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1. Introduction and Preliminaries

In 2008, Jachymski [8] proved some fixed point results in metric spaces

endowed with a graph and generalized simultaneously the Banach contraction

principle from metric and partially ordered metric spaces. In 2011, Nicolae et al.

[9] presented some fixed point results for a new type of contractions using orbits
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and also for G-asymptotic contractions in metric spaces endowed with a graph.

In 2012, Bojor [1] defined the notion of G-Reich type mappings and obtained a

fixed point theorem for such mappings in a metric space endowed with a graph.

Finally, Cholamjiak [4] presented fixed point theorems for a Banach contractive

type mapping on complete tvs-cone metric spaces associated with w-distance

and endowed with a graph.

On the other hand, very recently, Niknam et al. [11] defined the concept

of algebraic cone metric spaces, studied some of its elementary properties and

presented some fixed point results in this space. This definition is different of

Huang and Zhang’s definition [7]. Moreover, very recently, Rahimi et al. [14]

defined an algebraic cone b-metric space.

In this paper, we first define an algebraic distance in algebraic cone metric

spaces and study some of its elementary properties. Also we prove some fixed

point theorems for a Banach contractive type mapping in algebraic cone metric

spaces associated with an algebraic distance and endowed with a graph. Con-

sistent with Niknam et al. [11], the following definitions and results will be

needed in the sequel.

Let Y be a real vector space and P be a convex subset of Y . A point x ∈ P
is said to be an algebraic interior point of P if there exists ε > 0 such that

x + ty ∈ P for all t ∈ [0, ε] and for each y ∈ Y . This definition is equivalent

to a point x is called an algebraic interior point of the convex set P ⊆ Y if

x ∈ P and there exists ε > 0 such that [x, x + εy] ⊂ P for each y ∈ Y , where

[x, x+εy] =
{
λx+(1−λ)(x+εy) : ∀λ ∈ [0, 1]

}
. The set of all algebraic interior

points of P is called algebraic interior and is denoted by algebraic-int P (or

aint P). Also, P is called algebraically open if P = aint P. Let Y be vector

space with the zero vector θ. A proper nonempty and convex subset P of Y is

called an algebraic cone if P +P ⊆ P, λP ⊆ P for λ ≥ 0 and P ∩ (−P) = {θ}.
Given an algebraic cone P ⊆ Y , a partial ordering �a with respect to P is

defined by x �a y if and only if y − x ∈ P. We shall write x ≺a y to mean

x �a y and x 6= y. Also, we write x �a y if and only if y − x ∈ aint P,

where aint P is the algebraic interior of P. Also, P is said to be Archimedean

if for each x, y ∈ P there exists n ∈ N such that x �a ny. For example,

P =
{

(x, y) ∈ R2 : x, y ≥ 0
}

is an algebraic cone with the Archimedean

property in the real vector space R2. In the sequel, we assume that (Y,P) has

the Archimedean property. We next recall the concept of algebraic cone metric

space.

Definition 1.1. [11] Let X be a nonempty set and (Y,P) be an algebraic cone

space with aint P 6= ∅. Suppose that a vector valued function da : X×X → Y

satisfies the following conditions:

(ACM1) θ �a da(x, y) for all x, y ∈ X and da(x, y) = θ if and only if x = y;

(ACM2) da(x, y) = da(y, x) for all x, y ∈ X;
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(ACM3) da(x, z) �a da(x, y) + da(y, z) for all x, y, z ∈ X.

Then da is called an algebraic cone metric and (X, da) is called an algebraic

cone metric space.

Definition 1.2. [11] Let (X, da) be an algebraic cone metric space, {xn} be a

sequence in X and x ∈ X. Then

(i) {xn} is said converges to x if for every c ∈ Y with c ∈ aint P there

exists a N0 ∈ N such that da(xn, x) �a c for all n > N0. We denote

this by da − limn→∞ xn = x or xn
da−→ x as n→∞;

(ii) {xn} is called a Cauchy sequence if for every c ∈ Y with c ∈ aint P
there exists a N0 ∈ N such that da(xn, xm)�a c for all m,n > N0;

(iii) (X, da) is called a complete algebraic cone metric space if every Cauchy

sequence in X is convergent.

