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Abstract. In this paper, we will study compatible triples on Lie alge-
broids. Using a suitable decomposition for a Lie algebroid, we construct
an integrable generalized distribution on the base manifold. As a result,
the symplectic form on the Lie algebroid induces a symplectic form on the
leaves of the distribution. Hence, the induced Poisson structure on the
base manifold can be represented by means of the induced Poisson struc-
tures on the integral submanifolds. Moreover, for any compatible triple
with an invariant metric and an admissible almost complex structure, we
show that the bracket annihilates on the kernel of the anchor map.

Keywords: Lie algebroid, Symplectic Lie algebroid, Contact Lie algebroid,
Poisson structure.

2010 Mathematics subject classification: 53C15, 53D17,70G45.

1. Introduction

Lie algebroids have an important place in the context of some different
categories in differential geometry and mathematical physics and represent an
active domain of research([1, 2, 5, 8, 13, 14, 16]). Lie algebroids, are generaliza-
tions of Lie algebras and integrable distributions([10]). In fact a Lie algebroid
is an anchored vector bundle with a Lie bracket on the module of sections and
many geometrical notions which involve the tangent bundle were generalized
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to the context of Lie algebroids.
One of the most important examples of Lie algebroids are cotangent bundles of
Poisson manifolds([18]). More over the dual bundle of every Lie algebroids has
a canonical Poisson structure([4]). A Poisson structure on a Lie algebroid is
usually described as a 2-section. Using this 2-section researchers have studied
the induced Poissson bracket on the base manifold([9, 11, 15, 17, 18]).
A compatible triple on a smooth manifold, consists of a Riemannian metric, a
symplectic 2-form and an almost complex structure, together with a couple of
compatibility conditions. Compatible triples on ordinary manifolds, has been
an area of interest for decades and has been studied in a great deal of papers.
There exists two main methods concerning the issue of compatibility of Rie-
mannian metric and Lie algebroid structure. Boucetta[2] considers a Riemann-
ian metric as compatible provided that its Levi-Civita connection is compatible
with the Lie algebroid structure. Focusing on transitive Lie algebroids, how-
ever, Boroojerdian[5] calls a metric, compatible if it preserves all the adjoint
connections of the Lie algebroids. Due to the Physical applications of the latter
method we will use it in this paper.
On the other hand, Ida[6] discussed the notion of almost complex Lie algebroid
and clarified the relations between almost complex structure on the Lie alge-
broid and the one on the base manifold. We use some of his results to derive
the compatibility condition.
In this setting, we will focus on compatible triples on Lie algebroids and rep-
resent a specific decomposition of the Lie algebroid using the symplectic form.
This decomposition helps us to achieve a better and more accurate image of
the Lie algebroid that can be useful in order to investigate the structure on the
Lie algebroid.

The current paper contains four sections. In section two we review basic
definitions and facts about Lie algebroids and decompositions of transitive Lie
algebroids based on [5]. Invariant metrics on transitive Lie algebroids are also
mentioned in this section.
Section 3 includes two parts. The first, is dedicated to symplectic Lie alge-
broids, almost complex structures and compatible triples on Lie algebroids. In
the second part we have used a compatible triple to give a new and special
decomposition for the Lie algebroid. This decomposition induces an integrable
generalized distribution on the base manifold. We investigate the relation be-
tween the Poisson structure on the integral sub-manifolds and Poisson structure
on the base manifold.We already know that any symplectic structure on a Lie
algebroid, induces a Poisson bracket on the base manifold. Thus, in any com-
patible triple, the cotangent bundle of the base manifold inherits a Lie algebroid
structure. Having this in mind, we can use decomposition A = E1+E2+L1+L2

to show that T ∗M ∼= E2 + L1 as two Lie algebroids, provided that A is tran-
sitive.
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Finally in section 4 we discuss contact Lie algebroids, mainly based on [7]. We
find conditions for the contact form of the Lie algebroid to induce a Poisson
structure on the base manifold. In fact, this will happen if the Reeb section is
in the kernel of the anchor map.

2. Preliminaries on Lie Algebroids

A Lie algebroid over a manifold M may be regarded as a generalized tangent
bundle to M . In fact a Lie algebroid (A, ρ, [ , ]A) over a smooth manifold M is
a vector bundle π : A → M together with a Lie algebra structure [ , ]A on the
space Γ(A) of sections and a bundle map ρ : A → TM called the anchor map
such that

(1) The induced map ρ : Γ(A) −→ X (M) is a homomorphism of Lie alge-
bras, that is, ρ([S1, S2]A) = [ρ(S1), ρ(S2)] for S1, S2 ∈ Γ(A).

(2) For any sections S1, S2 ∈ Γ(A) and for every smooth function f ∈
C∞(M) the Leibniz identity [S1, fS2]A = f [S1, S2]A + (ρ(S1) · f)S2 is
satisfied.

The basic example of a Lie algebroid over M is the tangent bundle TM with
the identity map as the anchor map.

Lie algebroids can also be smaller or larger than TM . Any integrable distri-
bution of TM is a Lie algebroid with the induced bracket and the inclusion as
the anchor map. On the other hand, any Lie algebra g is a Lie algebroid over
a point.

Example 2.1. Let (M, { , }) be a Poisson manifold equipped with a bivector
π. Consider the Lie bracket [ , ]π on Γ(T ∗M) as follows

[α, β]π = Lπ♯(α)β − Lπ♯(β)α− d(π(α, β)

for α, β ∈ Γ(T ∗M). Then (T ∗M,π♯, [ , ]π) is a Lie algebroid over M([9]).

