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1. Introduction

Recall the following inequalities of Hermite-Hadamard’s type for convex
functions defined on a ball B (C,R) , where C = (a, b, c) ∈ R3, R > 0 and

B (C,R) :=
{
(x, y, z) ∈ R3

∣∣ (x− a)
2
+ (y − b)

2
+ (z − c)

2 ≤ R2
}
.

The following theorem holds [6].
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Theorem 1.1. Let f : B (C,R) → R be a convex mapping on the ball B (C,R) .

Then we have the inequalities:

f (a, b, c) ≤ 1

V (B (C,R))

∫∫∫
B(C,R)

f (x, y, z) dxdydz

≤ 1

A (B (C,R))

∫∫
S(C,R)

f (x, y, z) dS, (1.1)

where

S (C,R) :=
{
(x, y, z) ∈ R3

∣∣ (x− a)
2
+ (y − b)

2
+ (z − c)

2
= R2

}
and

V (B (C,R)) =
4πR3

3
, A (B (C,R)) = 4πR2.

Let D be a bounded convex domain from R3 with a piecewise smooth bound-
ary S. We use the notations

A (S) :=

∫∫
S

dS, V (D) =

∫∫∫
D

dV,

xD :=
1

V (D)

∫∫∫
D

xdV, yD :=
1

V (D)

∫∫∫
D

ydV, zD :=
1

V (D)

∫∫∫
D

zdV

and

xS :=
1

A (S)

∫∫
S

xdS, yS :=
1

A (S)

∫∫
S

ydS and zS :=
1

A (S)

∫∫
S

zdS.

Let us assume that the surface S is oriented with the aid of the unit normal
h directed to the exterior of D

h = (cosα, cosβ, cos γ) .

The following Hermite-Hadamard type inequalities for convex functions de-
fined on general convex domains were obtained by B. Gavrea in 2000, [9]:

Theorem 1.2. Let f : D → R be a convex function on D, a bounded con-
vex domain from R3 with a piecewise smooth boundary S. Then we have the
inequalities

f (xD, yD, zD) ≤
1

V (D)

∫∫∫
D

fdV ≤ 1

4A (S)

∫∫
S

fdS

+
1

4V (D)

∫∫
S

[(x− xS) cosα+ (y − yS) cosβ + (z − zS) cos γ] f (x, y, z) dS.

(1.2)

For other multivariate Hermite-Hadamard type inequalities, see [2]-[4] and
[11]-[18].

Motivated by the above results, we obtain in this paper other integral in-
equalities of Hermite-Hadamard type for convex functions defined on convex
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domains from the space. Some examples for three dimensional balls are also
provided.

2. Some preliminary facts and results

Following Apostol [1], consider a surface described by the vector equation

r (u, v) = x (u, v)
−→
i + y (u, v)

−→
j + z (u, v)

−→
k (2.1)

where (u, v) ∈ [a, b]× [c, d] .

If x, y, z are differentiable on [a, b]× [c, d] we consider the two vectors

∂r

∂u
=
∂x

∂u

−→
i +

∂y

∂u

−→
j +

∂z

∂u

−→
k

and
∂r

∂v
=
∂x

∂v

−→
i +

∂y

∂v

−→
j +

∂z

∂v

−→
k .

The cross product of these two vectors ∂r
∂u × ∂r

∂v will be referred to as the
fundamental vector product of the representation r. Its components can be
expressed as Jacobian determinants. In fact, we have [1, p. 420]

∂r

∂u
× ∂r

∂v
=

∣∣∣∣∣∣
∂y
∂u

∂z
∂u

∂y
∂v

∂z
∂v

∣∣∣∣∣∣−→i +

∣∣∣∣∣∣
∂z
∂u

∂x
∂u

∂z
∂v

∂x
∂v

∣∣∣∣∣∣−→j +

∣∣∣∣∣∣
∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣∣∣∣∣∣−→k (2.2)

=
∂ (y, z)

∂ (u, v)

−→
i +

∂ (z, x)

∂ (u, v)

−→
j +

∂ (x, y)

∂ (u, v)

−→
k .