Let (X, da) be an algebraic cone metric space. Then the following properties

are often useful and simple to prove.

Lemma 1.3. Let X be a nonempty set, (Y,P) be an algebraic cone space

with aint P 6= ∅ and (X, da) be an algebraic cone metric space. Then, for all

u, v, w, c ∈ Y , the following assertions are true:

(p1) If u �a v and v �a w, then u�a w.

(p2) Let {bn} be sequence in Y such that algebraic convergent to θ (or bn
a→

θ), θ �a bn and c ∈ aint P. Then there exists positive integer N0 such

that bn �a c for each n > N0.

(p3) Let θ �a c. If θ �a da(xn, x) �a bn and bn
a→ θ, then eventually

da(xn, x)�a c, where xn, x are sequence and given point in X.

Lemma 1.4. Let (X, da) be an algebraic cone metric space. Then the family

{Na(x, c) : x ∈ X, θ �a c}, where Na(x, c) = {y ∈ X : da(x, y) �a c}, is a

subbasis for topology on X (see [11]). We denote this algebraic cone topology

by τa, and note that τa is a Hausdorff topology.

Now, we define algebraic distance and introduce some its properties.

Definition 1.5. Let (X, da) be an algebraic cone metric space. A function

qa : X×X → Y is called a c-algebraic distance (or briefly, an algebraic distance)

on X if the following are satisfied:

q1) θ �a qa(x, y) for all x, y ∈ X;

q2) qa(x, z) �a qa(x, y) + qa(y, z) for all x, y, z ∈ X;

q3) for x ∈ X, if qa(x, yn) �a u for some u = ux and all n ≥ 1, then

qa(x, y) �a u whenever {yn} is a sequence in X converging to a point

y ∈ X;

q4) for all c ∈ Y with θ �a c, there exists e ∈ Y with θ �a e such that

qa(z, x)�a e and qa(z, y)�a e imply da(x, y)�a c.
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Example 1.6. Let (Y,P) be an algebraic cone space with aint P 6= ∅ and

(X, da) be an algebraic cone metric space such that the metric da(·, ·) is a

continuous function in second variable. Then, qa(x, y) = da(x, y) is an algebraic

distance. In fact, (q1) and (q2) are immediate. But, property (q3) is nontrivial

and it follows from qa(x, yn) = da(x, yn) � u, passing to the limit when n→∞
and using continuity of da. Let c ∈ Y with c ∈ aint P be given and put e = c

2 .

Suppose that qa(z, x) �a e and qa(z, y) �a e. Then da(x, y) = qa(x, y) �
qa(x, z) + qa(z, y)�a e+ e = c. Using (p1), this shows that da(x, y)�a c and

thus qa satisfies (q4). Hence, qa is an algebraic distance.

In Example 1.6, we introduced a known algebraic distance in an algebraic

cone metric space. There are some other examples about distance in [3, 5, 13]

that reader can consider them in algebraic version. Also, similar to Example 3

of Djordevicć [6], one can consider algebraic distances which are not c-distances

in cone metric spaces of [3, 13].

We will recall a sequence {un} in algebraic cone P is c-sequence if for every

c ∈ aint P there exists N0 ∈ N such that un �a c for n > N0. It is easy to prove

that if {un} and {vn} are c-sequences in Y and α, β > 0, then {αun + βvn}
is c-sequence. Note that in the case where cone P is normal, a sequence in

Y is c-sequence if and only if it is θ-sequence (see property (p2)). However, a

c-sequence need not be a θ-sequence in algebraic cone metric spaces.

Lemma 1.7. Let (X, da) be an algebraic cone metric space and qa be an alge-

braic distance on X. Also, let {xn} and {yn} be sequences in X and {un} and

{vn} be c-sequences in algebraic cone P converging to θ, and let x, y, z ∈ X.

