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1. Introduction

Many generalizations and extensions of Banach contraction principle have

been studied in various settings (see [12, 21, 20, 22]). Most established results

provide sufficient conditions for the existence and uniqueness of fixed points of
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certain classes of self-mappings (see [6, 7, 10, 24, 26, 27, 28]) and some of them

provide iterative schemes and numerical algorithms to approximate those fixed

points (see [23, 25, 29]).

In 2008, Dutta and Choudhury in [11] proved the following theorem, by

using the weak contraction introduced by Alber and Guerre-Delabrere in [5].

Theorem 1.1. Let (X, d) be a complete metric space, and let T : X → X be

a self-mapping satisfying the following inequality:

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)), for all (x, y) ∈ X2

where ψ,ϕ : [0,+∞[→ [0,+∞[ are both continuous and nondecreasing functions

with ψ(t) = ϕ(t) = 0 if and only if t = 0. Then T has a unique fixed point.

In 2012, Abkar and Choudhury in [1] proved the following theorem which is

a generalization of the above result in a partially ordered metric space having

the following property (P):

for each non-decreasing sequence (xn)n∈N ⊂ X that converges to some x ∈ X,

we have: xn � x for all n ∈ N.

Theorem 1.2. Let (X,�, d) be an ordered complete metric space with a partial

order “ � ” and having the property (P). Let S, T : X → X be two self mappings

such that for all comparable x, y ∈ X,

ψ1(d(Sx, Ty)) ≤ ψ2(M(x, y))− ϕ(M(x, y))

where

M(x, y) = max{d(x, y), d(x, Sx), d(y, Ty),
1

2
(d(x, Ty) + d(y, Sx))},

ψ1, ψ2 : [0,+∞[→ [0,+∞[ are both continuous and monotone non-decreasing

functions and ϕ : [0,+∞[→ [0,+∞[ is lower semi-continuous function which

satisfies ψ1(t)− ψ2(t) + ϕ(t) > 0, for all t > 0.

If there exists a point x0 ∈ X satisfying

x0 � Sx0 � TSx0 � STSx0 � (TS)2x0 � ...

then there exists a point u ∈ X such that Su = Tu = u.

On the other hand, in 2010, Chistyakov in [8] and [9] has introduced the con-

cept of modular metric space. This is a generalization of the classical modular

spaces like Orlicz spaces (see [16]). Fixed point theorems in modular function

spaces, generalizing the classical Banach fixed point theorem in metric spaces,

have been studied extensively ( see [4, 6, 17, 18, 24]).

In recent years, there has been a great interest in the study of the fixed

point property in modular metric spaces ( see [2, 3, 19]). For more details on

modular metric fixed point theory, the reader may consult the books [16, 8].

In this paper we prove some fixed and common fixed point theorems for a

weak contractive mapping in modular metric spaces. Our results generalize
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and extend the above theorems in partially ordered modular metric spaces for

mappings satisfying weak contraction that involves three control functions.

2. Preliminaries

Let X be a nonempty set. For a function ω :]0,+∞[×X ×X → [0,+∞], we

will use the notation

ωλ(x, y) = ω(λ, x, y), for all λ > 0 and x, y ∈ X.

Definition 2.1. ([9]) A function ω :]0,+∞[×X ×X → [0,+∞] is said to be

modular metric on X if it satisfies the following conditions:

(i) Given x, y ∈ X, x = y if and only if ωλ(x, y) = 0 for all λ > 0;

(ii) For all x, y ∈ X, for all λ > 0, ωλ(x, y) = ωλ(y, x);

(iii) For all x, y, z ∈ X and for all λ, µ > 0, ωλ+µ(x, y) ≤ ωλ(x, z)+ωµ(z, y).

In this case, (X,ω) is called modular metric space.

The modular ω is said to be regular if the condition (i) holds for some λ > 0.

The modular ω is said to be convex if for all λ, µ > 0 and x, y, z ∈ X, we have:

ωλ+µ(x, y) ≤ λ

λ+ µ
ωλ(x, z) +

µ

λ+ µ
ωµ(z, y).

Note that for a modular metric ω on a set X, and any x, y ∈ X, the function

λ→ ωλ(x, y) is non-increasing on ]0,+∞[. Indeed, if 0 < µ < λ, then

ωλ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y).