Let S = r(T ) be a parametric surface described by a vector-valued function
r defined on the box T = [a, b]× [c, d] . The area of S denoted AS is defined by
the double integral [1, p. 424-425]

AS =

∫ b

a

∫ d

c

∥∥∥∥ ∂r∂u × ∂r

∂v

∥∥∥∥ dudv (2.3)

=

∫ b

a

∫ d

c

√(
∂ (y, z)

∂ (u, v)

)2

+

(
∂ (z, x)

∂ (u, v)

)2

+

(
∂ (x, y)

∂ (u, v)

)2

dudv.

We define surface integrals in terms of a parametric representation for the
surface. One can prove that under certain general conditions the value of the
integral is independent of the representation.

Let S = r(T ) be a parametric surface described by a vector-valued differen-
tiable function r defined on the box T = [a, b]× [c, d] and let f : S → C defined
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and bounded on S. The surface integral of f over S is defined by [1, p. 430]∫ ∫
S

fdS =

∫ b

a

∫ d

c

f (x, y, z)

∥∥∥∥ ∂r∂u × ∂r

∂v

∥∥∥∥ dudv (2.4)

=

∫ b

a

∫ d

c

f (x (u, v) , y (u, v) , z (u, v))

×

√(
∂ (y, z)

∂ (u, v)

)2

+

(
∂ (z, x)

∂ (u, v)

)2

+

(
∂ (x, y)

∂ (u, v)

)2

dudv.

If S = r(T ) is a parametric surface, the fundamental vector product N =
∂r
∂u ×

∂r
∂v is normal to S at each regular point of the surface. At each such point

there are two unit normals, a unit normal n1, which has the same direction as
N , and a unit normal n2 which has the opposite direction. Thus

n1 =
N

∥N∥
and n2 = −n1.

Let n be one of the two normals n1 or n2. Let also F be a vector field defined
on S and assume that the surface integral,∫ ∫

S

(F · n) dS,

called the flux surface integral, exists. Here F · n is the dot or inner product.
We can write [1, p. 434]∫ ∫

S

(F · n) dS = ±
∫ b

a

∫ d

c

F (r (u, v)) ·
(
∂r

∂u
× ∂r

∂v

)
dudv

where the sign ” + ” is used if n = n1 and the ”− ” sign is used if n = n2.

If
F (x, y, z) = P (x, y, z)

−→
i +Q (x, y, z)

−→
j +R (x, y, z)

−→
k

and

r (u, v) = x (u, v)
−→
i + y (u, v)

−→
j + z (u, v)

−→
k where (u, v) ∈ [a, b]× [c, d]

then the flux surface integral for n = n1 can be explicitly calculated as [1, p.
435]∫ ∫

S

(F · n) dS =

∫ b

a

∫ d

c

P (x (u, v) , y (u, v) , z (u, v))
∂ (y, z)

∂ (u, v)
dudv (2.5)

+

∫ b

a

∫ d

c

Q (x (u, v) , y (u, v) , z (u, v))
∂ (z, x)

∂ (u, v)
dudv

+

∫ b

a

∫ d

c

R (x (u, v) , y (u, v) , z (u, v))
∂ (x, y)

∂ (u, v)
dudv.



Some Hermite-Hadamard Type Inequalities for Convex Functions ... 179

The sum of the double integrals on the right is often written more briefly as [1,
p. 435]∫ ∫

S

P (x, y, z) dy ∧ dz +
∫ ∫

S

Q (x, y, z) dz ∧ dx+

∫ ∫
S

R (x, y, z) dx ∧ dy.

Let B ⊂ R3 be a solid in 3-space bounded by an orientable closed surface S,
and let n be the unit outer normal to S. If F is a continuously differentiable
vector field defined on B, we have the Gauss-Ostrogradsky identity∫∫∫

B

(divF ) dV =

∫ ∫
S

(F · n) dS. (GO)

If we express

F (x, y, z) = P (x, y, z)
−→
i +Q (x, y, z)

−→
j +R (x, y, z)

−→
k ,

then (GO) can be written as

∫∫∫
B

(
∂P (x, y, z)

∂x
+
∂Q (x, y, z)

∂y
+
∂R (x, y, z)

∂z

)
dxdydz

=

∫ ∫
S

P (x, y, z) dy ∧ dz +
∫ ∫

S

Q (x, y, z) dz ∧ dx

+

∫ ∫
S

R (x, y, z) dx ∧ dy. (2.6)

By taking the real and imaginary part, we can extend the above inequality
for complex valued functions P, Q, R defined on B.