Then the following properties holds:

qp1) If qa(xn, y) �a un and qa(xn, z) �a vn for n ∈ N, then y = z. Specifi-

cally, if qa(x, y) = θ and qa(x, z) = θ, then y = z.

qp2) If qa(xn, yn) �a un and qa(xn, z) �a vn for n ∈ N, then {yn} converges

to z.

qp3) If qa(xn, xm) �a un for m > n, then {xn} is a Cauchy sequence in X.

qp4) If qa(y, xn) �a un for n ∈ N, then {xn} is a Cauchy sequence in X.

Proof. qp1) In order to prove that y = z, it is enough to show that da(y, z)�a

c for each c ∈ aint P. For the given c, choose e ∈ aint P such

that property (q4) is satisfied. Since {un} and {vn} are c-sequence,

so there exists N0 ∈ N such that un �a e and vn �a e for each

n ≥ N0. By properties (p1), since un �a e and qa(xn, y) � un, we

have qa(xn, y) �a e. Similarly, we get qa(xn, z) �a e. Now, using

(q4), we have da(y, z)�a c.

qp3) Let c ∈ Y with c ∈ aint P. As in the proof of (qp1), choose e ∈ Y

with e ∈ aint P. Then there exists positive integer N0 ∈ N such

that qa(xn, xn+1) �a e and qa(xn, xm) �a e for any m > n ≥ N0
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and hence da(xn+1, xm) �a c (by (q4)). This implies that {xn} is a

Cauchy sequence in X.

As in the proofs of (qp1) and (qp3), one can prove (qp2) and (qp4). This

completes the proof. �

We next review some basic notions of graph theory in relation to an algebraic

cone metric space. Consider a directed graph G with V (G) = X such that the

set E(G) consisting of the edges of G contains all loops, that is, ∆(X) ⊆ E(G)

where ∆(X) = {(x, x) ∈ X × X : x ∈ X} and let G have no parallel edges.

Then G can be denoted by the ordered pair (V (G), E(G)), and also it is said

that the algebraic cone metric space (X, da) is endowed with the graph G.

Aa algebraic cone metric space (X, da) may also be endowed with the graphs

G−1 and G̃, where the former is the conversion of G which is obtained from

G by reversing the directions of the edges, and the latter is an undirected

graph obtained from G by ignoring the directions of the edges. In other words,

V (G−1) = V (G̃) = X, E(G−1) =
{

(x, y) : (y, x) ∈ E(G)
}

and E(G̃) =

E(G) ∪ E(G−1). If x and y are two vertices in a graph G, then a path in G

from x to y is a finite sequence (xi)
N
i=0 consisting of N + 1 vertices of G such

that x0 = x, xN = y, and (xi−1, xi) is an edge of G for i = 1, · · · , N and

N ∈ N. A graph G is said to be connected if there exists a path in G between

every two vertices of G. For more details on the theory of graphs, see [2, 8].

Definition 1.8. [10] Let (X,�) be a poset. A mapping T : X → X is called

nondecreasing if x � y implies Tx � Ty for all x, y ∈ X.

Following Petruşel and Rus [12, Definitions 3.1 and 3.6], we define the con-

cept of Picard operator in an algebraic cone metric space.

Definition 1.9. Let (X, da) be an algebraic cone metric space and T : X → X

be a mapping. Then T is called a Picard operator if T has an unique fixed

point x∗ ∈ X and Tnx
da−→ x∗ for all x ∈ X.

Following Jachymski [8, Definition 2.4], we define the concept of orbitally

G-continuous for self-map T on algebraic cone metric spaces.

Definition 1.10. Let (X, da) be an algebraic cone metric space endowed with

a graph G. A mapping T : X → X is called orbitally G-continuous on X if for

all x, y ∈ X and all sequences {pn} of positive integers with (T pnx, T pn+1x) ∈
E(G) for all n ≥ 1, the convergence T pnx

da−→ y implies T (T pnx)
da−→ Ty.

Trivially, a continuous mapping on a algebraic cone metric space is orbitally

G-continuous for all graphs G, but the converse is not generally true.