Definition 2.2. ([8]) Let (X,ω) be a modular metric space. Fix x0 ∈ X. Set

Xω = Xω(x0) = {x ∈ X : ωλ(x, x0) −→ 0 as λ −→∞},

and

X∗ω = X∗ω(x0) = {x ∈ X : ∃λ > 0 , ωλ(x, x0) <∞}.
The two linear spaces Xω and X∗ω are said to be modular spaces (around x0).

Note that Xω is metrizable by the metric

dω(x, y) = inf{t > 0 : ωt(x, y) ≤ t}.

If ω is convex, then X∗ω = Xω and we can endowed these sets with the metric

d∗ω defined by

d∗ω(x, y) = inf{t > 0 : ωt(x, y) ≤ 1}.

Definition 2.3. ([2]) Let ω be a modular metric on X.

(1) We say that a sequence {xn} ⊂ Xω is ω−convergent to some x ∈ Xω

if and only if lim
n→+∞

ω1(xn, x) = 0. We will call x the ω−limit of {xn}.
(2) We say that a sequence {xn} ⊂ Xω is ω−Cauchy if

lim
n,m→+∞

ω1(xn, xm) = 0.
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(3) We say that M ⊂ Xω is ω−closed if the ω−limit of an ω−convergent

sequence of M is in M .

(4) We say that M ⊂ Xω is ω−complete if any ω−Cauchy sequence in M

is ω−convergent and its ω−limit belongs to M .

(5) We say that ω satisfies Fatou property if we have

ω1(x, y) ≤ lim inf
n→+∞

ω1(xn, y)

for any sequence {xn} ⊂ Xω which ω−converges to x and for any

y ∈ Xω.

Definition 2.4. ([8]) Let ω be a modular metric on X. We say that ω satisfies

the ∆2−condition, or simply ω is ∆2, if, given a sequence {xn} ⊂ Xω, x ∈ Xω

and λ > 0 such that lim
n→+∞

ωλ(xn, x) = 0, we have lim
n→+∞

ωλ
2
(xn, x) = 0.

Definition 2.5. Let ω be a modular metric on X. We say that ω satisfies the

∆2−type condition if there exists a constant K > 0 such that

ωλ
2
(x, y) ≤ Kωλ(x, y),

for all x, y ∈ Xω and any λ > 0.

The following results are immediate:

Lemma 2.6. If ω satisfies the ∆2− type condition, then ω satisfies the ∆2−condition.

Lemma 2.7. Let {xn} be a sequence in Xω. Let λ > 0. If ω satisfies the ∆2−
type condition, then {xn} is ω−Cauchy if and only if lim

n,m→+∞
ωλ(xn, xm) = 0.

Lemma 2.8. If ω satisfies the ∆2− type condition, then ω is regular.

Lemma 2.9. If ω satisfies the ∆2− type condition, then ωλ(x, y) <∞, for all

λ > 0 and for all (x, y) ∈ X2
ω.

Proof. Suppose that there exists λ > 0 and x, y ∈ Xω = Xω(x0) such that

ωλ(x, y) = ∞. Since ω satisfies the ∆2− type condition, then, for all n ∈
N∗, ω2nλ(x, y) = ∞ . Since ω2nλ(x, y) ≤ ω2n−1λ(x, x0) + ω2n−1λ(y, x0) and

x, y ∈ Xω(x0), we have: lim
n→+∞

ω2n−1λ(x, x0) = 0 and lim
n→+∞

ω2n−1λ(y, x0) = 0.

Then, lim
n→+∞

ω2nλ(x, y) = 0. Which is a contradiction. �

Lemma 2.10. Let (X,ω) be a modular space. Let {xn} be a sequence in

Xω. If {xn} is not ω−Cauchy, then there exists ε > 0 and two subsequences

of integers {nk} and {mk} such that nk > mk ≥ k, ω1(xnk , xmk) ≥ ε and

ω 1
2
(xnk−1, xmk) < ε.

Proof. If we suppose that (xn)n∈N is not a ω−Cauchy, then there exists

ε > 0 and for all k ∈ N there exists nk,mk ∈ N such that nk > mk ≥ k and

ω1(xnk , xmk) ≥ ε. Let us fix k ∈ N, and consider the set

Ak = {h ∈ N∗ : h > mk ≥ k and ω1(xh, xmk) ≥ ε}.
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Since nk ∈ Ak, then Ak 6= ∅. Let us consider the set:

Bk = {h ∈ Ak : ω 1
2
(xh, xmk) ≥ ε}.

