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ABSTRACT. The purpose of this paper is to establish fixed point results
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1. INTRODUCTION

Many generalizations and extensions of Banach contraction principle have
been studied in various settings (see [12, 21, 20, 22]). Most established results
provide sufficient conditions for the existence and uniqueness of fixed points of
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certain classes of self-mappings (see [6, 7, 10, 24, 26, 27, 28]) and some of them
provide iterative schemes and numerical algorithms to approximate those fixed
points (see [23, 25, 29]).

In 2008, Dutta and Choudhury in [11] proved the following theorem, by
using the weak contraction introduced by Alber and Guerre-Delabrere in [5].

Theorem 1.1. Let (X,d) be a complete metric space, and let T : X — X be
a self-mapping satisfying the following inequality:

U(d(T, Ty)) < ¥(d(z,y)) — e(d(x,y)), for all (z,y) € X°
where 1, : [0, +00[— [0, +00[ are both continuous and nondecreasing functions
with Y(t) = ¢(t) =0 if and only if t = 0. Then T has a unique fixed point.

In 2012, Abkar and Choudhury in [1] proved the following theorem which is
a generalization of the above result in a partially ordered metric space having
the following property (P):
for each non-decreasing sequence (z,)nen C X that converges to some x € X,
we have: z,, <z for all n € N.

Theorem 1.2. Let (X, =<,d) be an ordered complete metric space with a partial
order “ =7 and having the property (P). Let S, T : X — X be two self mappings
such that for all comparable x,y € X,

Pi(d(Sz, Ty)) < ha(M(z,y)) — o(M(z,y))

where
M(z,y) = max{d(z,y),d(z, Sz),d(y, Ty), %(d(% Ty) +d(y, Sz))},

1,12 ¢ [0, +00[— [0,4+00[ are both continuous and monotone non-decreasing
functions and ¢ : [0, 4+00[— [0, +o00[ is lower semi-continuous function which
satisfies ¥1(t) — Pa(t) + () > 0, for all t > 0.

If there ezists a point xy € X satisfying

i) j S(E(] j TSiEO j STS(E() j (TS)QI'() j

then there exists a point u € X such that Su=Tu = u.

On the other hand, in 2010, Chistyakov in [8] and [9] has introduced the con-
cept of modular metric space. This is a generalization of the classical modular
spaces like Orlicz spaces (see [16]). Fixed point theorems in modular function
spaces, generalizing the classical Banach fixed point theorem in metric spaces,
have been studied extensively ( see [4, 6, 17, 18, 24]).

In recent years, there has been a great interest in the study of the fixed
point property in modular metric spaces ( see [2, 3, 19]). For more details on
modular metric fixed point theory, the reader may consult the books [16, 8].

In this paper we prove some fixed and common fixed point theorems for a
weak contractive mapping in modular metric spaces. Our results generalize
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and extend the above theorems in partially ordered modular metric spaces for
mappings satisfying weak contraction that involves three control functions.

2. PRELIMINARIES

Let X be a nonempty set. For a function w :]0, +00[x X x X — [0, +00], we
will use the notation

wx(z,y) =w(\ z,y), forall A\ >0andz,ye€ X.

Definition 2.1. ([9]) A function w :]0, +00[xX x X — [0,400] is said to be
modular metric on X if it satisfies the following conditions:
(i) Given z,y € X, z =y if and only if wy(x,y) =0 for all A > 0;

(ii) For all z,y € X, for all A > 0, wx(x,y) = wi(y, x);

(iii) Forall z,y,z € X and for all A\, p > 0, watpu(z,y) < wir(z, 2)+wu(z,y).
In this case, (X, w) is called modular metric space.
The modular w is said to be regular if the condition (i) holds for some A > 0.
The modular w is said to be convex if for all A\, x > 0 and z,y, 2z € X, we have:

WA+ (l’, y) <

K
>~ )\_’_MW)\(xaz)—i_ )\+,U/wu(27y)