An important operator associated with a Lie algebroid (A, ρ, [ , ]A) over a
manifold M is the exterior derivative dA : Γ

(
∧k A∗) −→ Γ

(
∧k+1 A∗) of A

which is defined as follows

dA(η)(S0, ..., Sk) =
k∑

i=0

(−1)iρ(Si) · η(S1, ..., Ŝi, ..., Sk)

+
k∑

i<j=1

(−1)i+jη([Si, Sj ]A , S1, ..., Ŝi, ..., Ŝj , ..., Sk)

for η ∈ Γ(∧kA∗) and S0, ..., Sk ∈ Γ(A). It follows that (dA)2 = 0([8]).
Moreover, if S is a section of A, one may introduce, in a natural way, the Lie
derivative with respect to S, as the operator L : Γ

(
∧kA∗) −→ Γ

(
∧kA∗) given

by
LS = iS ◦ dA + dA ◦ iS
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where iS is the inner contraction with S. Exactly like ordinary manifolds, the
usual property LS ◦ d = d ◦ LS holds here(see[4]), as well as the relations

i[S,T ]A
= [LS , iT ]A [LS ,LT ]A = L[S,T ]A

.

Let (A, [ , ]A , ρA) and (B, [ , ]B , ρB) be two Lie algebroids over smooth manifolds
M and M ′, respectively. A vector bundle map (Φ, ϕ) : A → B is called a
morphism of Lie algebroids if for every α ∈ Γ(∧kB∗) we have

Φ∗(dBα) = dA
(
Φ∗(α)

)
(2.1)

where Φ∗ : ∧kB∗ −→ ∧kA∗ is defined by

Φ∗(α)p(S1, ..., Sn) = αϕ(p)

(
Φ(S1), ...,Φ(Sn)

)
for α ∈ Γ(∧kB∗), p ∈ M and S1, ..., Sn ∈ Ap. It is easy to see that (Φ, ϕ) is
a morphism of Lie algebroids if for every S ∈ ΓA, ρB(Φ(S)) = ϕ∗(ρA(S)) and
equation (2.1) holds for every 1-form section of B. Moreover, if ϕ is diffeomor-
phism then Φ maps any section of A to a section of B. In this case, Φ is a mor-
phism of Lie algebroids if ρB ◦Φ = ϕ∗ ◦ ρA and Φ([S1, S2]A) = [Φ(S1),Φ(S2)]B
for any S1, S2 ∈ ΓA([4]).
A Lie algebroid (A, ρ, [ , ]A) over smooth manifold M is called transitive (respec-
tively regular) if ρ is surjective (respectively constant rank)([4]). An immediate
consequence of this definition is that, for any p in M , there is an induced Lie
bracket say ([ , ]A)p on

Lp = Ker(ρp) ⊆ Ap

which makes it into a Lie algebra[10]. For a Lie algebroid (A, ρ, [ , ]A) over M ,
the image of ρ defines a smooth integrable generalized distribution in M([3]).
The derived foliation is called the characteristic foliation of A. Let N be any
leaf of the characteristic foliation of A on M , it is easy to see that the bracket
on Γ(A) deduce the bracket on the space of section of the restriction AN of A
to N . Then ρ|AN

: AN → TN is a transitive Lie algebroid([2]).
For a transitive Lie algebroid, L = kerρ is a bundle of Lie algebras [10]. Suppose
(A, ρ, [ , ]A) is a transitive Lie algebroid, then a vector bundle map λ : TM → A
such that ρ ◦ λ = 1TM is a splitting of (A, ρ, [ , ]A) i,e., we can decompose A to
E + L of vector bundles, where E = λ(TM).
Fix a λ : TM → A splitting of ρ. The map λ defines a linear connection on L,
called an adjoint connection as follows.

∇λ : X (M)× Γ(L) → Γ(L)

∇λ
XT := [λ(X), T ]A

The 2-form Ωλ in A2(M,L) is defined as follows

2Ωλ(X,Y ) = [λ(X), λ(Y )]A − λ([X,Y ])
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and is called the curvature 2-form. The Lie bracket on Γ(A) with respect to
the decomposition A = E + L is written as follows

[λ(X) + S, λ(Y ) + T ]A = λ([X,Y ]) +∇λ
XT −∇λ

Y S + [S, T ]L +Ω(X,Y ).

Conversely if L is a bundle of Lie algebras, and ∇ is a connection on L that
preserves the Lie bracket and the curvature of ∇ is in the form [2Ω(X,Y ), S]A
for S ∈ Γ(L) and some Ω ∈ A2(M,L), then we can make TM + L into a
transitive Lie algebroid by defining a Lie bracket on Γ(TM + L) as follows

[[X + S, Y + T ]] = [X,Y ] +∇XT −∇Y S + [S, T ]L +Ω(X,Y ).

So all transitive Lie algebroids have the above structure (for more details,
see[5]).

A Riemannian metric g on Lie algebroid (A, ρ, [ , ]A) is said to be invariant if
all adjoint connections of A preserve the restriction gL of g to L, i.e., for every
λ and X ∈ X (M), ∇λ

XgL = 0. Having an invariant Riemannian metric g one
can write

g([S1, S2]A , S3) = g(S1, [S2, S3]A)

for S1, S2, S3 ∈ Γ(L).

Proposition 2.2 ([5]). If g is an invariant metric on (A, ρ, [ , ]A) and ∇ is the
Levi-Civita connection of A then

∇S1
S2 =

1

2
[S1, S2]A (2.2)

for every S1, S2 ∈ Γ(L).