One can see that Bk ⊆ N∗ and Bk 6= ∅. Since

ω 1
2
(xnk , xmk) ≥ ω1(xnk , xmk) ≥ ε,

then Bk admits the least element n′k that belongs to Ak, and so

n′k > mk ≥ k, ω1(xn′k , xmk) ≥ ε and ω 1
2
(xn′k−1, xmk) < ε. �

Using the same argument as in the proof of Lemma 2.10 and applying Lemma

2.7, we have the following:

Lemma 2.11. Let s, t ∈ N∗. If ω satisfies the ∆2− type condition and {xn}
is not a ω−Cauchy sequence, then there exists ε > 0 and two subsequences

of integers {nk} and {mk} such that nk > mk ≥ k, ω2s(xnk , xmk) ≥ ε and

ω 1
2t

(xnk−1, xmk) < ε.

Lemma 2.12. Let (X,ω) be a modular space such that ω is convex and satisfies

the ∆2−condition. If {xn} is a sequence in Xω such that lim
n→+∞

ω1(xn, xn+1) =

0, then {xn} is ω−Cauchy.

Proof. Suppose that {xn} is not ω−Cauchy, then according to Lemma 2.10,

there exists ε > 0 and two subsequences of integers {nk} and {mk} such that

nk > mk ≥ k and ω1(xnk , xmk) ≥ ε and ω 1
2
(xnk−1, xmk) < ε. Since ω is

convex, we have:

ω1(xnk , xmk) ≤ 1

2
ω 1

2
(xnk−1, xmk) +

1

2
ω 1

2
(xnk−1, xnk).

Then, for all k ∈ N
ε ≤ ε

2
+

1

2
ω 1

2
(xnk−1, xnk)

Since ω satisfies the ∆2−type condition, then lim
n→+∞

ω 1
2
(xnk−1, xnk) = 0. So,

ε ≤ ε
2 . Which is a contradiction. �

Definition 2.13. Let X be a nonempty set. Then (X,�, ω) is called a partially

ordered modular metric space if and only if (i) (X,ω) is a modular metric space

and (ii) (X,�) is a partially ordered set.

Definition 2.14. Let (X,�, ω) be a partially ordered modular metric space.

We say that ω satisfies the property (P), if a non-decreasing sequence {xn}
ω−converges to some x ∈ Xω, then xn � x for all n ∈ N.

Definition 2.15. Let C be a nonempty subset of Xω. A self-mapping T : C →
C is said to be ω−continuous, if a sequence {xn} ω−converges to some x ∈ C,

then {Txn} ω−converges to Tx.

Definition 2.16. We say that a partially ordered set (X,�) is up-directed, if

for all (x, y) ∈ X2 there exists an element z ∈ X such that x � z and y � z.
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We will use the following notations:

Let X be a nonempty set and S and T be a two self-mappings on X. We denote

by F(S) the fixed point set of S, i.e., F(S) := {x ∈ X : Sx = x}. Also, we denote

by F(S, T ) the common fixed point set of S and T, i.e., F(S, T ) = F(S) ∩ F(T )

3. Main results

Let us consider three functions ψ1, ψ2, ϕ : R+ → R+ such that:

(a) ψ1,ψ2 are continuous and ϕ is lower semi-continuous.

(b) ψ1 is strictly increasing.

(c) For all i ∈ {1, 2}, ψi(0) = ϕ(0) = 0.

(d) For all t > 0, ψ1(t)− ψ2(t) + ϕ(t) > 0.

3.1. Fixed point of (ψ1, ψ2, ϕ)−contraction. In this section, we obtain fixed

point results for a single mapping satisfying a (ψ1, ψ2, ϕ)−contractive condition

in the framework of a partially ordered modular metric space.

Theorem 3.1. Let (X,ω,�) be a partially modular metric space. Assume that

ω satisfies the ∆2−type condition. Let C be an ω−complete nonempty subset

of Xω. Let T : C → C be a non-decreasing self-mapping. If the following

conditions are verified

(i) for all comparable elements x, y ∈ C,

ψ1(ω1(Tx, Ty)) ≤ ψ2(ω1(x, y))− ϕ(ω1(x, y)) (3.1)

(ii) there exists an element x0 ∈ C such that x0 � Tx0;

(iii) ω satisfies the property (P),

then T has a fixed point in C. Moreover if (C,�) is up-directed, then the fixed

point is unique.

Proof. We divide this proof into four steps.