For the bodyB we consider the coordinates for the center of gravity G (xB , yB , zB)

defined by

xB :=
1

V (B)

∫∫∫
B

xdxdydz, yB :=
1

V (B)

∫∫∫
B

ydxdydz

and

zB :=
1

V (B)

∫∫∫
B

zdxdydz.

We have:

Lemma 2.1. Let B be a solid in the three dimensional space R3 bounded by
an orientable closed surface S. If f : B → C is a continuously differentiable
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function defined on a open set containing B, then we have the equality∫∫∫
B

f (x, y, z) dxdydz

=
1

3

∫∫∫
B

[
(α− x)

∂f (x, y, z)

∂x
+ (β − y)

∂f (x, y, z)

∂y

+(γ − z)
∂f (x, y, z)

∂z

]
dxdydz

+
1

3

[∫ ∫
S

(x− α) f (x, y, z) dy ∧ dz +
∫ ∫

S

(y − β) f (x, y, z) dz ∧ dx

+

∫ ∫
S

(z − γ) f (x, y, z) dx ∧ dy
]

(2.7)

for all α, β and γ complex numbers.
In particular, we have∫∫∫

B

f (x, y, z) dxdydz

=
1

3

∫∫∫
B

[
(xB − x)

∂f (x, y, z)

∂x
+ (yB − y)

∂f (x, y, z)

∂y

+(zB − z)
∂f (x, y, z)

∂z

]
dxdydz

+
1

3

[∫ ∫
S

(x− xB) f (x, y, z) dy ∧ dz +
∫ ∫

S

(y − yB) f (x, y, z) dz ∧ dx

+

∫ ∫
S

(z − zB) f (x, y, z) dx ∧ dy
]
. (2.8)

Proof. We have
∂ [(x− α) f (x, y, z)]

∂x
= f (x, y, z) + (x− α)

∂f (x, y, z)

∂x
,

∂ [(y − β) f (x, y, z)]

∂y
= f (x, y, z) + (y − β)

∂f (x, y, z)

∂y

and
∂ [(z − γ) f (x, y, z)]

∂z
= f (x, y, z) + (z − γ)

∂f (x, y, z)

∂z
.

By adding these three equalities we get

∂ [(x− α) f (x, y, z)]

∂x
+
∂ [(y − β) f (x, y, z)]

∂y
+
∂ [(z − γ) f (x, y, z)]

∂z

= 3f (x, y, z)

+ (x− α)
∂f (x, y, z)

∂x
+ (y − β)

∂f (x, y, z)

∂y
+ (z − γ)

∂f (x, y, z)

∂z
(2.9)

for all (x, y, z) ∈ B.
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Integrating this equality on B we get∫∫∫
B

(
∂ [(x− α) f (x, y, z)]

∂x
+
∂ [(y − β) f (x, y, z)]

∂y

+
∂ [(z − γ) f (x, y, z)]

∂z

)
dxdydz

= 3

∫∫∫
B

f (x, y, z) dxdydz

+

∫∫∫
B

[
(x− α)

∂f (x, y, z)

∂x
+ (y − β)

∂f (x, y, z)

∂y

+(z − γ)
∂f (x, y, z)

∂z

]
dxdydz. (2.10)

Applying the Gauss-Ostrogradsky identity (2.6) for the functions

P (x, y, z) = (x− α) f (x, y, z) , Q (x, y, z) = (y − β) f (x, y, z)

and
R (x, y, z) = (z − γ) f (x, y, z)

we obtain∫∫∫
B

(
∂ [(x− α) f (x, y, z)]

∂x
+
∂ [(y − β) f (x, y, z)]

∂y

+
∂ [(z − γ) f (x, y, z)]

∂z

)
dxdydz

=

∫ ∫
S

(x− α) f (x, y, z) dy ∧ dz +
∫ ∫

S

(y − β) f (x, y, z) dz ∧ dx

+

∫ ∫
S

(z − γ) f (x, y, z) dx ∧ dy. (2.11)

By (2.10) and (2.11) we get

3

∫∫∫
B

f (x, y, z) dxdydz

+

∫∫∫
B

[
(x− α)