3. Compatible Triples on Lie Algebroids

This section includes three parts. The first, is dedicated to almost complex
Lie algebroids. And the second reviewed symplectic Lie algebroids and com-
patible triples on Lie algebroids. In the last part, we have used a compatible
triple to give a new and special decomposition for the Lie algebroid.

3.1. Almost complex Lie algebroids.
An almost complex structure JA on (A, ρ, [ , ]A) is an endomorphism JA :

Γ(A) → Γ(A), over the identity, such that J2
A = −idΓ(A). A Lie algebroid

(A, ρ, [ , ]A , JA) endowed with such a structure is called an almost complex Lie
algebroid.

Definition 3.1. We call an almost complex structure JA on (A, ρ, [ , ]A), ad-
missible (or called admissible with respect to JM ) if there exists an almost
complex structure JM on M such that

ρ ◦ JA = JM ◦ ρ.

On transitive Lie algebroids, we can derive a better and more useful criterion
to investigate the admissibility of an almost complex structure.
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Proposition 3.2. An almost complex structure JA on transitive Lie algebroid
A is admissible if and only if JA(L) ⊆ L.

Proof. Let λ : TM −→ A be a splitting of ρ and E := λ(TM), i.e., A = E+L.
For X ∈ TM put

JM (X) := ρ
(
JA(λ(X))

)
.

We show that JM is an almost complex structure on M . To prove this we need
to show that J2

M = −idTM . For X ∈ X (M)

J2
M (X) = ρ

(
JA

(
λ(ρ

(
JA(λ(X))

)
)
))

= ρ
(
JA

((
JA(λ(X))

)E)) (3.1)

where
(
JA(λ(X))

)E is the E-part of JA(λ(X)) with respect to the given de-
composition of A. On the other hand, JA(λ(X)) = JA(λ(X))E + JA(λ(X))L.
Thus by applying JA we have JA(JA(λ(X))E) = −X−JA(JA(λ(X))L). Again
by applying ρ we have ρ(JA(JA(λ(X))E)) = −ρ(λ(X)) = −X. So by (3.1),
J2
M = −IdTM , i.e., JM is an almost complex structure on M that clearly sat-

isfies JM ◦ ρ = ρ ◦ JA.
The converse is obvious. □

Remark 3.3.
(1) We will use the notion of integrability of almost complex structures on

Lie algebroids as Popescu developed in [6].
(2) If JA is admissible with respect to JM , and NJA and NJM

are Nijenhuis
tensors of (A, JA) and (M,JM ) respectively, we have

ρ(NJA(a, b)) = NJM
(ρ(a), ρ(b)) (3.2)

for every a, b in Γ(A)([6]).

Example 3.4. Let (M,JM , gM ) be an almost Hermitian manifold with the
Levi- Civita connection ∇. We denote the induced connection on L(TM) again
by ∇. This connection preserves Lie bracket of L(TM). We also denote the
curvature of ∇ on L(TM) by R′. So for T ∈ L(TM), we have R′(X,Y )T =

[R(X,Y ), T ]
L(TM)

. Consequently, we can define an algebroid structure on A :=

TM + L(TM) by the following Lie bracket on Γ(TM + L(TM)).([5])
For every X,Y ∈ X (M) and T, S in Γ(L(TM))

[X + T, Y + S]A = [X,Y ] +∇XS −∇Y T + [T, S]
L(TM)

+R(X,Y ).

Now we can define an almost complex structure on Γ(L(TM)), induced by the
almost complex structure JM on M , as

JL(TM) : Γ(L(TM)) −→ Γ(L(TM))

JL(TM)(T )(X) := T (JM (X)) (X ∈ X (M)).

Using these two almost complex structures, we define an almost complex struc-
ture on TM +L(TM)) as J(X + T ) = JM (X) + JT (M)(T ) for X ∈ X (M) and
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T ∈ Γ(L(TM)). Clearly J is admissible with respect to JM . It is easy to
see that gL(TM)(T, S) := trace(TST ) is a Riemannian metric on L(TM), com-
patible with JL(TM). Thus (TM + L(TM), J, g) is an almost Hermitian Lie
algebroid where

g(X + T, Y + S) = gM (X,Y ) + gL(TM)(T, S).

Moreover, (M,JM , gM ) is a Hermitian manifold if and only if (TM+L(TM), J, g)

is a Hermitian Lie algebroid. In fact, if (M,JM , gM ) is Hermitian, then the
Nijenhuis tensor of J can be calculated in the following two conditions:

(1) If T, S ∈ Γ(L(TM)) and X ∈ X (M) then by direct calculus we have

N(T,X)(Y ) = N(T, S)(X) = 0.

(2) If X,Y ∈ X (M) then

N(X,Y ) = [JM (X), JM (Y )]− [X,Y ]− JM [JM (X), Y ]

−JM [X, JM (Y )] +R(JM (X), JM (Y ))−R(X,Y )

−JM (R(X, JM (Y )))− JM (R(JM (X), Y )).

(3.3)

The first line in the above equation is clearly zero. So we need to show that
the second line is zero.
Integrability of JM leads to the following calculation

JM (R(X,Y )Z) = JM (∇X∇Y Z)− JM (∇Y ∇XZ)− JM (∇[X,Y ]Z)

= ∇X∇Y JM (Z)−∇Y ∇XJM (Z)−∇[X,Y ]JM (Z)

= R(X,Y )JM (Z)

For X,Y, Z ∈ X (M). Using the property of curvature tensor R for U, V ∈
X (M) we have

gM (R(X, JM (Y ))U, V ) =gM (R(U, V )X, JM (Y )

=− gM (R(U, V )JM (X), Y )

=− gM (R(JM (X), Y )U, V ).