Step.1. Consider the sequence {xn} defined by xn = Tnx0. One can see

that

xn � xn+1, for all n ∈ N.

If we suppose that there exists an integer n such that xn = xn+1, then T admits

at least a fixed point in C. So, let us assume that xn 6= xn+1 for all n ∈ N.

In (i), if we take x = xn and y = xn+1, we obtain:

ψ1(ω1(xn+1, xn+2)) ≤ ψ2(ω1(xn, xn+1))− ϕ(ω1(xn, xn+1)) ≤ ψ1(ω1(xn, xn+1))

(3.2)

Then the sequence {ω1(xn, xn+1)} is decreasing and bounded below. So, it

converges to some nonnegative real r. If we suppose that r > 0, then taking
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the limit superior as n → +∞ in the first part of the above inequality, we

obtain

lim sup
n→+∞

ψ1(ω1(xn+1, xn+2)) ≤ lim sup
n→+∞

ψ2(ω1(xn, xn+1))−lim inf
n→+∞

ϕ(ω1(xn, xn+1)).

Using the continuity of ψ1 and ψ2 and the lower semi-continuity of ϕ and

applying the condition (d), we obtain

ψ1(r) ≤ ψ2(r)− ϕ(r) < ψ1(r),

a contradiction. Therefore, r = 0.

Step.2. Let us prove that the sequence {xn} is ω−Cauchy. Suppose that

{xn}n∈N is not ω−Cauchy. Then, according to Lemma 2.11 for ω4 and ω 1
2
,

there exists ε > 0 and subsequences of integers {mk} and {nk} such that

mk > nk ≥ k, ω4(xmk , xnk) ≥ ε and ω 1
2
(xmk−1, xnk) < ε.

In (i), if we take x = xmk−1 and y = xnk−1, and since xnk−1 � xmk−1, we

obtain:

ψ1(ε) ≤ ψ1(ω4(xmk , xnk)) ≤ ψ1(ω1(xmk , xnk))

≤ ψ2(ω1(xmk−1, xnk−1))− ϕ(ω1(xmk−1, xnk−1)) (3.3)

And we have

ε ≤ ω4(xmk , xnk) ≤ ω1(xmk−1, xnk−1) + ω1(xmk−1, xmk) + ω2(xnk−1, xnk),

and

ω1(xmk−1, xnk−1) ≤ ω 1
2
(xmk−1, xnk) + ω 1

2
(xnk−1, xnk).

Thus

ε−ω1(xmk−1, xmk)−ω2(xnk−1, xnk) ≤ ω1(xmk−1, xnk−1) ≤ ε+ω 1
2
(xnk−1, xnk).

Since ω satisfies the ∆2−type condition, then

lim
k→+∞

ω 1
2
(xnk−1, xnk) = lim

k→+∞
ω2(xnk−1, xnk) = 0.

So lim
k→+∞

ω1(xmk−1, xnk−1) = ε. And by letting k → +∞, in the inequality

(3.3), we obtain

ψ1(ε) ≤ ψ2(ε)− ϕ(ε) < ψ1(ε)

which is a contradiction, then {xn} is ω−Cauchy in C. Since C is ω−complete,

there exists x ∈ C such that lim
n→+∞

ω1(xn, x) = 0.

Step.3. Let us prove that x is a fixed point of T . Since xn � x, for all

n ∈ N∗, we have:

ψ1(ω1(xn, Tx)) ≤ ψ2(ω1(xn−1, x))− ϕ(ω1(xn−1, x)) ≤ ψ1(ω1(xn−1, x)).

Then 0 ≤ ω1(xn, Tx) ≤ ω1(xn−1, x) and by passing to limit, we obtain

lim
n→+∞

ω1(xn, Tx) = 0.



118 K. Chaira, A. Eladraoui, M. Kabil

And as

ω2(x, Tx) ≤ ω1(xn, x) + ω1(xn, Tx),

then ω2(x, Tx) = 0 and since ω is regular, we obtain Tx = x.

Step.4. Assume that (C,�) is up-directed. Let y ∈ C be another fixed point

of T . There exists z ∈ C such that x � z and y � z. As T is non-decreasing,

we have for all n ∈ N, x � Tnz = zn and y � Tnz = zn. Then

ψ1(ω1(x, zn+1)) ≤ ψ2(ω1(x, zn))− ϕ(ω1(x, zn)) ≤ ψ1(ω1(x, zn)).

