector

field on G for some real constants a, b, c, d. Notice that the (constant) norm of V is given by

||V ||2 = a2 + b2 − c2 + d2. As an example, for case (14), using (5.1) we find

∇e1e1 = −B(e3 − e4), ∇e1e2 =
1

2
(A+D − εα)(e3 − e4),

∇e1e3 = ∇e1e4 = −Be1 +
1

2
(A+D − εα)e2,

∇e2e1 =
1

2
(A+D + εα)(e3 − e4), ∇e2e2 = B(e3 − e4),

∇e2e3 = ∇e2e4 =
1

2
(A+D + εα)e1 +Be2,

∇e4e1 = ∇e3e1 =
1

2
(A−D − εα)e2 + E(e3 − e4),

(5.2)
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∇e4e2 = ∇e3e2 =
1

2
(−A+D − εα)e1 + C(e3 − e4),

∇e4e3 = ∇e4e4 = ∇e3e3 = ∇e3e4 = Ee1 + Ce2,

where α =
√

(A+D)2 + 4B2. Suppose that u = e3−e4. Then, using (5.2), we get that ∇eiu = 0

for all indices i. Therefore, u is a parallel light-like vector field. The existence of a parallel light-like

vector field is an interesting phenomenon which has no Riemannian counterpart, and characterizes

a class of pseudo-Riemannian manifolds which illustrate many of differences between Riemannian

and pseudo-Riemannian settings (see for example [5, 6]). Let V = ae1 + be2 + ce3 + de4 ∈ g be an

arbitrary left-invariant vector field. We can use (5.2) to calculate ∇eiV for all indices i. We get

∇e1V = (c+ d)(−Be1 +
1

2
(D +A− β)e2)

+(
1

2
(A+D − β)b−Ba)u,

∇e2V = (c+ d)(
1

2
(D +A+ β)e1 +Be2)

+(
1

2
(A+D + β)a−Bb)u,

∇e3V = ∇e4V = (E(c+ d) + (
1

2
(D −A+ β)b)e1

+(C(c+ d)− (
1

2
(D −A+ β)a)e2 + (Cb+ Ea)u,

(5.3)

where β = ε
√

(A+D)2 + 4B2. We can now use (5.3) to calculate ∇ei∇eiV and we find

∇e1∇e1V = −B(c+ d)e1 + 1
2 (A+ T − β)(c+ d)e2

+(b 1
2 (A+ T − β)− aB)u,

∇e2∇e2V = 1
2 (A+ T + β)(c+ d)e1 +B(c+ d)e2

+(a 1
2 (A+ T + β) + bB)u,

∇e3∇e3V = ∇e4∇e4V = − 1
4 (A− T − β)2(e1 + e2)

+ 1
2 (Ca− Eb)(A− T − β)2u,

(5.4)

Then, we get

∇∇e1e1V = ∇∇e2e2V = 0,

∇∇e3e3V = ∇∇e4e4V = ( 1
2C(A+ T + β)−BE)(c+ d)e1+

(BC + 1
2E(A+ T − β)(c+ d)e4 + (b(BC + 1

2E(A+ T − β))+

a( 1
2C(A+ T + β)−BE))u,

(5.5)

Hence, from (5.4) and (5.5) we deduce

∇∗∇V =
∑
i εi(∇ei∇eiV −∇∇eieiV ) = ((A+D)2 + 4B2)(c+ d)u,

that is, ∇∗∇V identically vanishes if and only if c = −d. Using (5.3), the curvature tensor is

completely determined by

R(∇e1V, V )e1 = −R(∇e2V, V )e2 =
1

2
B(c+ d)2((A+D)2 + 4B2 + (D −A)εα)u,

R(∇e3V, V )e3 = R(∇e4V, V )e4 =
1

4
B(c+ d)((A+D)2 + 4B2 + (D −A)εα)

(−2E(c+ d)− b(D −A+ εα))e1 − (2C(c+ d)− a(D −A+ εα))e2),

where α =
√

(A+D)2 + 4B2. Therefore
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Table 3. Geodesic, killing and parallel vector fields on G: type (c1).