One can easily show that R(X, J(Y )) = −R(J(X), Y ). By (3.3) we see that
N(X,Y ) = 0 for every X,Y in X (M), i.e., (TM + L(TM), J, g) is Hermitian.
Conversely if (TM+L(TM), J, g) is a Hermitian Lie algebroid then by equation
(3.3) we have NJM

= 0 and so (M,JM , gM ) is a Hermitian manifold.

Example 3.5. Consider the almost contact metric manifold (M, ξ, η, φ.g) and
the Lie algebroid TM + L(TM). Let J act on vector fields as follows

J : X (M) −→ Γ
(
TM + L(TM)

)
J(X) = φ(X) + η(X)η ⊗ ξ
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where η ⊗ ξ is a section of L(TM) such that

η ⊗ ξ : X (M) → X (M)

X 7→ η(X)ξ.

J also acts on sections of L(TM) as

J : Γ(L(TM)) −→ Γ
(
TM + L(TM)

)
J(T ) = T ◦ φ+ η ⊗ φ(T (ξ))− η(T (ξ))ξ

The map J defines an almost complex structure on TM + L(TM).

3.2. Symplectic Lie algebroids.
A symplectic Lie algebroid is a Lie algebroid (A, ρ, [ , ]A) together with a closed
and non-degenerate 2-form ω on A([12]).

Example 3.6. Let (g, ω) be a symplectic Lie algebra, i.e., g is a Lie algebra
and ω is a non-degenerate 2- form on it and

ω([S1, S3]g, S2)− ω([S1, S2]g, S3)− ω([S2, S3]g, S1) = 0 (S1, S2, S3 ∈ g),

then (M × g, 0, [ , ]g, ω) is a symplectic Lie algebroid.

For a symplectic Lie algebroid (A, ω) and every smooth function f on M

there exists a unique section af ∈ Γ(A) such that

dAf(b) = ω(af , b) (b ∈ Γ(A)).

This is called the Hamiltonian section of f . Using this, one can define a Poisson
structure on M as follows([12]):

{f, g} := ω(af , ag).

There is no analogue to the Lie’s third theorem, i.e., not every Lie algebroid can
be integrated globally to a Lie groupoid, although there is a local version (see
[3]). We will introduce a specific symplectic Lie algebroids that are globally
integrable.

Proposition 3.7. For a symplectic Lie algebroid (A, ρ, [ , ]A , ω) if ω|L is non-
degenerate, then A is integrable.

Proof. Let N be a leaf of the characteristic foliation of A then (AN , ρN , [ , ]N , ωN )

is a symplectic Lie algebroid over N . Suppose that E is the symplectic com-
plement of LN , i.e., E = Lω

N . Since ω|L is nondegenerate, L ∩ Lω = 0. So
AN = E + LN is a decomposition of AN . We claim that E is closed under
the bracket. Considering Ω as the curvature 2-form with respect to the given



On contact and symplectic Lie algebroids 43

decomposition of AN , we have

0 = dANωN (a, b, s) = ρN (a) · ωN (b, s) + ρN (b) · ωN (a, s)− ρN (s) · ωN (a, b)

+ωN ([a, s]N , b)− ωN ([a, b]N , s)− ωN ([b, s]N , a)

= ωN (Ω(a, b), s),

for all a, b ∈ ΓE and s ∈ ΓLN .
This means that Ω = 0. Thus ΓE is closed under the bracket. Hence by
Corollary 5.2, of [3], A is integrable. □

Example 3.8. Let (L, ωL) is a symplectic Lie algebra bundle over a symplectic
manifold (M,ωM ). Consider the flat connection ∇ on L that preserves ωL.
Then (L,∇) together with the zero curvature 2-form construct a transitive Lie
algebroid, A := TM + L. Put

ω : Γ(A)× Γ(A) −−−→ C∞(M)

ω(X + S, Y + T ) = ωM (X,Y ) + ωL(S, T )

clearly ω is nondegenerate. Moreover, ω is closed, since for every X,Y ∈ X (M)

and S, T, T ′ ∈ Γ(L) we have

d(TM+L)ω(X,S, T ) = d(TM+L)ω(X,Y, Z) = d(TM+L)ω(S, T, T ′) = 0

Thus (TM + L, ω) is a symplectic Lie algebroid over M .

In order to complete the procedure of extending tangent bundle notions to
Lie algebroids, after investigating Riemannian metric, almost complex structure
and symplectic form, we will discuss the compatibility condition of these three
notions.

Definition 3.9. Over a symplectic Lie algebroid (A, ρ, [ , ]A , ω), the triple
(ω, J, g) is called compatible if J is an almost complex structure and g is a
Riemannian metric on A such that

g(J(S), J(T )) = g(S, T ) and ω(S, T ) = g(S, J(T )) (S, T ∈ Γ(A)).