Thus the sequence {ω1(x, zn)} is decreasing and bounded below. So, it con-

verges to some l ≥ 0 and by tending n to +∞ in the above inequality, we obtain

l = 0. By the same argument we prove that lim
n→+∞

ω1(y, zn) = 0. By passing

to limit in the following inequality

ω2(x, y) ≤ ω1(x, zn) + ω1(y, zn),

we obtain ω2(x, y) = 0. Since ω is regular, we have x = y. Then, T admits a

unique fixed point in C. �

In what follows, we prove that Theorem 3.1 is still valid if we neglect the

property (P) and assume that T is ω−continuous.

Theorem 3.2. Let (X,�, ω) be a partially modular metric space. Assume that

ω satisfies the ∆2−type condition. Let C be an ω−complete nonempty subset

of Xω. Let T : C → C be an ω−continuous non-decreasing self-mapping. If

the following conditions are verified

(i) for all comparable elements x, y ∈ C,

ψ1(ω1(Tx, Ty)) ≤ ψ2(ω1(x, y))− ϕ(ω1(x, y)) (3.4)

(ii) there exists an element x0 ∈ C such that x0 � Tx0,

then T has a fixed point in C. Moreover if (C,�) is up-directed, then the fixed

point is unique.

Proof. Following the proof of Theorem 3.1 we only have to check that Tx =

x. As {xn} ω−converges to x and T is ω−continuous, then the sequence

{xn+1} = {Txn} is ω−convergent to Tx. And since the regularity of ω implies

the uniqueness of limit, we obtain Tx = x. �

If we take ψ1 = ψ2 = ψ, and if we define ω by:

ωλ(x, y) = d(x,y)
λ , for all (x, y) ∈ X2

we obtain the following result proved, in 2010, by Harjani and Sadarangani in

the setting of metric spaces [13, Theorem 2.1 and Theorem 2.2]).

Corollary 3.3. Let (X,�) be a partially ordered set and suppose that there

exists a metric d on X such that (X, d) is a complete metric space. Let T : X →
X be a non-decreasing self-mapping. If the following conditions are verified
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(i) for all comparable elements x, y ∈ C,

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)) (3.5)

(ii) there exists an element x0 ∈ C such that x0 � Tx0;

(iii) X satisfies the property (P) or T is ω−continuous,

then T has a unique fixed point in C provided that (C,�) is up-directed.

3.2. Common fixed point of generalized (ψ1, ψ2, ϕ)−contraction. In this

section, we obtain a common fixed point for a pair of mappings satisfying a

generalized (ψ1, ψ2, ϕ)−contractive condition in the framework of a partially

ordered convex modular metric space. We set

M(x, y) = max{ω1(x, y), ω1(x, Sx), ω1(y, Ty), ω2(x, Ty) + ω2(y, Sx)}.

Theorem 3.4. Let (X,�, ω) be a partially ordered modular metric space where

ω is convex and satisfies the ∆2−type condition. Let C be an ω−complete

nonempty subset of Xω and T, S : C → C be two self-mappings. If the following

conditions are verified:

(i) for all comparable elements x, y ∈ C,

ψ1(ω1(Sx, Ty)) ≤ ψ2(M(x, y))− ϕ(M(x, y)); (3.6)

(ii) ω satisfies Fatou property or T is ω−continuous;

(iii) there exists an element x0 ∈ C such that

x0 � Sx0 � TSx0 � STSx0 � (TS)2x0 � S(TS)2x0 � ...

(iv) ω satisfies the property (P),

then S and T have a common fixed point in C and F(S, T ) = F(S) = F(T ).

Particulary, if F(S, T ) is totally ordered, then T and S have a unique fixed

point.

Proof. Consider the sequence {xn} defined by

x2n+1 = Sx2n and x2n+2 = Tx2n+1, for all n ∈ N.

The condition (ii) insures that {xn} is non-decreasing. If there exists an integer

n such that

x2n = x2n+1 = x2n+2,

then x2n is a common fixed point of S and T . Otherwise, suppose that

x2n 6= x2n+1 or x2n 6= x2n+2, for all n ∈ N.

Let n ∈ N. From x2n � x2n+1 and applying the inequality (3.6) for x = x2n
and y = x2n+1, we obtain

ψ1(ω1(x2n+1, x2n+2)) ≤ ψ2(M(x2n, x2n+1))− ϕ(M(x2n, x2n+1)) (3.7)
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where

M(x2n, x2n+1) = max{ω1(x2n, x2n+1), ω1(x2n+1, x2n+2), ω2(x2n, x2n+2)}.