2. Main Results

In this section, let (X, da) be an algebraic cone metric space associated with

an algebraic distance qa and endowed with a directed graph G with V (G) = X
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and ∆(X) ⊆ E(G). Throughout this section, we use XT to denote the set of

all points x ∈ X such that (x, Tx) ∈ E(G). In other words,

XT = {x ∈ X : (x, Tx) ∈ E(G)}.

Motivated by [8, Definition 2.1], we introduce GA-Banach contraction in

algebraic cone metric spaces associated with an algebraic distance qa and en-

dowed with a graph as follows:

Definition 2.1. Let (X, da) be an algebraic cone metric space associated with

an algebraic distance qa and endowed with a graph G. We say that a mapping

T : X → X is a G-algebraic Banach contraction (or GA-contraction) if

GA1) T preserves the edges of G; that is, (x, y) ∈ E(G) implies (Tx, Ty) ∈
E(G) for all x, y ∈ X;

GA2) there exists a α ∈ [0, 1) such that qa(Tx, Ty) �a αqa(x, y) for all x, y ∈
X with (x, y) ∈ E(G).

Example 2.2. Let (X, da) be an algebraic cone metric space associated with

the algebraic distance qa and endowed with a graph G. Since E(G) contains

all loops, it follows that any constant mapping T : X → X preserves the edges

of G, and since da on the diagonal of X is equal θX , it follows that T satisfies

(GA2) for any constant α ∈ [0, 1). Hence, each constant mapping with domain

X is a GA-contraction.

Example 2.3. Let (X, da) be an algebraic cone metric space associated with

the algebraic distance qa and T : X → X satisfies

qa(Tx, Ty) �a αqa(x, y) (2.1)

for all x, y ∈ X, where α ∈ [0, 1). Consider the complete graph G0 whose vertex

set coincides with X; that is, V (G0) = X and E(G0) = X ×X. Assume that

(X, da) is endowed with the graph G0. Then it is clear that T preserves the

edges of G0 and T satisfies (GA2) if and only if T satisfies in condition (2.1).

Therefore, T is G0A-contraction with constant α.

Example 2.4. Let (X,4) be a partially ordered set and da be an algebraic

cone metric on X. Define a graph G1 by V (G1) = X and E(G1) = {(x, y) ∈
X ×X : x 4 y}. Since x 4 x for all x ∈ X, it follows that E(G1) contains all

loops and so it is allowed to consider the algebraic cone metric space (X, da)

associated with the algebraic distance qa and endowed with the graph G1.

Now, a mapping T : X → X preserves the edges of G1 if and only if T is

order-preserving, and T satisfies (GA2) for the graph G1 if and only if there

exists α ∈ [0, 1) such that

qa(Tx, Ty) �a αqa(x, y) (2.2)

for all elements x, y ∈ X such that x 4 y.



The Banach type contraction 47

Example 2.5. Let (X,4) be a partially ordered set, da be an algebraic cone

metric on X and qa be an algebraic distance on X. Define a graph G2 by

V (G2) = X and E(G2) = {(x, y) ∈ X × X : x 4 y ∨ y 4 x}; that is,

an ordered pair (x, y) ∈ X × X is an edge of G2 if and only if x and y are

comparable elements of (X,4). Since each element of (X,4) is comparable to

itself, it follows that E(G2) contains all loops and one can consider the metric

space (X, da) with the graph G2. In addition, it is obvious that G̃2 = G̃1 = G2.

Now, a mapping T : X → X preserves the edges of G2 if and only if T maps

comparable elements of (X,4) onto comparable elements, and T satisfies (GA2)

for the graph G2 if and only if there exists α ∈ [0, 1) such that

qa(Tx, Ty) �a αqa(x, y) (2.3)

for all comparable elements x, y ∈ X. In particular, if T is a G1A-contraction,

then T is a G2A-contraction.

