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Abstract. In some fields, there is an interest in distinguishing different

geometrical objects from each other. A field of research that studies the

objects from a statistical point of view, provided they are invariant under

translation, rotation and scaling effects, is known as the statistical shape

analysis. Having some objects that are registered using key points on

the outline of the objects, the main purpose of this paper is to compare

two popular clustering procedures to cluster objects. We also use some

indexes to evaluate our clustering application. The proposed methods are

applied to the real life data.
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1. Introduction

In some fields there is an interest for distinguishing different images from

each other which is known as image analysis or image clustering and classifica-

tion. Generally speaking, it’s not necessary to know if the image has specific

shapes, such as human face, specific parts of human body, organic tissues and
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Figure 1. The pictures of some typical skulls of gorilla

(quoted from https://commons.wikimedia.org). The objective

is to cluster them in terms of their sizes and shapes.

son on. Instead, just the pixels are relatively compared in these cases and fi-

nally images are assigned into different groups with distinguishable properties

for each group. Of course, if there is some information about particular aspects

of the image, they can be helpful for further statistical analysis. As an exam-

ple, consider the Figure 1, in which there are some pictures of gorilla skulls.

It worths to mention that the data were first studied by [10]. One can grasp

some information from these images in terms of their sizes and shapes.

One of the interesting questions in studying these skulls is: ”how can these

pictures be put in two different groups?”. A field of research for answering

such typical questions from statistical point of view has its root in multivariate

analysis. However, those geometrical aspects of the object lie in the statistical

shape analysis which was first introduced to the statistical communities by [8]

in an interesting article titled “The Diffusion of Shape”.

In fact, data in the statistical shape analysis terminologies are the shape

of the objects. Hence, particular geometrical aspects of the objects such as

topological structure should be considered in the statistical analysis. One of

main concepts of trivial statistical analysis for any real data sets is related

to the way one views the data. Generally speaking, the observations can be

viewed either as the realizations of the random variables generated from some

particular distributions which leads to the parametric statistics, or can be seen

as data from some unknown densities turning to the non-parametric statistics.

These two views in clustering the objects; confined in the statistical shape

analysis, are compared with each other in this article. The main is to discover
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how they are successful in clustering pre-labeled planar objects. In this paper,

a background of the statistical shape analysis and the related definitions are

first presented. Then, two clustering methods applied for the planar shapes

are described. Some simulation studies along with real application of proposed

methods are included in the final section. Moreover, general conclusions and

some possible further researches arising from current study are given.

2. A Background on the Landmark-based Shape Analysis

It worths to recall the formal definition of shape before going forward on

further analyzing the images of the objects. It has mainly been given for the

statistical analysis of the shapes. Kendall [8] provided the following definition:

Definition 2.1. Shape is any geometrical information of object after removing

translation, scale and rotation.

Based upon this definition, all homologous images are considered to be in

one class and so can be represented as just one object. From this point of view,

one encounters with the equivalent classes and the consequence mathematical

theories arise. One can consult [3] for more details on this and other relevant

topics.

Taking the images of the objects, one can follow different methods to study

them statistically. At the first instance, one should define particular variables

as the representative of the picture (image) of the objects. One of the simplest

procedures to do this in the statistical shape analysis context is to set some

points in specific parts of the image. Those points are called as the landmarks

and the statistical analysis using them is known as the landmark-based analysis.

The Cartesian coordinates of the points are the observations of the variables

defined in the statistical shape analysis framework. A typical illustration of

such method is shown in Figure 2. As expected one can work with the matrices

constituting the Cartesian coordinates instead of the whole images. Each of

such matrix is then called configuration matrix. At the end, one has a set

of matrices and should analyze them using the common statistical tools.

According to the statistical definition of the shape given above, some steps

should be followed to get the shapes of the objects. In another word, the

configuration matrices are not defining the equivalent classes of the objects

in their initial constructions. Invoking many mathematical operations, some

particular transformations should be performed on the configuration matrices

in order to achieve the shapes of the objects. Those relevant transformations

are similarity transformations, which include translation, scale and rotation

effects. Theoretically, these operations transfer the configuration matrices from

the Euclidean space to a non-Euclidean space. This latter space is known

as shape space and is usually identified by different systems of coordinates.