For such a triple, we also have([6])

2g((∇aJ)b, c) = g(N(b, c), J(a)), (3.4)

where ∇ is the Levi-Civita connection on A and N is the Nijenhuis tensor of
J .
Moreover (A, ω, J, g) is called a Kähler Lie algebroid if NJ = 0. One can easily
see that on a Kähler Lie algebroid, ∇J = 0.
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3.3. Decomposition of Lie algebroids by compatible triple.
In proposition 3.7 we discussed the symplectic Lie algebroid (A, ω) in which
ω|L was nondegenerated. But, what happens when ω|L is degenerated? In such
case, one can find a linear subspace of L consists of elements s ∈ L satisfying
isω|L = 0. This leads us to a useful new decomposition of A.
Now, suppose that (ω, J, g) be a compatible triple on a Lie algebroid (A, ρ, [ , ]A)
over M . For every p ∈ M put L1

p = Lp ∩ Lω
p and L2

p = (L1
p)

⊥ under the gL
restriction of g on L. Note that ω|L2

p
is nondegenerate. Putting E1

p = J(L1
p),

for J(Tp) ∈ E1
p and Sp ∈ Lp we have

g(Sp, J(Tp)) = ω(Sp, Tp) = 0.

Thus E1
p is perpendicular to Lp. Finally taking E2

p = (Lp + E1
p)

ω one can see
that E2

p ∩ (Lp + E1
p) = 0, since for ap ∈ E2

p ∩ (Lp + E1
p) there is Sp ∈ Lp and

Tp ∈ L1
p such that ap = Sp + J(Tp). Clearly

0 = ω(ap, Tp) = ω(Sp + J(Tp), Tp) = g(Tp, Tp).

Thus Tp = 0, and so ap = Sp. Since ap ∈ Lω
p , we have Sp ∈ L1

p. On the other
hand, Sp ∈ (E1

p)
ω, hence

0 = ω(J(Sp), Sp) = g(Sp, Sp),

thus ap = 0. Therefore, (E1
p + E2

p) ⊕ Lp is a decomposition of Ap, i.e., Ap =

(E1
p + E2

p) ⊕ (L1
p + L2

p). Note that these sets (including E1, E2, L1, L2) may
not be sub-bundles or distributions, and they may have not constant rank.
However, under certain circumstances, some combinations of these sets are
sub-bundles For instance, if A is transitive then E2+L1 is a sub Lie algebroid.
The restriction of [ , ]A to L1

p is zero. In fact ω is closed so, for every Sp, Tp ∈ L1
p

and Zp ∈ Lp we have

0 = dAω(Sp, Tp, Zp) = −ω([Sp, Tp]A , Zp).

Therefore, [Sp, Tp]A ∈ L1
p. Again for Zp ∈ L1

p we have

0 = dAω(Sp, Tp, J(Zp)) = −ω([Sp, Tp]A , J(Zp)) = g([Sp, Tp]A , Zp)

thus [Sp, Tp]A ∈ L2
p. Therefore, [Sp, Tp]A = 0.

Moreover, ρ(E2 + L1) is an integrable generalized distribution on M . If N is
a leaf of A then (E2 + L1)|N is a Lie sub algebroid of A|N → N , because for
every a, b ∈ Γ(E2 + L1) and S ∈ Γ(A) such that Sp ∈ L, we have

0 = dAω(a, b, S)(p) = −ω([a, b]A , S)(p),

which means that
[a, b]A ∈ Γ(E2 + L1). (3.5)

The above equation shows that E2 + L1 is closed under the bracket. Now we
put Λ := ρ(E2+L1) and call it the symplectic generalized distribution of (A, ω)
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on M . For x ∈ M if Ox is the integral sub-manifold of Λ at x, we can define
ωOx

as a nondegenerate 2-form on Ox by

ωOx
: X (Ox)×X (Ox) −→ C∞(Ox)

ωOx
(X,Y )(p) := ω(a, b)(p),

where a, b ∈ Γ(E2 + L1) satisfy ρ(ap) = Xp, ρ(bp) = Yp for every p in Ox.
Clearly ωOx

is a 2-form on Ox. Since ω|E2
is nondegenerate, so is ωOx

. Moreover
ωOx

is closed and so is a symplectic form on Ox.

Theorem 3.10. Let (ω, J, g) be a compatible triple on Lie algebroid A and
Λ be the symplectic generalized distribution of (A, ω) on M . Then for every
integral sub-manifold O of Λ we have

{f, g}|O = {f|O , g|O}O,

where { , } is the Poisson structure induced by ω and { , }O is the Poisson
structure induced by ωO on O.

Proof. For f, g ∈ C∞(M) let af and ag be the Hamiltonian sections of f, g
with respect to ω and Xf|O

, Xg|O
be the Hamiltonian vector fields of f|O and

g|O with respect to ωO . Then

ρ(af (x)) = Xf|O
(x) , ρ(ag(x)) = Xg|O

(x) (x ∈ O).

Thus for every x in O we have

{f|O , g|O}O(x) = ωO

(
Xf|O

(x), Xg|O
(x)

)
= ω

(
af (x), ag(x)

)
= {f, g}ω|O

(x),

which completes the proof. □

Corollary 3.11. With the above notations, if f is constant on Ox for some
x ∈M , then

{f, g}(y) = 0,

for every g ∈ C∞(M) and y ∈ Ox.

Suppose that (ω, J, g) be a compatible triple on Lie algebroid (A, ρ, [ , ]A)
such that J preserves L2. Then for any ap ∈ E2

p and Sp ∈ L2
p we have

0 = ω(J(Sp), ap) = g(Sp, ap),

which means that E2
p is perpendicular to L2

p. Our claim is that E2 is invariant
under J . To prove this, for a in E2

p consider the equation

J(a) =
(
J(a)

)E2
p +

(
J(a)

)L2
p ,

whereE2
p is perpendicular to L1

p + E1
p and J is compatible with g. Thus J(a)

has no component through L1
p and E1

p . Therefore,

0 = ω
((
J(a)

)L2
p , a

)
= ‖ J

(
(J(a))L

2
p
)
‖ .
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Hence
(
J(a)

)L2
p is zero, for every a in E2

p .