Since ω is convex, we have

ω2(x2n, x2n+2) ≤ 1

2
(ω1(x2n, x2n+1) + ω1(x2n+1, x2n+2)).

Then

M(x2n, x2n+1) = max{ω1(x2n, x2n+1), ω1(x2n+1, x2n+2)}.
If we suppose that there exists an integer n such that:

ω1(x2n, x2n+1) ≤ ω1(x2n+1, x2n+2),

then

M(x2n, x2n+1) = ω1(x2n+1, x2n+2).

Thus

ψ1(ω1(x2n+1, x2n+2)) ≤ ψ2(ω1(x2n+1, x2n+2))− ϕ(ω1(x2n+1, x2n+2))

< ψ1(ω1(x2n+1, x2n+2)),

a contradiction. Hence, for all n ∈ N, ω1(x2n+1, x2n+2) < ω1(x2n, x2n+1).

By the same argument, if we take, in the inequality (3.6), x = x2n−1 and

y = x2n we obtain

ω1(x2n, x2n+1) < ω1(x2n−1, x2n), for all n ∈ N∗.

Then ω1(xn+1, xn+2) < ω1(xn, xn+1), for all n ∈ N. Thus, the sequence

{ω1(xn, xn+1)} is decreasing and bounded below. Therefore, it ω−converges

to some r ≥ 0. By passing to upper limit in the inequality (3.7), we obtain

lim sup
n→+∞

ψ1(ω1(x2n+1, x2n+2)) ≤ lim sup
n→+∞

ψ2(M(x2n, x2n+1))−lim inf
n→+∞

ϕ(M(x2n, x2n+1))

Since

lim
n→+∞

M(x2n, x2n+1) = lim
n→+∞

max{ω1(x2n, x2n+1), ω1(x2n+1, x2n+2)} = r,

and using the continuity of ψ1 and ψ2 and the lower semi-continuity of ϕ, we get

ψ1(r) ≤ ψ2(r)−ϕ(r), which implies that r = 0. Thus, lim
n→+∞

ω1(xn, xn+1) = 0.

Since ω is convex and satisfies the ∆2−condition and according to lemma 2.12,

then {xn} is ω−Cauchy sequence in C. Thus, from the completeness, {xn} is

ω−convergent to some x ∈ C.

If T is ω−continuous, then {xn+1}={Txn} is ω−convergent to some x and

from the uniqueness of the limit we have Tx = x.

If ω satisfies Fatou property, we have ω1(x, Tx)) ≤ lim inf
n→+∞

ω1(x2n+1, Tx).

Following to the condition (P), x2n � x, for all n ∈ N. Then

ψ1(ω1(x2n+1, Tx)) ≤ ψ2(M(x2n, x))− ϕ(M(x2n, x)) (3.8)
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where

M(x2n, x) = max{ω1(x2n, x), ω1(x2n, x2n+1), ω1(x, Tx), ω2(x2n, Tx)+ω2(x, x2n+1)}.

From

ω2(x2n, Tx) ≤ ω1(x2n, x) + ω1(x, Tx),

we obtain

lim
n→+∞

M(x2n, x) = ω1(x, Tx).

Then

ψ1(ω1(x, Tx)) ≤ ψ1(lim inf
n→+∞

ω1(x2n+1, Tx))

≤ lim sup
n→+∞

ψ1(ω1(x2n+1, Tx))

≤ lim sup
n→+∞

(ψ2(M(x2n, x)))− lim inf
n→+∞

(ϕ(M(x2n, x)))

≤ ψ2(ω1(x, Tx))− ϕ(ω1(x, Tx)).

Which implies that ω1(x, Tx) = 0. The regularity insures that Tx = x.

Now, let us prove that Sx = x. If we take y = x into the inequality (3.6), we

obtain

ψ1(ω1(Sx, x)) ≤ ψ2(M(x, x))− ϕ(M(x, x)).

Since M(x, x) = ω1(Sx, x), then

ψ1(ω1(Sx, x)) ≤ ψ2(ω1(Sx, x))− ϕ(ω1(Sx, x)),

which implies that ω1(Sx, x) = 0. So, from the regularity of ω, we conclude

that Sx = x.