Note that for a modular metric w on a set X, and any x,y € X, the function
A = wy(z,y) is non-increasing on ]0, +oo[. Indeed, if 0 < p < A, then
wr(z,y) < wr—p(z, 2) +wulz,y) = wu(z,y).
Definition 2.2. ([8]) Let (X,w) be a modular metric space. Fix zg € X. Set
X = Xo(zo) ={z € X : wr(z,20) — 0 as A — oo},
and

X5=X(x0)={z e X :3IAN>0, wr(z,x0) < 00}.

w

The two linear spaces X, and X are said to be modular spaces (around zg).
Note that X, is metrizable by the metric
dy(z,y) =nf{t > 0: wi(x,y) <t}

If w is convex, then X = X, and we can endowed these sets with the metric
d}, defined by

4 (z,y) = inf{t > 0 : wi(x,y) <1}
Definition 2.3. ([2]) Let w be a modular metric on X.

(1) We say that a sequence {z,} C X, is w—convergent to some z € X,
if and only if hr—? w1 (Zn,z) = 0. We will call z the w—limit of {z,}.
n—+00

(2) We say that a sequence {z,} C X, is w—Cauchy if

lim  wi(xn,Zm) =0.
n,m—-+00
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(3) We say that M C X, is w—closed if the w—limit of an w—convergent
sequence of M is in M.

(4) We say that M C X,, is w—complete if any w—Cauchy sequence in M
is w—convergent and its w—limit belongs to M.

(5) We say that w satisfies Fatou property if we have

wi(z,y) < liminfwi (@, y)
for any sequence {z,} C X, which w—converges to = and for any
y € Xy

Definition 2.4. ([8]) Let w be a modular metric on X. We say that w satisfies

the Ag—condition, or simply w is Ay, if, given a sequence {z,} C X, z € X,

and A > 0 such that lim wy(zp,x) =0, we have lim wa(x,,z) =0.
n—-+o00 n—+oo 2

Definition 2.5. Let w be a modular metric on X. We say that w satisfies the
As—type condition if there exists a constant K > 0 such that
w%(amy) < Kwy(z,y),
for all z,y € X, and any A > 0.
The following results are immediate:
Lemma 2.6. Ifw satisfies the As— type condition, then w satisfies the Ay — condition.

Lemma 2.7. Let {x,} be a sequence in X,,. Let A > 0. If w satisfies the Ay—
type condition, then {x,} is w— Cauchy if and only if lim+ wx (T, ) = 0.
n,m—-+oo

Lemma 2.8. If w satisfies the Ay— type condition, then w is reqular.

Lemma 2.9. If w satisfies the Ao— type condition, then wy(z,y) < oo, for all
A >0 and for all (z,y) € X2.

Proof. Suppose that there exists A > 0 and =,y € X, = X, (x¢) such that

wx(x,y) = oco. Since w satisfies the As— type condition, then, for all n €

N* wonr(z,y) = 0o . Since wanr(2,y) < won-1x(2,x0) + wan—15(y, o) and

x,y € Xu(x0), we have: lim won-1)(z,20) =0 and lim wan-15(y,z0) = 0.
n—-+oo n—-+oo

Then, liIE wany(2,y) = 0. Which is a contradiction. O
n—-+oo

Lemma 2.10. Let (X,w) be a modular space. Let {x,} be a sequence in
Xo. If {zn} is not w—Cauchy, then there exists € > 0 and two subsequences
of integers {ni} and {my} such that ng > mi > k, wi(Tn,,Tm,) > € and
w%(xnk,l,xmk) <e.