(G, g) Geodesic vector fields Killing vector fields parallel vector fields

(12) V = be2 + cu V = cu⇔ C = 0 V = cu⇔ C = 0

(13) V = ae1 − B−C−T
2A ae2 + cu V = cu⇔ V = cu⇔

4A2 = B2 − (C + T )2 4A2 = B2 − (C + T )2

(14) V = cu V = cu V = cu

tr[R(∇.V, V ).] =
∑
i εiR(∇eiV, V )ei = 0.

Applying this argument for other cases we prove the following result.

Theorem 5.1. Let G be a four-dimensional simply connected Lie group of type (c1) and V =

ae1 + be2 + ce3 + de4 a left-invariant vector field on G, for some real constants a, b, c, d. For the

different cases (12), (13) and (14) in Theorem 2.1, V is a critical point for the energy functional

E|Xρ(M), that is, V ∈ X̃ρ(G) (which ρ is not necessarily the same for the different cases). Moreover,

V defines a harmonic map if and only if V = ae1 + be2 + cu, that is, d = −c.

Therefore, for all these cases, left-invariant harmonic vector fields define harmonic maps, form

three-parameter families. Also with regard to harmonicity properties of invariant vector fields,

four-dimensional simply connected Lie groups of type (c1) display some particular features. The

main geometrical reasons for the special behaviour of these Lie groups are the existence of a parallel

light-like vector field. Starting from (5.2), we can easily prove the following classification result.

Proposition 5.2. Let G be a four-dimensional simply connected Lie group of type (c1) and V ∈ g

a left-invariant vector field on G. If g is a left-invariant Lorentzian Einstein metric on G, then we

have the classification results listed in Table 3.

Comparing Proposition 5.2 with Theorem 5.1, one sees the following main result which empha-

sizes once again the special role played by the parallel vector field u.

Corollary 5.3. Let g be a left-invariant Lorentzian Einstein metric on G, then for the different

cases (12)− (14) in Theorem 5.1, the equivalent properties for V are listed in Table 4.

For cases (12) and (13), by Theorem 5.3, it is easily proved that V is spatially harmonic if and

only if a = 0, b = −B−C−T2A a, and for case (14), V is spatially harmonic if and only if a = b = 0.

6. Harmonicity of Vector Fields: Type (c2)

We start classifying left-invariant vector fields on four-dimensional simply connected Lie group

G of type (c2), proving the following result.

Theorem 6.1. Let (G, g) be a four-dimensional Lorentzian Lie group of type (c2). For cases (15)

and (16), all vector fields in g are critical points for the energy functional restricted to vector fields

of the same length, that is, V ∈ X̃ρ(G) (which ρ is not necessarily the same for the different cases).

Moreover, for case (15), V defines a harmonic map. For case (16), V = ae1 + be2 + ce3 + de4

defines a harmonic map if and only if c = −d.



Harmonicity of left-invariant vector fields on Einstein Lorentzian Lie groups 75

Table 4. Equivalent properties for the cases (12)− (14) in Theorem 5.1.

(G, g) Equivalent properties (denoted by ≡)

(12) V is geodesic if and only if a = 0; ≡ V is harmonic; ≡ V ∈ X̃ρ(G) ≡ V defines

harmonic map; ≡ V is Killing if and only if a = b = C = 0 , that is, V is collinear

to u; ≡ V is parallel if and only if a = b = C = 0 , that is, V is collinear to u; ≡
V = ae1 + be2 + cu,

(13) V is geodesic if and only if b = −B−C−T2A a; ≡ V is harmonic; ≡ V ∈ X̃ρ(G)

≡ V defines harmonic map; ≡ V is Killing if and only if a = b = 0, 4A2 =

B2 − (C + T )2, that is, V is collinear to u; ≡ V is parallel if and only if a = b =

0, 4A2 = B2 − (C + T )2; ≡ V = ae1 + be2 + cu,

(14) V is geodesic if and only if a = b = 0; ≡ V is harmonic; ≡ V ∈ X̃ρ(G) ≡ V

defines harmonic map; ≡ V is Killing if and only if a = b = 0, ≡ V is parallel if

and only if a = b = 0; ≡ V = ae1 + be2 + cu,

Proof. For case (15), using (5.1) we deduce

∇e3e1 = ∇e4e1 = −Ae2 +Be3 −Be4,

∇e3e2 = ∇e4e2 = Ae1 + Ce3 − Ce4,

∇e3e3 = ∇e4e3 = ∇e3e4 = ∇e4e4 = Be1 + Ce2,

(6.1)

while ∇eiej = 0 in the remaining cases. Let V = ae1 + be2 + ce3 + de4 ∈ g be a vector field. From