Example 2.6. Suppose that (X, da) is an algebraic cone metric space associ-

ated with the algebraic distance qa and e ∈ aint P is a fixed. Recall that two

elements x, y ∈ X are said to be e-close if da(x, y) �a e. Define the e-graph G3

by V (G3) = X and E(G3) =
{

(x, y) ∈ X×X : da(x, y) �a e
}

. Since da on the

diagonal of X is equal to θX , it follows that E(G3) contains all loops. Assume

that (X, da) is endowed with the graph G3. Then a mapping T : X → X

preserves the edges of G3 if and only if T maps the e-close elements of X onto

e-close elements, and T satisfies (GA2) for the graph G3 if and only if

qa(Tx, Ty) �a αqa(x, y) (2.4)

for all e-close elements x, y ∈ X, where α ∈ [0, 1).

To prove the existence of a fixed point for a GA-contraction in a complete

algebraic cone metric space associated with an algebraic distance and endowed

with a graph, we need the following lemma.

Lemma 2.7. Let (X, da) be an algebraic cone metric space associated with the

algebraic distance qa and endowed with a connected graph G. Let T : X → X

be a GA-contraction. Then, for any x ∈ X, {Tnx} is a Cauchy sequence in X.

Proof. Let x ∈ X. We divide the proof into two steps.

Step 1. If (x, Tx) ∈ E(G), since T preserves the edges of G, then it follows

that (Tnx, Tn+1x) ∈ E(G) for all n ∈ N (by induction). Because of T is a

GA-contraction on X, we have

qa(Tnx, Tn+1x) �a αqa(Tn−1x, Tnx) �a · · · �a αnqa(x, Tx)

for all n ∈ N. Thus, for all n ∈ N, we get

qa(Tnx, Tn+1x) �a αnqa(x, Tx).
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Now, let m > n. From Definition 1.5.(q2), we have

qa(Tnx, Tmx) �a qa(Tnx, Tn+1x) + qa(Tn+1x, Tn+2x) + · · ·+ qa(Tm−1x, Tmx)

�a αnqa(x, Tx) + αn+1qa(x, Tx) + · · ·+ αm−1qa(x, Tx)

�a
( αn

1− α

)
qa(x, Tx).

Since
{(

αn

1−α
)
qa(x, Tx)

}
is a c-sequence in algebraic cone P, hence from Lemma

1.7.(qp3), {Tnx} is a Cauchy sequence in X.

Step 2. If (x, Tx) /∈ E(G), since G is connected, then there exists path (xi)
N
i=0

from x to Tx such that x = x0, xN = Tx and (xi−1, xi) ∈ E(G) for each

i = 1, · · · , N . Because of T is a GA-contraction, we get by induction that

(Tnxi−1, T
nxi) ∈ E(G) for i = 1, 2, · · · , N and for all n ≥ 1. Furthermore,

using contractive condition (GA2), we get

qa(Tnx, Tn+1x) = qa(Tnx0, T
nxN )

�a qa(Tnx0, T
nx1) + qa(Tnx1, T

nx2) + · · ·+ qa(TnxN−1, T
nxN )

�a αnqa(x0, x1) + αnqa(x1, x2) + · · ·+ αnqa(xN−1, xN )

= αn · r,

where r = qa(x0, x1) + qa(x1, x2) + · · · + qa(xN−1, xN ). Thus, for m > n, we

can show that qa(Tnx, Tmx) �a ( αn

1−α ) · r. Since
{(

αn

1−α
)
· r
}

is a c-sequence,

then {Tnx} is a Cauchy sequence in X by Lemma 1.7.(qp3). �

Proposition 2.8. Let (X, da) be a complete algebraic cone metric space asso-

ciated with the algebraic distance qa and endowed with a connected graph G and

let T : X → X be a GA-contraction. Then there exists a unique point x∗ ∈ X
such that {Tnx} converges to x∗ for all x ∈ X.

Proof. Fix a point x ∈ X. By Lemma 2.7, {Tnx} is a Cauchy sequence in X.

Since X is complete, there exists x∗ ∈ X such that Tnx
da−→ x∗. Now, if y ∈ X,

then in similar way, there exists x∗∗ ∈ X such that Tny
da−→ x∗∗. We show

that x∗ = x∗∗.