Proof. If we suppose that (x,)nen is not a w—Cauchy, then there exists
€ > 0 and for all £ € N there exists ng, mi € N such that np > my > k and
w1(Tn,,, Tm, ) > €. Let us fix k € N, and consider the set

A ={h e N*" : h>my >k and wi(zph, Tm, ) > €}.
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Since ny € Ag, then Ay # 0. Let us consider the set:
Br={h €Ay : wilzn,zm,) = e}
One can see that B, C N* and By, # 0. Since
w%(mnk,mmk) > wi (T, Tm,) > €,
then Bj, admits the least element n; that belongs to Ay, and so
nj, > my 2k, wi(@ny, Tm,) 2 € and wi (Tpy—1,Tm,) <€ O
Using the same argument as in the proof of Lemma 2.10 and applying Lemma

2.7, we have the following:

Lemma 2.11. Let s,t € N*. If w satisfies the Ay— type condition and {x,}
is not a w— Cauchy sequence, then there exists ¢ > 0 and two subsequences
of integers {ny} and {my} such that ny > mi > k, was(Tn,,Tm,) > € and
w%(xnk,l,xmk) <e.

Lemma 2.12. Let (X,w) be a modular space such that w is convex and satisfies
the Ag—condition. If {x,} is a sequence in X, such that liT W1 (Tpy Tppg1) =

n—-+0oo

0, then {z,} is w— Cauchy.

Proof. Suppose that {x,} is not w—Cauchy, then according to Lemma 2.10,
there exists € > 0 and two subsequences of integers {n;} and {my} such that

ng > my > k and wy (@, ,Tm,) > € and w%(znk_l,xmk) < e. Since w is
convex, we have:
W1 (Tnys Tmy,) < Sw

Then, for all K € N

1
%(xnk—la zmk) + 5‘”% (xnk—laxnk)~

e 1
e <5+ 5wi(@n—1,2n,)

Since w satisfies the Ay—type condition, then lim wi(zp,—1,2n,) = 0. So,
n—4oo 2
e <

5. Which is a contradiction. O
Definition 2.13. Let X be a nonempty set. Then (X, <,w) is called a partially
ordered modular metric space if and only if (i) (X,w) is a modular metric space

and (ii) (X, <) is a partially ordered set.

Definition 2.14. Let (X, <,w) be a partially ordered modular metric space.
We say that w satisfies the property (P), if a non-decreasing sequence {z,,}
w—converges to some x € X, then x, <z for all n € N.

Definition 2.15. Let C be a nonempty subset of X,,. A self-mapping T : C —
C is said to be w—continuous, if a sequence {z,} w—converges to some z € C,
then {Tx,} w—converges to Tx.

Definition 2.16. We say that a partially ordered set (X, <) is up-directed, if
for all (x,y) € X? there exists an element z € X such that x < z and y < z.



116 K. Chaira, A. Eladraoui, M. Kabil

We will use the following notations:
Let X be a nonempty set and S and T be a two self-mappings on X. We denote
by F(S) the fixed point set of S, i.e., F(S) := {x € X : Sx = z}. Also, we denote
by F(S,T) the common fixed point set of S and T, i.e., §(S,T) = F(S) NF(T)

3. MAIN RESULTS
Let us consider three functions 1,9, ¢ : Rt — RT such that:

(a

11,9 are continuous and ¢ is lower semi-continuous.

)
(b) 41 is strictly increasing.
(c) Forall i € {1,2}, ¥;(0) = ¢(0) = 0.
(d) For all t > 0, ¥1(t) — ¥2(t) + ¢(t) > 0.

3.1. Fixed point of (11,19, ¢)—contraction. In this section, we obtain fixed
point results for a single mapping satisfying a (¢, ¥z, ) —contractive condition
in the framework of a partially ordered modular metric space.

Theorem 3.1. Let (X,w, <) be a partially modular metric space. Assume that
w satisfies the Ao—type condition. Let C be an w—complete nonempty subset
of X,. Let T : C — C be a non-decreasing self-mapping. If the following
conditions are verified

(i) for all comparable elements x,y € C,

Y1(wi(Tz, Ty)) < ha(wi(z,y)) — o(wi(z,y)) (3.1)

(ii) there exists an element xo € C such that xg < Txo;
(iii) w satisfies the property (P),

then T has a fized point in C. Moreover if (C, =) is up-directed, then the fized
point is unique.