Let us suppose that there exits another common fixed point y of T and S. If

we assume that F(T, S) is totally ordered, then x and y are comparable and

according to (3.6), we have

ψ1(ω1(x, y)) ≤ ψ2(ω1(x, y))− ϕ(ω1(x, y)),

which insures that ω1(x, y) = 0 and so x = y. Therefore, the uniqueness of the

common fixed point of S and T . �

Remark 3.5. If we define ω by:

ωλ(x, y) = d(x,y)
λ , for all (x, y) ∈ X2,

we obtain Theorem 1.2 established by Abkar and Choudhury in [1].

Example 3.6. Consider the spaceX = [0, 1] ordered by “�”which is the reverse

of the usual order between the reals (x � y ⇔ x ≥ y) and endowed with the

modular metric defined for all λ > 0 as follows:

ωλ(x, y) =

{ x+y
λ if x 6= y

0 if x = y

Consider the two self-mappings S and T defined as follows:
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Sx = x
4 , for all x ∈ [0, 1] and Tx =

{
x
8 if 0 ≤ x < 1
1
2 if x = 1

Consider the three functions defined for t, s ∈ [0,+∞[ as follows:

ψ1(t) = t, ψ2(t) = 3t
4 , ϕ(t) = t

8 .

We can see that the functions ψ1, ψ2 and ϕ satisfy all conditions described in

the top of the section 3. It’s easy to verify that

(i) Xω = X is an ω−complete modular metric space;

(ii) ω is convex and satisfies the ∆2−type condition and Fatou property;

(iii) 1 � S1 � TS1 � STS1 � (TS)21 � S(TS)21 � ...
(iv) (X,�) satisfies the property (P);

Let x and y be two comparable elements in X. Let us show that

ψ1(ω1(Sx, Ty)) ≤ ψ2(M(x, y))− ϕ(M(x, y)). (3.9)

i.e,

ω1(
x

4
, Ty) ≤ 5

8
M(x, y).

Case.1. If x = y = 1, then ω1( 1
4 ,

1
2 ) = 3

4 and M(1, 1) = 3
2 .

Case.2. If x = 1 and y ∈ [0, 1[, then

ω1( 1
4 ,

y
8 ) = 2+y

8 and M(1, y) = max{1 + y, 54}.

• If y < 1
4 , M(1, y) = 5

4 .

• If y ≥ 1
4 , M(1, y) = 1 + y.

Case.3. If y = 1 and x ∈ [0, 1[, then

ω1(x4 ,
1
2 ) = 2x+4

8 and M(x, 1) = max{1 + x, 32}.

• If x < 1
2 , M(x, 1) = 3

2 .

• If x ≥ 1
2 , M(x, 1) = 1 + x.

Case.4. If x, y ∈ [0, 1[ and x = y, then ω1(x4 ,
y
8 ) = 3x

8 and M(x, y) = 5x
4 .

Case.5. If x, y ∈ [0, 1[ and x > y, then

ω1(x4 ,
y
8 ) = 2x+y

8 and M(x, y) = max{ 5x4 , x+ y}.

• If y ≥ x
4 , then M(x, y) = x+ y.

• If y < x
4 , then M(x, y) = 5x

4 .

Case.6. If x, y ∈ [0, 1[ and x < y, then M(x, y) = max{x+ y, 9y8 }.

• If x = y
2 , then ω1(x4 ,

y
8 ) = 0.

• If x ∈]y8 ,
y
2 [∪]y2 , y[, then ω1(x4 ,

y
8 ) = 2x+y

8 and M(x, y) = x+ y.

• If x ≤ y
8 , then ω1(x4 ,

y
8 ) = 2x+y

8 and M(x, y) = 9y
8 .

One can easily see that (3.9) holds in all cases. Hence S and T verify all

conditions of Theorem 3.4 and have a unique common fixed point which is 0.
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4. Conclusion

The results in this paper,

(1) extend the work of Dutta and Choudhury in [11] from a metric to a

partially ordered modular metric space.

(2) extend Theorem 2.2 of Abkar and Choudhury in [1] from a partially

ordered metric space to a partially ordered modular metric space.

(3) extend Theorem 2.1 and Theorem 2.2 established by Harjani and Sadarangani

in [13] from a metric space to a partially ordered modular metric space.

Remark 4.1. Recently, Jleli et al.[14] and Khamsi [15] replaced the ∆2−condition

by a weaker condition. One wonders if one can weaken the ∆2−condition in

the case of weak contractions defined on metric modular spaces.
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