Now, let (x, Tx) ∈ E(G). By Definition 1.5.(q3) and since {Tnx} converges

to x∗ and qa(Tnx, Tmx) �a ( αn

1−α )qa(x, Tx) for all m ≥ 1, we have

qa(Tnx, x∗) �a
( αn

1− α
)
qa(x, Tx) (2.5)

for all n ∈ N.

On the other hand, let (x, Tx) /∈ E(G). Since G is connected, then there

exists path (xi)
N
i=0 from x to Tx such that x = x0, xN = Tx and (xi−1, xi) ∈

E(G) for i = 1, · · · , N . Thus, for all m > n,

qa(Tnx, Tmx) �a
( αn

1− α
)
· r
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where r = qa(x, x1) + qa(x1, x2) + · · · + qa(xN−1, Tx). By Definition 1.5.(q3)

and since {Tnx} converges to x∗ and qa(Tnx, Tmx) �a ( αn

1−α ) · r for all m ≥ 1,

we get

qa(Tnx, x∗) �a
( αn

1− α
)
· r (2.6)

for all n ∈ N. Repeating the argument above, if (y, Ty) ∈ E(G), then

qa(Tny, x∗∗) �a
( αn

1− α
)
qa(y, Ty) (2.7)

for all n ∈ N. Furthermore, if (y, Ty) /∈ E(G), then there exists path (yj)
M
j=0

from y to Ty such that y = y0, yM = Ty and (yj−1, yj) ∈ E(G) for each

j = 1, · · · ,M . Thus, we have

qa(Tny, x∗∗) �a
( αn

1− α
)
· s

where s = qa(y, y1) + qa(y1, y2) + · · ·+ qa(yM−1, Ty).

Next, we divide the proof into two steps.

Step 1. Let (x, y) ∈ E(G). If (y, Ty) ∈ E(G), then there exists M0 such that

qa(Tnx, Tmx) �a qa(Tnx, Tny) + qa(Tny, Tmy) �a αnqa(x, y) +
αn

1− α
qa(y, Ty)

for all m > M0. By Definition 1.5.(q3) and since {Tnx} converges to x∗ and

qa(Tnx, Tmx) �a αnqa(x, y) + αn

1−αqa(y, Ty) for all m ≥M0, we get

qa(Tnx, x∗) �a αnqa(x, y) +
αn

1− α
qa(y, Ty)

for all n ∈ N. Using Conditions (2.5), (2.6) and Lemma 1.7.(qp1), we have

x∗ = x∗∗. Similarly, if (y, Ty) /∈ E(G), then we have x∗ = x∗∗.

Step 2. Suppose that (x, y) /∈ E(G). Then there exists path (xk)Sk=1 from x

to y such that x0 = x, xS = y and (xk−1, xk) ∈ E(G) for k = 1, 2, · · · , S. Now,

let (y, Ty) ∈ E(G). Then, by condition (2.7), we have

qa(Tnx, x∗∗) �a qa(Tnx, Tnx1) + qa(Tnx1, T
nx2)

+ · · ·+ qa(TnxS−1, T
ny) + qa(Tny, x∗∗)

�a αnqa(x, x1) + · · ·+ αnqa(xS−1, y) + (
αn

1− α
)qa(y, Ty)

= αn
(
qa(x, x1) + qa(x1, x2) + · · ·+ qa(xS−1, y) +

1

1− α
qa(y, Ty)

)
.

Consequently, since αn
(
qa(x, x1)+qa(x1, x2)+· · ·+qa(xS−1, y)+ 1

1−αqa(y, Ty)
)

is a c-sequence in algebraic cone P, by condition (2.5), (2.6) and Lemma

1.7.(qp1), we have x∗ = x∗∗. In this case, let (y, Ty) /∈ E(G). Similarly,

we obtain x∗ = x∗∗. �
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Now we are ready to prove our main theorem on the existence and uniqueness

of fixed points for GA-contractions in complete algebraic cone metric spaces

associated with an algebraic distance and endowed with a graph.

Theorem 2.9. Let (X, da) be a complete algebraic cone metric space associated

with the algebraic distance qa and endowed with a connected graph G. Let

T : X → X be a GA-contraction and orbitally G-continuous on X. Then T is

Picard operator if and only if XT 6= ∅.