Proof. We divide this proof into four steps.
Step.1. Consider the sequence {z,} defined by x,, = T™xy. One can see
that

Ty = Tpy1, foralln e N.

If we suppose that there exists an integer n such that x,, = x,,41, then T admits
at least a fixed point in C. So, let us assume that z,, # x,41 for all n € N.
In (i), if we take x = x,, and y = x,,41, we obtain:

V1(W1(Tnt1, Tna2)) < Y2 (wi(Tn, Tny1)) — @(W1(Tn, Tnr1)) < Y1 (W1 (Tn; Tntr))

(3.2)
Then the sequence {wi(Tn,xnt1)} is decreasing and bounded below. So, it
converges to some nonnegative real r. If we suppose that » > 0, then taking
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the limit superior as n — 400 in the first part of the above inequality, we
obtain
lim sup ¢1 (w1 (Tn41, Tn+2)) < lmsup o (w1 (T, Tpgr1))—lminf o(wi (zn, Tny1)).
n—+o00 n—+o00 n—r+oo
Using the continuity of 1, and ¥, and the lower semi-continuity of ¢ and
applying the condition (d), we obtain
P1(r) < Pa(r) —o(r) <an(r),

a contradiction. Therefore, r = 0.

Step.2. Let us prove that the sequence {z,} is w—Cauchy. Suppose that

{Zp}nen is not w—Cauchy. Then, according to Lemma 2.11 for wy and wi,
there exists ¢ > 0 and subsequences of integers {my} and {ny} such that

my > ng >k, wa(Tm,,Tn,) > € and w%(mmk,l,xnk) <e.

In (i), if we take = zp,,—1 and y = X, —1, and since Tp,—1 = Tm,—1, W
obtain:

1/)1 (8) < wl (w4(xmk7$nk)) < 1/)1 (wl (xmk7xnk))
< Yo (Wi(Tmy—1,Tne—1)) — (W1 (Tmy—1,Tn,—1)) (3.3)
And we have
€ S wa(Tmy s Tny) S W1(Tmy—1, Trg—1) + W1 (T -1, Tmy,) + W2 (Tnyp—1,Tny,),

and

W1 (Tmg—15 Tng—1) S W1 (Trmg—1, Tny,) + WL (Ty—1, Ty )

1 1
2 2

Thus

s_wl(xmk—lvxmk)_WZ(xnk—laxnk) S wl(xmk—laxnk—l) S €+W (xnk—laxnk)~

1
2

Since w satisfies the As—type condition, then

lim wi(z,, 1, = lim ws(xn, 1,2 = 0.
iy (- 1,20,) = (T, 1, )

So kgr}rloo w1(Tmy,—1,%n,—1) = €. And by letting k& — +o0, in the inequality
(3.3), we obtain

h1(e) < hale) — p(e) <4h(e)
which is a contradiction, then {z,} is w—Cauchy in C. Since C is w—complete,
there exists x € C such that ngrfoo w1 (xp,x) = 0.

Step.3. Let us prove that x is a fixed point of T'. Since z, =X z, for all
n € N*, we have:

Y1(wi(zn, Tz)) < Po(wi(Tn—1,7)) — @(wi(Tn-1,7)) < Y1 (w1 (Tn-1,2)).
Then 0 < wi(xn,T2) < wi(r,—1,2) and by passing to limit, we obtain

lim wy(zp,Tz) =0.
n—-+o0o
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And as
wo(x, Tz) <wi(zn, z) + wi(zn, Tx),
then wq(x,Tz) = 0 and since w is regular, we obtain Tz = x.
Step.4. Assume that (C, <) is up-directed. Let y € C be another fixed point
of T. There exists z € C such that x < z and y < 2. As T is non-decreasing,
we have foralln € N, x <X T"z =z, and y < T"z = z,. Then