Two well-known systems are Kendall [9], and Bookstein coordinates [1]. Those
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Figure 2. To set landmarks on the image of a gorilla skull

(quoted from https://commons.wikimedia.org). The land-

marks are used as inputs for further statistical analysis.

coordinates are now bases for statistical analysis such as clustering. To have an

idea of employing these stages to get the shape coordinates, we explain those

procedures applied for the Figure 2.

Suppose the landmarks set on the Figure 2 are represented in a configuration

matrix, say A, as follows:

A =


x1

x2

...

x8

y1

y2

...

y8

 .
By pre-multiplying the matrix A by Helmert sub-matrix, H, the translation

effect is removed. Rotation and scale are omitted using rotation matrix and the

common Euclidean norm, respectively. Generally, for removing all of similarity

effects from the planar objects A, the following equality is useful:

HA

(
x2 y2

y2 x2

)
1

x2
2 + y2

2

=

(
1 u3 ... uk
0 v3 ... vk

)T
.

Now, the vector u, i.e.

u = (u3, ..., uk, v3, ... , v3)T

is the Bookstein shape coordinates of the objects in the Figure 2 with the

landmarks set in A.

As a remark, we can imagine the case in which the points in the equivalent

classes can be separated into some cluster in which other categorical variables

are assisting to separate the objects. In another word, the way in which the

shapes of the objects are different in terms of one the nominal variables worths
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to study. To do this, one go through either parametric or non-parametric pro-

cedures. As a candidate for each scenarios, we confine ourselves to the model-

based and k-means clustering in this paper. Furthermore, we just consider the

planar shapes, i.e. 2-D objects.

3. Clustering the Planar Shapes

Clustering objects can be done using three distinct methods. For our shape

analysis application, we utilize two of them below.

3.1. Model-based clustering of shapes. This approach for clustering shape

data was just recently introduced by [7]. Below, we highlight the main theme

of their research which is useful for our further statistical analysis.

As the first stage, one needs to model the random behavior of the landmarks

for each objects by some distributions. Suppose the vector resulted from stack-

ing columns of the matrix A has the multivariate normal distribution. It is

shown in [4] that the distribution of u is then the offset normal with the den-

sity function

fu(u;µ,Σ) =
|Γ| 12 exp(−g/2)

(2π)
k−2|Σ| 12

k−2∑
i=0

(
k − 2

i

)
E(ι2ix |ξx, σ2

x)E(ι2k−4−2i
y |ξy, σ2

y),

where the components can be achieved by following sets of the formulas:

vec(AH) = Wh,

Γ = (WTΣ−1W )−1,

υ = ΓWTΣ−1vec(µ),

g = vec(µ)TΣ−1vec(µ)− υTΓ−1υ,

Γ = ΨDΨT

diag(σ2
x, σ

2
y) = D,

(ξx, ξx)T = ΨTυ.

Here, E(ιp|b, c) is the p-th momentum of the normal distribution with the mean

b and variance c, i.e. N(b, c), which according to [11] can be derived using the

following recursive equality:

E(ιp+1|b, c) = bE(ιp|b, c) + pcE(ιp−1|b, c).

The parameters in the density fu(u;µ,Σ) can be estimated through employing

the EM algorithm [2].

To invoke the model-based clustering of the planar shapes, it is assumed the

observations, i.e. the shape coordinates, come from a mixture of distributions.

In particular,

gu(u; θ) =

M∑
m=1

πmifu(u, µm,Σm),

where each distribution shows a separate group and each observation is assumed

to come only from one of M densities. By estimating the parameters πmi and
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the other parameters in the model, one can assign the observations to each

group in a trivial manner. More details on this can be found in [7].