∂f (x, y, z)

∂x
+ (y − β)

∂f (x, y, z)

∂y
+ (z − γ)

∂f (x, y, z)

∂z

]
dxdydz

=

∫ ∫
S

(x− α) f (x, y, z) dy ∧ dz +
∫ ∫

S

(y − β) f (x, y, z) dz ∧ dx

+

∫ ∫
S

(z − γ) f (x, y, z) dx ∧ dy,

which is equivalent to the desired result (2.7). □

Remark 2.2. For a function f as in Lemma 2.1 above, we define the points

xB,∂f :=

∫∫∫
B
x∂f(x,y,z)∂x dxdydz∫∫∫

B
∂f(x,y,z)

∂x dxdydz
, yB,∂f :=

∫∫∫
B
y ∂f(x,y,z)∂y dxdydz∫∫∫

B
∂f(x,y,z)

∂y dxdydz
,
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and

zB,∂f :=

∫∫∫
B
z ∂f(x,y,z)∂z dxdydz∫∫∫

B
∂f(x,y,z)

∂z dxdydz

provided the denominators are not zero.
If we take α = xB,∂f , β = yB,∂f and γ = zB,∂f in (2.7), then we get∫∫∫

B

f (x, y, z) dxdydz

=
1

3

[∫ ∫
S

(x− xB,∂f ) f (x, y, z) dy ∧ dz +
∫ ∫

S

(y − βyB,∂f ) f (x, y, z) dz ∧ dx

+

∫ ∫
S

(z − zB,∂f ) f (x, y, z) dx ∧ dy
]
, (2.12)

since, obviously,∫∫∫
B

[
(xB,∂f − x)

∂f (x, y, z)

∂x
+ (yB,∂f − y)

∂f (x, y, z)

∂y

+(zB,∂f − z)
∂f (x, y, z)

∂z

]
dxdydz = 0.

We also have the following dual approach:

Remark 2.3. For a function f as in Lemma 2.1 above, we define the points

xS,f :=

∫ ∫
S
xf (x, y, z) dy ∧ dz∫ ∫
S
f (x, y, z) dy ∧ dz

, yS,f :=

∫ ∫
S
yf (x, y, z) dz ∧ dx∫ ∫
S
f (x, y, z) dz ∧ dx

and

zS,f :=

∫ ∫
S
zf (x, y, z) dx ∧ dy∫ ∫
S
f (x, y, z) dx ∧ dy

provided the denominators are not zero.
If we take α = xS,f , β = yS,f and γ = zS,f in (2.7), then we get∫∫∫

B

f (x, y, z) dxdydz

=
1

3

∫∫∫
B

[
(xS,f − x)

∂f (x, y, z)

∂x
+ (yS,f − y)

∂f (x, y, z)

∂y

+(zS,f − z)
∂f (x, y, z)

∂z

]
dxdydz (2.13)

since, obviously,∫ ∫
S

(x− xS,f ) f (x, y, z) dy ∧ dz +
∫ ∫

S

(y − yS,f ) f (x, y, z) dz ∧ dx

+

∫ ∫
S

(z − zS,f ) f (x, y, z) dx ∧ dy = 0.
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3. Inequalities for convex functions

We have the following result:

Theorem 3.1. Let B be a convex body in the three dimensional space R3

bounded by an orientable closed surface S and f : B → C a continuously
differentiable function defined on a open set containing B. If f is convex on
B, then for any (u, v, w) ∈ B we have

f (u, v, w) + (xB − u)
∂f (u, v, w)

∂x

+ (yB − v)
∂f (u, v, w)

∂y
+ (zB − w)

∂f (u, v, w)

∂z

≤ 1

V (B)

∫∫∫
B

f (x, y, z) dxdydz

≤ 1

4
f (u, v, w) +

1

4

1

V (B)

[∫ ∫
S

(x− u) f (x, y, z) dy ∧ dz

+

∫ ∫
S

(y − v) f (x, y, z) dz ∧ dx+

∫ ∫
S

(z − w) f (x, y, z) dx ∧ dy
]
. (3.1)

In particular, we have

f (xB , yB , zB) ≤
1

V (B)