1/}1(W1(w7 Zn+1)) < z/J2(W1(55a Zn)) - ‘P(Wl(xa Zn)) < ¢1<w1($»zn))~

Thus the sequence {wi(z,z,)} is decreasing and bounded below. So, it con-

verges to some [ > 0 and by tending n to +00 in the above inequality, we obtain

I = 0. By the same argument we prove that hI}} w1(y, z,) = 0. By passing
n—-—+0oo

to limit in the following inequality

wa(z,y) < wi(z,2n) +wi1(y, 2n),

we obtain we(x,y) = 0. Since w is regular, we have x = y. Then, T admits a
unique fixed point in C. a

In what follows, we prove that Theorem 3.1 is still valid if we neglect the
property (P) and assume that T' is w—continuous.

Theorem 3.2. Let (X, X,w) be a partially modular metric space. Assume that
w satisfies the Ao—type condition. Let C be an w—complete nonempty subset
of Xo,. LetT : C — C be an w—continuous non-decreasing self-mapping. If
the following conditions are verified

(i) for all comparable elements x,y € C,

Y1(wi (T2, Ty)) < Ya(wi(z,y)) — p(wi(z,y)) (3.4)
(i) there exists an element xo € C such that z¢ = Txg,

then T has a fized point in C. Moreover if (C, =) is up-directed, then the fized
point is unique.

Proof. Following the proof of Theorem 3.1 we only have to check that Tz =
x. As {x,} w—converges to x and T is w—continuous, then the sequence
{xn+1} = {Tx,} is w—convergent to Tx. And since the regularity of w implies
the uniqueness of limit, we obtain Tx = x. O

If we take ¢ = 99 = 1, and if we define w by:
wi(z,y) = @7 for all (z,y) € X2
we obtain the following result proved, in 2010, by Harjani and Sadarangani in
the setting of metric spaces [13, Theorem 2.1 and Theorem 2.2]).

Corollary 3.3. Let (X, =) be a partially ordered set and suppose that there
exists a metric d on X such that (X, d) is a complete metric space. LetT : X —
X be a non-decreasing self-mapping. If the following conditions are verified
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(i) for all comparable elements x,y € C,

Y(d(Tz,Ty)) < P(d(z,y)) —p(d(z,y)) (3.5)
(ii) there exists an element xo € C such that xg < Txo;
(iii) X satisfies the property (P) or T is w— continuous,
then T has a unique fized point in C provided that (C, <) is up-directed.

3.2. Common fixed point of generalized (¢1, ¥, ¢)—contraction. In this
section, we obtain a common fixed point for a pair of mappings satisfying a
generalized (11,13, p)—contractive condition in the framework of a partially
ordered convex modular metric space. We set

M(.’E, y) = max{wl(x7y)vwl(xv Sx)vwl(vay)a(*Q(mva) + w2(y, Sx)}

Theorem 3.4. Let (X, =<, w) be a partially ordered modular metric space where
w is convex and satisfies the Ags—type condition. Let C' be an w—complete
nonempty subset of X, andT,S : C'— C be two self-mappings. If the following
conditions are verified:

(i) for all comparable elements x,y € C,

Y1(w1(Sz, Ty)) < ha(M(x,y)) — (M (z,y)); (3.6)

(ii) w satisfies Fatou property or T is w—continuous;
(ili) there exists an element xo € C' such that

xo = Szo < TSxo = STSxo = (TS)*x0 < S(TS)?20 < ...

(iv) w satisfies the property (P),
then S and T have a common fized point in C and F(S,T) = §(S) = F(T).
Particulary, if F(S,T) is totally ordered, then T and S have a unique fixed
point.

Proof. Consider the sequence {z,} defined by
Tont+1 = STon and Tonqo = Txoyy1, for all n € N.

The condition (ii) insures that {z,} is non-decreasing. If there exists an integer
n such that

Ton = T2n+1 = T2n+2,

then x4, is a common fixed point of S and T. Otherwise, suppose that
Ton F Topt1 O Tay # Topya, for all n € N.