3.2. K-means clustering of shapes. One of the popular non-parametric

approach for clustering the objects is k-means clustering. Using this method,

the number of clusters (groups), i.e. k, is fixed initially. So, one encounters with

the observations set in k distinct clusters. Then, the centroid, usually means

of shapes , for each group are computed. Obviously, the optimal situation is

occurred on allocating each observation to the nearest group in sense which its

distance with the centroid of the cluster is minimal. To reach this objective,

one observation is repeatedly removed from each group and added to another

cluster until there is no noticeable change in Within Sum of Squares of the

Groups (WGSS). The main difference between various versions of the k-means

clustering arises from the different distance measures used in computing the

WGSS. There are some algorithms to handle this substitution and insertion in

a proper way.

Since the shape data are members of a non-Euclidean space, calculating

distance between them cannot be done using the common Euclidean metrics.

Instead, some distances, which are appropriate to measure the difference be-

tween shape data and applicable in the shape space, should be utilized. A

comprehensive account of those distances are provided in [4]. Below, we review

some of them which are useful for our analysis. In all definitions given bel-

low, the X1 and X2 represent two objects, represented by their corresponding

configuration matrices.

Definition 3.1. The full procrustes distance between X1 and X2 is

dF (X1, X2) = inf
Γ∈SO(m), β∈R

‖Z2 − βZ1Γ‖ ,

where Zi = HXi

‖HXi‖ .

Definition 3.2. The partial Procrustes distance between X1 and X2 is

defined as

dP (X1, X2) = inf
Γ∈SO(m)

‖Z2 − Z1Γ‖ .

Definition 3.3. Riemannian (Procrustes) distance on a manifold is de-

fined as a choice of positive-definite inner product on each tangent space T (m)

at point m.

Definition 3.4. Tangent space distance between X1 and X2 is the distance

between corresponding two points mapped into the planar tangent space which

is the linearized version of the shape space in the vicinity of a particular point

(usually mean shape) of shape space.
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Definition 3.5. Size-and-shape distance is the distance between the size-

and-shape forms of the configurations and is found by minimizing the Euclidean

distance over rotations:

dS(X1, X2) = inf
Γ∈SO(m)

‖HX1 −HX2Γ‖ .

From practical point of view, we follow algorithm proposed by [5]. In fact,

this algorithm works only for Euclidean distance and so it should be adapted

for the shape data with the aforementioned distances.

4. Simulation Studies and Real Data Analysis

In order to compare two proposed methods on clustering the shapes data, we

need to recall some relevant criteria. Those validation measures can be found in

[6]. Among many of them, we consider one of the simple criteria in this paper.

Coinciding the consequence of a clustering procedure with the distinctions of

the data made by the initial categorical labels is the core root of the clustering

validation indexes. This objective is properly adopted into the CV I, defined

as follows

CV I =
TCO

TO
× 100,

where TCO stands for the True Clustered Observations and TO for the Total

Observations.

Next, we provide our simulation studies to compare two aforementioned

shape clustering procedures.

4.1. Simulation Studies. In order to conduct the simulation studies, we as-

sume that there are two types of data differentiated by the male and female

labels. In fact, the objects were simulated in such a way that they can mimic

the real data described in the next section. A schematic representation of these

data can be seen in Figure 3. One can efficiently compute the sample mean

and variance of the real data. Mathematical treatment of this is provided in

[3] and codes to do this task are given in [4]. Then, one can simulate the data

using those summary statistics. Hence, mimicking pattern within and between

each group of shape data will occur. Note that simulated data can also be gen-

erated using the multivariate normal distribution with the mean and variance

parameters to be the same as those for the real data. Then, the entire obser-

vations need to be transformed to the offset-normal density to assure having

shape data. One can consulate [3] for more details.

The structure of our simulation studies are as follows. The 50 samples

were simulated for the pair of gorilla and orangutan skulls identified with eight

landmarks. Hence, there are 100 samples for each type of the skulls. First,

the model-based clustering of the shape data was invoked on these objects and

the CVI was derived. This scenario was repeated for 100 iterations. Then, the

k-means clustering procedure was performed using the same data. The results
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(a) (b)

Figure 3. The shape of simulated data. They are gener-

ated such that their shapes are mimicking the gorilla (a) and

orangutan (b) skulls.

gained in this study are shown in the Table 1. As seen, the results for the

Euclidean distance is also included for a proper comparison purposes.