Proof. If XT = ∅, then there is nothing to prove. Otherwise, if x ∈ XT ,

then (x, Tx) ∈ E(G) and since T preserves the edges of G, it follows that by

induction (Tnx, Tn+1x) ∈ E(G) for all n ∈ N. From Proposition 2.8, there

exists a unique point x∗ ∈ X such that Tnx
da−→ x∗.

We next show that x∗ is a fixed point for T . Because of T is orbitally G-

continuous on X, then Tn+1x
da−→ Tx∗ as n → ∞. By Proposition 2.8, the

limit of a sequence {Tnx} in an algebraic cone metric space is unique, so we

have Tx∗ = x∗; that is, x∗ is a fixed point for T .

Let x∗∗ ∈ X be another fixed point of T . Since x∗∗ = Tnx∗∗
da−→ x∗∗, again

by Proposition 2.8, we have x∗ = x∗∗. Thus, T is a Picard operator. �

Let G = G0 in Theorem 2.9. Then, as mentioned before, the set XT related

to any arbitrary T : X → X coincides with the whole set X. Therefore, we get

the following version of GA-Banach fixed point theorem in complete algebraic

cone metric spaces equipped the algebraic distance qa on X.

Corollary 2.10. Let (X, da) be a complete algebraic cone metric space associ-

ated with the algebraic distance qa and T : X → X be a mapping which satisfies

in (2.1). Then T is a Picard operator.

If we set G = G1 in Theorem 2.9, then the following partially ordered

version of GA-Banach fixed point theorem in complete algebraic cone metric

spaces associated with the algebraic distance qa and endowed with a partial

order is obtained.

Corollary 2.11. Let (X,4) be a poset, da be an algebraic cone metric on X

such that (X, da) is a complete algebraic cone metric space associated with the

algebraic distance qa, and T : X → X be a nondecreasing and orbitally G1-

continuous which satisfies in (2.2). Then T is Picard operator if and only if

there exists x0 ∈ X such that x0 4 Tx0.

If we set G = G2 in Theorem 2.9, then another partially ordered version

of GA-Banach fixed point theorem in complete algebraic cone metric spaces

associated with an algebraic distance qa and endowed with a partial order is

obtained as follows.
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Corollary 2.12. Let (X,4) be a poset, da be an algebraic cone metric on X

such that (X, da) is a complete algebraic cone metric space associated with the

algebraic distance qa, and T : X → X be a mapping which maps comparable

elements of X onto comparable elements and satisfies in (2.3). Also let T be a

orbitally G2-continuous on X. Then T is Picard operator if and only if there

exists x0 ∈ X such that x0 and Tx0 are comparable.

Finally, if we set G = G3 in Theorem 2.9, then we get the following version

of GA-Banach fixed point theorem in complete algebraic cone metric spaces

associated with an algebraic distance qa.

Corollary 2.13. Let (X, da) be a complete algebraic cone metric space asso-

ciated with the algebraic distance qa, e ∈ aint P and T : X → X be a mapping

which maps e-close elements of X onto e-close elements and satisfies in (2.4).

Also, let T be a orbitally G3-continuous on X. Then T is Picard operator if

and only if there exists x0 ∈ X such that d(x0, Tx0) �a e.

Acknowledgments

The first and the second authors are thankful to the Department of Mathe-

matics of Payame Noor University. Also, the authors are grateful to the editor

and referee for their accurate reading.

References

1. F. Bojor, Fixed Point Theorems for Reich Type Contractions on Metric Spaces with a

Graph, Nonlinear Analysis (TMA), 75(1), (2012), 1359-1373.

2. J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008.

3. Y. J. Cho, R. Saadati, S. H. Wang, Common Fixed Point Theorems on Generalized

Distance in Ordered Cone Metric Spaces, Computers & Mathematics with Applications,

61, (2011), 1254-1260.

4. P. Cholamjiak, Fixed Point Theorems for Banach Type Contarction on TV S-Cone Metric

Spaces Endowed with a Graph, Journal of Computational Analysis and Applications,

16(2), (2011), 338-345.
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