Let n € N. From %3, =< 2,41 and applying the inequality (3.6) for z = xa,

and y = 2,41, we obtain

Y1(w1(@2n41, Tan+t2)) < Yo(M (20, T2n+1)) — ¢(M (20, T2n+1)) (3.7)
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where
M(»’Czn, £E2n+1) = maX{wl (l’zm I2n+1), wl(I2n+1, I2n+2),w2(f€2n, 172n+2)}-

Since w is convex, we have

wa(Tan, Tant2) < = (w1 (Ton, Tant1) + w1 (T2nt1, Tant2))-

N

Then
M (Zan, Tant1) = max{wi (Tan, Toant1), w1 (Tant1, Tant2) -
If we suppose that there exists an integer n such that:
wi(Z2n, Tant1) < wi(T2nt1, Tant2),
then
M (22n, Tont1) = wi1(T2ny1, Tant2)-
Thus

U1 (w1 (@2nt1, Tant2)) < Ya(wi(Tont1, Tant2)) — @(Wi(Tant1; Tant2))
< Y1 (wi(T2n+1, T2n+2)),s

a contradiction. Hence, for all n € N, w1 (22541, Tont2) < w1 (ZTan, Tont1)-
By the same argument, if we take, in the inequality (3.6), x = x9,-1 and
Y = X2, We obtain

w1(Zan, Topt+1) < wi(Top—1,Tay), for all n € N*.

Then wi(Tnt1,Tnt2) < wi(Zn,Tpi1), for all n € N. Thus, the sequence
{wi(@n,Tn+1)} is decreasing and bounded below. Therefore, it w—converges
to some r > 0. By passing to upper limit in the inequality (3.7), we obtain

lim sup ¥1 (w1 (Z2n41, Tant2)) < limsup Yo (M (22n, Tont1))—liminf (M (x2,, T2n11))
n—+o00 n—+o00 n—+00

Since
nglfoo M(xQna $2n+1) = nEIEoo maX{wl(Izm 502n+1),w1 ($2n+1, $2n+2)} =T,

and using the continuity of ¥ and 19 and the lower semi-continuity of , we get
1(r) < (1) — ¢(r), which implies that » = 0. Thus, ngr—ir-loo w1 (Tny Tnt1) = 0.
Since w is convex and satisfies the Ay —condition and according to lemma 2.12,
then {z,} is w—Cauchy sequence in C. Thus, from the completeness, {z,} is
w—convergent to some z € C.

If T is w—continuous, then {x,+1}={Tz,} is w—convergent to some z and
from the uniqueness of the limit we have Tz = x.

If w satisfies Fatou property, we have wi(z,Tx)) < lim+infw1 (xon+1, Tx).
n—-+0oo

Following to the condition (P), x3, < z, for all n € N. Then
V(w1 (@on+41, T)) < Yo(M (220, 7)) — (M (220, 2)) (3.8)
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where
M(CEQm ﬂU) = maX{wl (»sz x), w1 (xzn, $2n+1)7 wi (x, Tff% w2(1'2n7 T»T)+w2($a $2n+1)}'

From

wo(xon, Tr) < wi(xon, ) + wi(z, Tx),

we obtain
ngr—&l-loo M (zan,x) = wi(z, Tx).
Then
P (wi(z, Tx)) < ¢1(lnigl+irgcf)w1 (x2n41,Tx))
< limsup ¥y (w1 (22541, Tx))
n—-+oo
< lim sup(¢o (M (22, x))) — liminf (o (M (z2y,, x)))
n——+oo n—+00

< Ya(wi(z, T)) — p(wi(z, T)).