(6.1) we get

∇e1V = ∇e2V = 0,

∇e3V = ∇e4V = (Ab+Bc+Bd)e1

+(−Aa+ Cc+ Cd)e2 + (Ba+ Cb)e3 − (Ba+ Cb)e4

= (Ab+Bc+Bd)e1 + (−Aa+ Cc+ Cd)e2 + (Ba+ Cb)u.

(6.2)

Thus, u is a parallel vector field, where we note the special role of u = e3 − e4. We calculate

∇ei∇eiV and ∇∇eieiV and we find

∇e1∇e1V = ∇e2∇e2V = 0,

∇e3∇e3V = ∇e4∇e4V = A(−Aa+ Cc+ Cd)e1

−A(Ab+Bc+Bd)e2 + (C(−Aa+ Cc+ Cd) +B(Ab+Bc+Bd))u,

∇∇e1e1V = ∇∇e2e2V = ∇∇e3e3V = ∇∇e4e4V = 0,

(6.3)

Hence, from (6.3) we deduce

∇∗∇V =
∑
i εi(∇ei∇eiV −∇∇eieiV ) = 0.

Using (6.2), the curvature tensor is completely determined by

R(∇e1V, V )e1 = R(∇e2V, V )e2 = R(∇e3V, V )e3 = R(∇e4V, V )e4 = 0.

Therefore

tr[R(∇.V, V ).] =
∑
i εiR(∇eiV, V )ei = 0.
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Table 5. Geodesic, killing and parallel vector fields on G: type (c2).

(G, g) Geodesic vector fields Killing vector fields parallel vector fields

(15) V = ae1 + be2 + cu V = cu V = cu

(16) V = a(e1 − e2) + cu V = a(e1 − e2) 7

Table 6. Equivalent properties for the cases (15) and (16) in Theorem 6.1.

(G, g) Equivalent properties

(15) V is geodesic if and only if d = −c; ≡ V is harmonic; ≡ V ∈ X̃ρ(G); ≡ V

defines harmonic map; ≡ V is Killing if and only if a = b = 0, d = −c; ≡ V is

parallel if and only if a = b = 0, d = −c; ≡ V = ae1 + be2 + ce3 + de4,

(16) V is geodesic if and only if b = −a; ≡ V is harmonic; ≡ V ∈ X̃ρ(G) ≡ V

defines harmonic map; ≡ V is Killing if and only if b = −a and c = d = 0; ≡
V = ae1 + be2 + cu,

A similar argument for case (16) will prove the statement. �

Using (6.3), with regard to geodesic and Killing vector fields we obtain the following.

Proposition 6.2. Let G be a four-dimensional simply connected Lie group of type (c2) and V ∈ g

a left-invariant vector field on G. If g is a left-invariant Lorentzian Einstein metric on G, then we

have the results listed in Table 5.

Using Proposition 6.2 and Theorem 6.1, a straight forward calculation proves the following

classification result.

Corollary 6.3. Let V ∈ g be a left-invariant vector field on four-dimensional simply connected

Lie group G of type (c2). If g is a left-invariant Lorentzian Einstein metric on G, then for the

cases (15) and (16) in Theorem 6.1 the equivalent properties for V are listed in Table 6.

Clearly, by Remark 3.5, the results listed in Table 6 show that for cases (15) and (16), V is

spatially harmonic if and only if d = −c.

7. The Energy of Vector Fields

We calculate explicitly the energy of a vector field V ∈ g of a four-dimensional Einstein

Lorentzian Lie group. This gives us the opportunity to determine some critical values of the

energy functional on four-dimensional Einstein Lorentzian Lie groups.

7.1. Four-dimensional Einstein Lorentzian Lie group of types (a1) and (a2). Let (G, g)

be a four-dimensional Einstein Lorentzian Lie group of types (a1) or (a2) and {ei}4i=1 a pseudo-

orthonormal basis with e3 time-like. We prove the following now.