∫∫∫
B

f (x, y, z) dxdydz

≤ 1

4
f (xB , yB , zB) +

1

4

1

V (B)

[∫ ∫
S

(x− xB) f (x, y, z) dy ∧ dz

+

∫ ∫
S

(y − yB) f (x, y, z) dz ∧ dx+

∫ ∫
S

(z − zB) f (x, y, z) dx ∧ dy
]
. (3.2)

Proof. By the gradient inequality for the convex function f on the convex set
B we have

(x− u)
∂f (u, v, w)

∂x
+ (y − v)

∂f (u, v, w)

∂y
+ (z − w)

∂f (u, v, w)

∂z

≤ f (x, y, z)− f (u, v, w)

≤ (x− u)
∂f (x, y, z)

∂x
+ (y − v)

∂f (x, y, z)

∂y
+ (z − w)

∂f (x, y, z)

∂z

for all (u, v, w) , (x, y, z) ∈ B.
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If we take the integral mean over the variables (x, y, z) ∈ B, we get

1

V (B)

∫∫∫
B
(x− u)

∂f (u, v, w)

∂x
dxdydz +

1

V (B)

∫∫∫
B
(y − v)

∂f (u, v, w)

∂y
dxdydz

+
1

V (B)

∫∫∫
B
(z − w)

∂f (u, v, w)

∂z
dxdydz

≤
1

V (B)

∫∫∫
B
f (x, y, z) dxdydz −

1

V (B)

∫∫∫
B
f (u, v, w) dxdydz

≤
1

V (B)

∫∫∫
B
(x− u)

∂f (x, y, z)

∂x
dxdydz +

1

V (B)

∫∫∫
B
(y − v)

∂f (x, y, z)

∂y
dxdydz

+
1

V (B)

∫∫∫
B
(z − w)

∂f (x, y, z)

∂z
dxdydz

namely

(xB − u)
∂f (u, v, w)

∂x
+ (yB − v)

∂f (u, v, w)

∂y
+ (zB − w)

∂f (u, v, w)

∂z

≤
1

V (B)

∫∫∫
B
f (x, y, z) dxdydz − f (u, v, w)

≤
1

V (B)

∫∫∫
B
(x− u)

∂f (x, y, z)

∂x
dxdydz +

1

V (B)

∫∫∫
B
(y − v)

∂f (x, y, z)

∂y
dxdydz

+
1

V (B)

∫∫∫
B
(z − w)

∂f (x, y, z)

∂z
dxdydz (3.3)

for all (u, v, w) ∈ B, which is an inequality of interest in itself.
The first inequality in (3.3) gives now the first part of (3.1). From the

identity (2.7) we get for (α, β, γ) = (u, v, w) that

∫∫∫
B

f (x, y, z) dxdydz

=
1

3

∫∫∫
B

[
(u− x)

∂f (x, y, z)

∂x
+ (v − y)

∂f (x, y, z)

∂y

+(w − z)
∂f (x, y, z)

∂z

]
dxdydz

+
1

3

[∫ ∫
S

(x− u) f (x, y, z) dy ∧ dz +
∫ ∫

S

(y − v) f (x, y, z) dz ∧ dx

+

∫ ∫
S

(z − w) f (x, y, z) dx ∧ dy
]
,
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namely

1

V (B)

∫∫∫
B

[
(x− u)

∂f (x, y, z)

∂x
+ (y − v)

∂f (x, y, z)

∂y

+(z − w)
∂f (x, y, z)

∂z

]
dxdydz =

+
1

V (B)

[∫ ∫
S

(x− u) f (x, y, z) dy ∧ dz +
∫ ∫

S

(y − v) f (x, y, z) dz ∧ dx

+

∫ ∫
S

(z − w) f (x, y, z) dx ∧ dy
]
− 3

1

V (B)

∫∫∫
B

f (x, y, z) dxdydz.