Next, for an integral sub-manifold O of Λ, we define gO and JO as follows

JO(X) = ρ(J(a)) , gO(X,Y ) = g(a, b),

where X,Y ∈ TO and a, b ∈ E2 such that ρ(a) = X and ρ(b) = Y .
Clearly JO is an almost complex structure and gO a Riemannian metric on
M such that the triple (ω, JO, gO) is compatible on O. We have proved the
following result:

Theorem 3.12. Let (ω, J, g) be a compatible triple on (A, ρ, [ , ]A) together with
decomposition (E1

p+E
2
p)+Lp for Ap, such that J preserves L2. Then for every

integral sub-manifold O of Λ = ρ(E2 +L1), (ωO , JO, gO) is a compatible triple
on O.

Corollary 3.13. Let (ω, J, g) be a compatible triple on a transitive Lie algebroid
(A, ρ, [ , ]A) such that J is admissible. Then ω|L is nondegenerate, L1 and E1

are null, and Λ = TM . Also (M,ωM ) is a symplectic manifold and the triple
(ωM , gM , JM ) is compatible. Moreover the Poisson structure induced by ω is
equal to the Poisson structure induce by ωM on M .

Our decomposition of Lie algebroid, enables us to somehow regard the cotan-
gent bundle of the base manifold as a Lie sub-algebroid of our Lie algebroid.

Theorem 3.14. Let (ω, J, g) be a compatible triple on a Lie algebroid (A, ρ, [ , ]A)
with the decomposition Ap = (E1

p+E
2
p)+(L1

p+L
2
p). Then for any leaf N of the

characteristic foliation of A, the Lie algebroid
(
(E2+L1)N , ρ|(E2+L1)N

, [ , ]|(E2+L1)N

)
and (T ∗N , π∗, [ , ]T∗N ) are isomorphic over N .

Proof. Note that (AN , ρN , [ , ]N ) is a transitive Lie algebroid over N . Also
LN = Ker(ρN ) is a Lie algebra sub-bundle of (AN , ρN , [ , ]N ). Since E2

N +

L1
N = LωN

N = −J(L⊥
N ), where ωN is the restriction of ω to AN , (E2 +L1)N is

a vector sub-bundle of AN . Moreover, by (3.5), Γ(E2 + L1)N is closed under
the bracket and thus inherits the Lie algebroid properties.
Looking at AN as LN + L⊥

N , one can consider the vector bundle map

J⊥ :AN −→ AN

a 7→ J(a)L
⊥
N .

It is easy to see that J⊥((E2+L1)N
)
= (E1+E2)N . Thus (E1+E2)N is smooth

and so (E1 + E2)N + LN is a decomposition of AN . Let λ : TN → AN be
the corresponding splitting with respect to the decomposition AN = LN +L⊥

N .
We define

ψ :(E2 + L1)N −→ T ∗N
a 7−→ −λ∗(iaω)
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Since ω is nondegenerate, ψ is one to one. Thus ψ is an isomorphism of vector
bundles.
To complete the proof we need to prove that ψ preserves the bracket and anchor
maps. To do this, we take an arbitrary f ∈ C∞(N ) and denote its Hamiltonian
section on N by af . Then(

ρ(af ) + π∗(df)
)
· g =dg(af ) + dg(π∗(df))

=ω(ag, af ) + π(df, dg)

={g, f} − {g, f}
=0,

i.e., ρ(af ) = −π∗(df). Thus af + λ(π∗(df)) ∈ LN . Now for a ∈ (E2 + L1)N
and f ∈ C∞(N ), we have(

ρ(a)− π∗(ψ(a))
)
· f =ω(af , a)− π(ψ(a),df)

=ω(af , a) + ψ(a)(π∗(df))

=ω(af , a)− ω(a, λ(π∗(df)))

=ω(af + λ(π∗(df)), a)

=0.

Thus ρ(a) = π∗(ψ(a)), i.e., ψ preserves the anchor maps.
On the other hand, for a, b ∈ Γ

(
(E2 + L1)N

)
and X ∈ X (N ) we have

[ψ(a), ψ(b)]
π∗ (X) = ψ

(
[a, b]

(E2+L1)N

)
(X),

which means that ψ preserves the bracket and so it is a Lie algebroid isomor-
phism. □

Transitive Lie algebroids that admit compatible triple structures, encounter
especial limitations provided that the Riemannian metric is invariant. Here,
we will mention some cases.

Theorem 3.15. If (ω, J, g) is a compatible triple on transitive Lie algebroid A
such that g is invariant and J is admissible then

(1) The bracket of every two sections of L is zero.
(2) (A, ω, J, g) is Kähler if and only if (M,ωM , JM , gM ) is Kähler.

Proof. (1) ω is closed. Therefore, for S1, S2, S3 ∈ Γ(L) we have

0 = dAω(S1, S2, S3) = −ω([S1, S2]A , S3) + ω([S1, S3]A , S2)− ω([S2, S3]A , S1).

Since (ω, J, g) are compatible we can rewrite the above equation as

−g([S1, S2]A , JS3) + g([S1, S3]A , JS2)− g([S2, S3]A , JS1) = 0.

Since g is invariant we have

−g([S1, S2]A , JS3)− g([S1, JS2]A , S3)− g([JS1, S2]A , S3) = 0. (3.6)
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This shows that

−[S1, S2]A − J([S1, JS2]A)− J([JS1, S2]A) = 0.