Which implies that wq(z, Tx) = 0. The regularity insures that Tx = x.
Now, let us prove that Sz = z. If we take y = = into the inequality (3.6), we
obtain

r(wi (S, ) < ha(M(z,2)) — (M (2, ).
Since M (z, ) = wy(Sz, ), then

P1(w1(S, 7)) < Po(wi1 (S, 7)) — p(wi (S, 7)),

which implies that wq(Sz,z) = 0. So, from the regularity of w, we conclude
that Sz = z.

Let us suppose that there exits another common fixed point y of T and S. If
we assume that §(T,5) is totally ordered, then z and y are comparable and
according to (3.6), we have

Ui(w(@,y)) < P2(wri(z,y) = plwr(z,y)),

which insures that wy(z,y) = 0 and so # = y. Therefore, the uniqueness of the
common fixed point of S and T'. ([

Remark 3.5. If we define w by:
wr(z,y) = M, for all (z,y) € X2,
we obtain Theorem 1.2 established by Abkar and Choudhury in [1].

ExAMPLE 3.6. Consider the space X = [0, 1] ordered by “<”which is the reverse
of the usual order between the reals (z < y < = > y) and endowed with the
modular metric defined for all A > 0 as follows:
Sy if T#y
— X

Consider the two self-mappings S and T defined as follows:
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if 0<z<1

if r=1

Consider the three functions defined for ¢, s € [0, +oo[ as follows:
i(t) =t,92(t) = %, o(t) = .

We can see that the functions 1, ¥9 and ¢ satisfy all conditions described in

Sz =7, forallz €[0,1] and Tx:{

NI LS

the top of the section 3. It’s easy to verify that

(i) X, = X is an w—complete modular metric space;

(ii) w is convex and satisfies the Ay—type condition and Fatou property;
(iii) 1 < S1 = TS1 =< STS1 = (TS5)%1 < S(TS)%1 =
(iv) (X, x) satisfies the property (P);

Let x and y be two comparable elements in X. Let us show that

r(wi (S, Ty)) < Po(M(z,y)) — (M (2, y))- (3.9)
i.e,
x )
Case.l. If x =y =1, then wl(i 1)=3and M(1,1) =

Case.2. If z =1 and y € [0, 1], then
wl(i, %) = “Ty and M(1,y) = max{1 +y, %}

o Ify< i, M(lLy) =3
o Ify >4, M(lLy)=1+y.

Case.3. If y =1 and z € [0, 1], then
wi(%,3) =2 and M(z,1) = max{l + =z, 3

12
olfl‘<f M(z, ):%
OIfl'Zl M(z,1)=1+=x.

1

1

Cased. If z,y € [0,
Case.5. If 2,y € [0,

Wl(iy g) = 21% and M(.’I),y) = max{%)m_i_y}

o If y > %, then M(z,y) =z +y.
o If y < %, then M(xz,y) = <fF

Case.6. If z,y € [0,1] and = < y, then M(z,y) = max{x + y, %’}.

[and z =y, then w (%, %) = 32 and M(z,y) =

0
0,1[ and = > y, then

o If x =%, then wi(F,%) =0.
o Ifxe]g,z[ ]%,y[,thenwl(ﬁ,%)*mand M(z,y) =x+y.
o If z < ¥, then wy(%,%) = 2 and M(z,y) = .

One can easily see that (3.9) holds in all cases. Hence S and T verify all
conditions of Theorem 3.4 and have a unique common fixed point which is 0.
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4. CONCLUSION

The results in this paper,

(1) extend the work of Dutta and Choudhury in [11] from a metric to a
partially ordered modular metric space.

(2) extend Theorem 2.2 of Abkar and Choudhury in [1] from a partially
ordered metric space to a partially ordered modular metric space.

(3) extend Theorem 2.1 and Theorem 2.2 established by Harjani and Sadarangani

in [13] from a metric space to a partially ordered modular metric space.

Remark 4.1. Recently, Jleli et al.[14] and Khamsi [15] replaced the Ay —condition
by a weaker condition. One wonders if one can weaken the Aj,—condition in
the case of weak contractions defined on metric modular spaces.
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