Table 1. The values of CVI for the simulated data using dif-

ferent clustering methods and various shape distances. Data

are mimicking the shape of two objects.

Method Distance Gorilla-like Orangutan-like

Model-based — 75.5 100.00

Full procrustes 87.08 73.64

Riemannian 87.04 73.43

Tangent space 87.84 72.03

K-means

Partial procrustes 87.04 70.54

Size-and-shape 94.51 96.00

Euclidean 99.86 95.98

As the Table 1 shows we see different behaviour for two objects. For the

gorilla-like simulated data, the model-based was weaker than the k-means even

using various distances. However, this is not the case for the orangutan-like

simulated data. Confining to the k-means clustering, the Euclidean distance

outperforms the other distances for the gorilla-like data. For the orangutan-

like data, the candidate is the size-and-shape distance. Generally, it might

be argued that the size-and-shape distance is a reasonable distance to use

whenever the size is playing the key role on identifying the geometrical structure

of the objects. On the other hand, if this is not the case, one can ignore the
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structure of the shape space and switch to the common multivariate statistics

via projecting the shape data into the Euclidean space in the vicinity of the

mean shape.

4.2. Real data analysis. In this section, we consider the real data set to check

the performance of two clustering methods. The data contain 59 samples (29

male and 30 female) for gorilla skulls and 54 samples (30 male and 24 female) for

the orangutan. The data are available in the package shapes; freely available

in the software R.

Unfortunately, the model-based method did not work and the algorithm

failed repeatedly while calculating the results. However, the k-means method

performed reasonably well. The results are appeared in the Table 2. The

reported data in the table show that the size-and-shape outperforms the other

distances, although there is not too much difference between the CVI of this and

Euclidean distance for the gorilla data. However, this difference is remarkable

for the gorilla shapes. The interesting point goes back to the same values of the

CVI for the full procrustes and riemannian regardless of the type of the data.

However, there is still room to investigate the difference of shape clustering

via relating it to the relevant covariates. Also, adopting the available software

packages that are implementing the clustering data for the shape objects which

are members of the non-Euclidean space is vital. This will help the researchers

to get more insights into the clustering of the objects and facilities to compare

clustering methods.

Table 2. The value of CVI on clustering the real data sets

using different shape distances in K-means algorithm.

Distance Gorilla Orangutan

Full procrustes 92.00 87.00

Riemannian 92.00 87.40

Tangent space 88.00 78.00

Partial procrustes 92.00 96.50

Size-and-shape 100.00 98.00

Eculidean 98.00 72.00

5. Conclusion and Future Works

Shape as the data play a great role in various scientific fields. The main

objects of this paper was to study and compare two well-known clustering

methods applied for the shape objects. These typical data are members of a

non-Euclidean space and so invoking clustering methods require a great care.

We investigated the methods in both simulation and real application studies.
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The results gained from applying the model-based method show that the

performance of clustering for simulated samples from normal distributions is

promising. This means that, if we have observations with normal distribu-

tion (which can be evaluated using, for example, the normality tests), we can

use model-based clustering. The interesting point is that if one is away from

the normality assumption, the performance of the model-based clustering gets

weaker.

The results gained from applying k-means method show that size-and-shape

distance, among different distances, has better results. This might be because

of considering size of the shapes which is important in differentiating between

male and female sexes. It means that we are not allowed to remove all of the

similarity effects to compare shapes whenever there is clear difference between

groups. As seen, the investigation in this paper consists of two different sec-

tions, i.e. simulation study and real data analysis. Further, both real data sets

are discriminated in terms of male and female genders. It means that we have

two apparent clusters in our real-life data analysis. Moreover, we have followed

the same structure inherited among the real data in our simulation study. So,

there is no concern on selecting the numbers of clusters in our investigation.

However, this is the case in where there is no prior knowledge on explicit num-

bers of the clusters. Discussion on this critical issue is out of the scope of our

paper. There are some directions to extend the current research. A well-known

distribution in the shape analysis context is the size-and shape offset normal.

One can consider it for clustering the shape and conduct new research in this

context rather than using the offset normal distribution in our study.
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