Using the above equation, one can calculate N(S1, S2) as follows

N(S1, S2) = [JS1, JS2]A−[S1, S2]A−J [JS1, S2]A−J [S1, JS2]A = [JS1, JS2]A .

(3.7)
Replacing S1 by JS1, in (3.6) we have

g(J [JS1, S2]A , S3)− g([JS1, JS2]A , S3) + g([S1, S2]A , S3) = 0,

which means that

−[JS1, JS2]A + [S1, S2]A + J [JS1, S2]A = 0.

Therefore,
N(S1, S2) = −J [S1, JS2]A . (3.8)

By applying (3.8) and (2.2) in (3.4) we have
0 = 2g

(
(∇S1

J)S2, S3

)
− g

(
N(S2, S3), JS1

)
= g([S1, JS2]A , S3)− g(J [S1, S2]A , S3) + g(J [S2, JS3]A , JS1)

= g([S1, JS2]A , S3)− g(J [S1, S2]A , S3)− g(J [S1, S2]A , S3)

= g([S1, JS2]A − 2J [S1, S2]A , S3),

(3.9)

i.e., for every S1, S2 ∈ Γ(L)

[S1, JS2]A = 2J [S1, S2]A .

Applying this to (3.7) and (3.8) we get N(S1, S2) = [JS1, JS2]A = −4[S1, S2]A .
On the other hand, N(S1, S2) = −J [S1, JS2]A = 2[S1, S2]A . Therefore, [S1, S2]A =

0 and N(S1, S2) = 0.
(2) Now look at A as L⊥ +L. By the proof of Theorem 3.14, L⊥ is closed un-
der the restriction bracket. Suppose that (M,ωM , JM , gM ) is Kähler, therefore,
NJM

= 0, i.e.,
NJM

(X,Y ) = 0 (X,Y ∈ X (M)).

By (3.2)
NJ(a, b) = 0 (a, b ∈ Γ(L⊥)).

We have just proved, in the previous part, that N(S, T ) = 0 for every S, T ∈
Γ(L). To complete the proof, it suffices to show that N(S, a) = 0 for every
S ∈ Γ(L) and a ∈ Γ(L⊥). Using (3.4) we have

g(N(S, a), T ) = −g((∇JTJ)(S), a) = 0 (T ∈ Γ(L)).

On the other hand, g(N(S, a), b) = 0 for every b ∈ Γ(L⊥) and so N(S, a) = 0.
Thus (A, J, ω, g) is Kähler. The converse is trivial. □

Theorem 3.16. On a transitive Kähler Lie algebroid (A, ω, J, g) if g is invari-
ant then the restriction of the bracket on Γ(L) is zero.
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Proof. Fix a point p ∈M . Using the decomposition mentioned at the beginning
of the section, one can write Ap = (E1

p +E2
p) + (L1

p + L2
p). Since (A, ω, J, g) is

Kähler, ∇ω = ∇J = 0, where ∇ is the Levi-Civita connection of g. Now for
S, T ∈ L2

p and Z ∈ L1
p we have

0 =(∇Sω)(T,Z)

=ω(∇ST,Z) + ω(T,∇SZ)

=ω(
1

2
[S, T ]A , Z) + ω(T,

1

2
[S,Z]A)

=ω(T,
1

2
[S,Z]A).

This means that
[L1

p, L
2
p]A ⊆ L1

p. (3.10)
Using the above equation and the fact that g is invariant, for S, T ∈ L2

p and
Z ∈ L1

p we have
g([S, T ]A , Z) = g(S, [T,Z]A) = 0, (3.11)

and so
[L2

p, L
2
p]A ⊆ L2

p. (3.12)
Moreover for S, T, Z ∈ L2

p

0 =dAω(S, T, Z)

=− ω([S, T ]A , Z) + ω([S,Z]A , T )− ω([T,Z]A , S)

=− ω([S, T ]A , Z)− 2(∇Zω)(S, T )

=− ω([S, T ]A , Z),

i.e., [L2
p, L

2
p]A ⊆ L1

p. Hence by (3.12) we have [L2
p, L

2
p]A = 0.

Furthermore, we know that [L1
p, L

1
p]A = 0. Thus for S, T ∈ L1

p and Z ∈ L2
p we

have
0 = g([S, T ]A , Z) = g(S, [T,Z]A),

i.e., [L1
p, l

2
p]A ⊆ L2

p. Using (3.10) one can easily see that [L1
p, L

2
p]A = 0. This

proves that the restriction of the bracket on L is zero.
□

4. Contact Lie algebroid

Let (A, ρ, [ , ]A) be a Lie algebroid of rank 2n+1 over a smooth m-dimensional
manifold M . A 1-form η ∈ Γ(A∗) is called contact if η ∧ (dAη)n 6= 0. In this
case, (A, η) is called a contact Lie algebroid([7]). For a contact Lie algebroid
(A, η) there exists a unique section ξ ∈ ΓA called the Reeb section such that

η(ξ) = 1, iξd
Aη = 0.
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A triple (φ, ξ, η) is called an almost contact structure on A if φ is a (1, 1) tensor
section of Γ(A⊗A∗), ξ ∈ ΓA, η ∈ Γ(A∗) and

η(ξ) = 1, φ2 = −idA + η ⊗ ξ.

Moreover (A, φ, ξ, η) is called an almost contact Lie algebroid.
A Riemannian metric g on A is said to be compatible with an almost contact
structure (φ, ξ, η) if

g(φ(S), φ(T )) = g(S, T )− η(S)η(T ) (S, T ∈ ΓA).