Proposition 7.1. Let G be a four-dimensional simply connected Lie group of type (a1) or (a2),

V = ae1 + be2 + ce3 + de4 ∈ g a vector field on G and D its relatively compact domain. Denote by
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Table 7. Energy of vector fields: types (a1) and (a2).

(G, g) ED(V )

(1) (2 +A2((||V ||2 + 2(d2 − b2) + 2δd(b+ c)− 2bc)/2)volD
(2) (2 + (A+B)2((a2 + 3d2)(A+B) + (B −A)(b− c)2 − 2d(b− c)

√
A2 −B2)/8)volD

(3) (2 + (A−B)2(A+B)2

2B2 ||V ||2)volD
(4) (2 +A2||V ||2/2))volD
(5) (2 + (A+B)(A(a2 − b2) + 2εbc

√
A2 +AB +B2 +B(a2 + c2))/2)volD

(6) (2 + (A2(4a2 + 12d2 + 17c2 + 24bc+ 7b2)/2))volD, in this case ε = 1

(7) (2 + (A2(||V ||2 + 2d)−B2(b2 − c2))/2)volD
(8) (2+(1/72)(A+B)(A(4a2−17b2−7c2 +12d2−24bc)+B(4a2 +7b2 +17c2 +12d2 +

24bc)))volD, in this case ε = −1

(9) (2 + (1/2)A2( 7
4a

2 + b2 + 17
4 c

2 + 3d2 − 6ac))volD, in this case ε = 1

(10) (2−(1/2)(AC(a2−b2)−C2(a2 +c2)−2εab
√
−A2 − C2 −ACC))volD, in this case

B = 0

(11) (2 + (1/36)A2(3a2 − b2 + 17c2 − 5d2 − 10ab+ 9
√

2ac− 9
√

2bc))volD, in this case

ε = δ = −1

ED(V ) the energy of V |D. For the different cases (1) − (11) the energy of vector field V is listed

in Table 7.

Proof. Let (G, g) be a pseudo-Riemannian manifold of dimension 4. Consider a local pseudo-

orthonormal basis {e1, ..., e4} of vector fields, with εi = g(ei, ei) = ±1 for all indices i. Then,

locally,

||∇V ||2 =
∑n
i=1 εig(∇eiV,∇eiV ).

These conclusions are obtained from a case-by-case argument. We report the details for case (3)

here. From (3.2) we obtain

||∇V ||2 = (A−B)2(A+B)2

B2 ||V ||2.

Therefore, ||∇V || = 0 if and only if A = ±B. Thus, among vector fields of the same length, the

ones with A = ±B will minimize the energy. �

7.2. Four-dimensional Einstein Lorentzian Lie group of type (c1) and (c2). Let (G, g)

be a four-dimensional Einstein Lorentzian Lie group of type (c1) or (c2) and {e1, ..., e4} a local

pseudo-orthonormal basis of vector fields described in 5.1. We verify the following.

Proposition 7.2. Let G be a four-dimensional simply connected Lie group of type (c1) or (c2),

V = ae1 + be2 + ce3 + de4 ∈ g a vector field on G and D its relatively compact domain. Denote by

ED(V ) the energy of V |D. For the different cases (12)− (16) the energy of vector field V is listed

in Table 8.
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Table 8. Energy of vector fields: types (c1) and (c2).

(G, g) ED(V )

(12) (2 + ((A+B)2 + C2)(c+ d)2/2))volD
(13) (2 + (B2 + 4A2− 2CB− 2BD+ (C +D)2)(B2 + 4A2 + 2CB+ 2BD+ (C +

D)2)(c+ d)2/32A2))volD
(14) (2 + ((A+D)2 + 4B2)(c+ d)2/2))volD
(15) 2volD
(16) (2 + ((A+B)2 +A2 +B2)(c+ d)2/2))volD

Proof. The above statement is obtained from a case-by-case argument. We report the details for

case (14) here. From equation (6.2), we deduce

||∇V ||2 = ((A+D)2 + 4B2)(c+ d)2.

Thus, ||∇V || = 0 if and only if c = −d. Therefore, among vector fields of the same length, the

ones with c = −d will minimize the energy. �
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