In this case, (A, φ, ξ, η, g) is called an almost contact Riemannian Lie algebroid.
For an almost contact Riemannian Lie algebroid (A, φ, ξ, η, g) if

dAη(S, T ) = g(S, φ(T ))

then η is a contact form, ξ is the Reeb section and (A, φ, ξ, η, g) is called a
contact Riemannian Lie algebroid([7]).
Let (A, φ, ξ, η) be an almost contact Lie algebroid. Then D := Ker(η) is a
vector sub-bundle of A of rank 2n. If η is contact then dη|D is nondegenerate.
Let (A, η) be a contact Lie algebroid, consider the vector bundle morphism

ψ : A −→ A∗

S 7−→ iSd
Aη.

It is easy to see that
A∗ = Im(ψ)⊕ 〈η〉.

Thus for f ∈ C∞(M), there exists Sf ∈ Γ(A) and h ∈ C∞(M) such that

dAf = iSf
dAη + hη. (4.1)

In fact
h = ρ(ξ) · f

If Sf , S̄f satisfy (4.1), there exist k ∈ C∞(M) such that

Sf − S̄f = kξ. (4.2)

Putting af := Sf − η(Sf )ξ one can easily see that af satisfies the (4.1). Also
af is independent of the choise of Sf . In fact, if Sf , S̄f satisfy (4.1), then by
(4.2) we have

Sf − η(Sf )ξ = S̄f − η(S̄f )ξ.

We call af , the Hamiltonian section of f .
Now we can define

{ , } : C∞(M)× C∞(M) −→ C∞(M)

(f, g) 7−→ dAη(af , ag).

In fact for f, g ∈ C∞(M)

{f, g} = ρ(ag) · f = −ρ(af ) · g (4.3)
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Theorem 4.1. On a contact Lie algebroid (A, η) if ρ(ξ) = 0 then the above
bracket is a Poisson structure on M .

Proof. { , } is R-bilinear and skew-symmetric. Now if af , ag, ah are Hamiltonian
sections of f, g, h ∈ C∞(M), respectively, then

dA(fg) =fdAg + gdAf

=fiagd
Aη + giaf

dAη

=i(fag+gaf )d
Aη.

Moreover, η(fag + gaf ) = 0. Thus fag + gaf is the Hamiltonian section of fg.
Hence

{fg, h} =dAη(fag + gaf , ah)

=fdAη(ag, ah) + gdAη(af , ah)

=f{g, h}+ g{f, h},

i.e., { , } satisfies the product rule.
Furthermore,

i[af ,ag ]A
dAη =[Laf

, iag ]Ad
Aη

=dAiaf
iag

dAη + iaf
dAiag

dAη − iag
dAiaf

dAη − iag
iaf

dAdAη

=dAη(af , ag)

={f, g}.

Thus [af , ag]A − η([af , ag]A)ξ is the Hamiltonian section of {f, g}.
Now we can prove the Jacobi identity. We use (4.3) as follows

{f, {g, h}} = −{f, ρ(ag) · h} = ρ(af ) · ρ(ag) · h

{g, {h, f}} = {g, ρ(af ) · h} = −ρ(ag) · ρ(af ) · h

{h, {f, g}} = ρ(a{f,g}) · h = ρ([af , ag]) · h

i.e.,
{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

□

Lemma 4.2. If (A, η) is a contact Lie algebroid such that Lp ⊆ Dp for some
p ∈M , then Lp = 0.

Proof. For Sp ∈ Lp ⊆ Dp, one can extend Sp to a section S of D. Now for
T ∈ Γ(D) we have

dAηp(Sp, Tp) = ρ(Sp).η(T )− ρ(Tp).η(S)− η
(
([S, T ]A)p

)
= 0,
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where the last identity is a result of ideal property of ΓL. Since η is contact,
dAη|D nondegenerate, Thus Sp = 0, i.e., Lp = 0. □

Lemma 4.3. For an almost contact structure (φ, ξ, η) on a Lie algebroid A if
η is contact and φ(Lp) ⊆ Lp, for some p ∈M , then Lp = 0 or ρ(ξp) = 0.

Proof. Choose p ∈ M such that φ(Lp) ⊆ Lp. If Lp 6= 0 then by Lemma 4.2
there exists Sp ∈ Lp such that ηp(Sp) 6= 0. Thus

ηp(Sp)ξp = φ2(Sp) + Sp.

Since φ preserves Lp, φ2(Sp) ∈ Lp, and so ξp ∈ Lp. □

Let (A, φ, ξ, η, g) be a transitive contact Riemannian Lie algebroid such that
φ preserves L. If L = 0 then A = TM and our Riemannian contact Lie
algebroid reduces to an ordinary contact metric manifold. So let L 6= 0. Since
ξ ∈ ΓL, by (4.3), we may write

D = (D ∩ L)⊕ L⊥.

Moreover, for S ∈ ΓL⊥ and T ∈ ΓL,

dAη(S, T ) = g
(
S, φ(T )

)
= 0. (4.4)

Let λ : TM → A be the splitting map corresponding to A = L⊥ ⊕ L. Putting
ω := λ∗(dAη), one can see that ω is closed and non-degenerate, i.e., (M,ω) is
a symplectic manifold. Clearly φ preserves L⊥. Therefore, φ and g induce an
almost complex structure JM on A (with the decomposition L + L⊥) and a
Riemannian metric gM on M , respectively. Thus, (ω, JM , gM ) is a compatible
triple on M . The interesting point is that, the Poisson structure induced by
Theorem 4.1 coincides with the Poisson structure induced by ω.
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