From the second part of (3.3) we get

1

V (B)

∫∫∫
B

f (x, y, z) dxdydz − f (u, v, w)

≤ 1

V (B)

[∫ ∫
S

(x− u) f (x, y, z) dy ∧ dz +
∫ ∫

S

(y − v) f (x, y, z) dz ∧ dx

+

∫ ∫
S

(z − w) f (x, y, z) dx ∧ dy
]
− 3

1

V (B)

∫∫∫
B

f (x, y, z) dxdydz,

namely

4

V (B)

∫∫∫
B

f (x, y, z) dxdydz ≤ f (u, v, w)

+
1

V (B)

[∫ ∫
S

(x− u) f (x, y, z) dy ∧ dz +
∫ ∫

S

(y − v) f (x, y, z) dz ∧ dx

+

∫ ∫
S

(z − w) f (x, y, z) dx ∧ dy
]
,

which gives the second part of the inequality (3.1). □

Remark 3.2. The first inequality in (3.2) is the same as the one from inequality
(1.2).

Corollary 3.3. With the assumptions of Theorem 3.1 and if (xS,f , yS,f , zS,f ) ∈
B, then

f (xS,f , yS,f , zS,f ) + (xB − xS,f )
∂f (xS,f , yS,f , zS,f )

∂x

+ (yB − yS,f )
∂f (xS,f , yS,f , zS,f )

∂y
+ (zB − zS,f )

∂f (xS,f , yS,f , zS,f )

∂z

≤ 1

V (B)

∫∫∫
B

f (x, y, z) dxdydz ≤ 1

4
f (xS,f , yS,f , zS,f ) . (3.4)
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The proof follows by (3.1) observing that

∫ ∫
S

(x− xS,f ) f (x, y, z) dy ∧ dz +
∫ ∫

S

(y − yS,f ) f (x, y, z) dz ∧ dx

+

∫ ∫
S

(z − zS,f ) f (x, y, z) dx ∧ dy = 0.

Corollary 3.4. With the assumptions of Theorem 3.1, we have

1

V (B)

∫∫∫
B

f (x, y, z) dxdydz ≤ 1

3

1

V (B)

[∫ ∫
S

(x− xB) f (x, y, z) dy ∧ dz

+

∫ ∫
S

(y − yB) f (x, y, z) dz ∧ dx+

∫ ∫
S

(z − zB) f (x, y, z) dx ∧ dy
]
. (3.5)

Proof. From (3.2) we get

1

V (B)

∫∫∫
B

f (x, y, z) dxdydz

≤ 1

4
f (xB , yB , zB) +

1

4

1

V (B)

[∫ ∫
S

(x− xB) f (x, y, z) dy ∧ dz

+

∫ ∫
S

(y − yB) f (x, y, z) dz ∧ dx+

∫ ∫
S

(z − zB) f (x, y, z) dx ∧ dy
]

≤ 1

4

1

V (B)

∫∫∫
B

f (x, y, z) dxdydz+
1

4

1

V (B)

[∫ ∫
S

(x− xB) f (x, y, z) dy ∧ dz

+

∫ ∫
S

(y − yB) f (x, y, z) dz ∧ dx+

∫ ∫
S

(z − zB) f (x, y, z) dx ∧ dy
]
,

which implies that

3

4V (B)

∫∫∫
B

f (x, y, z) dxdydz ≤ 1

4

1

V (B)

[∫ ∫
S

(x− xB) f (x, y, z) dy ∧ dz

+

∫ ∫
S

(y − yB) f (x, y, z) dz ∧ dx+

∫ ∫
S

(z − zB) f (x, y, z) dx ∧ dy
]

that is equivalent to (3.5). □
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Corollary 3.5. With the assumptions of Theorem 3.1 we have

1

A (S)

∫ ∫
S

f (u, v, w) dS +
1

A (S)

∫ ∫
S

[
(xB − u)

∂f (u, v, w)

∂x

+(yB − v)
∂f (u, v, w)

∂y
+ (zB − w)

∂f (u, v, w)

∂z

]
dS

≤ 1

V (B)

∫∫∫
B

f (x, y, z) dxdydz

≤ 1

4

1

A (S)

∫ ∫
S

f (u, v, w) dS +
1

4

1

V (B)

[∫ ∫
S

(x− xS) f (x, y, z) dy ∧ dz

+

∫ ∫
S

(y − yS) f (x, y, z) dz ∧ dx +

∫ ∫
S

(z − zS) f (x, y, z) dx ∧ dy
]
, (3.6)

where

xS =
1

A (S)

∫ ∫
S

udS, yS =
1

A (S)

∫ ∫
S

vdS, zS =
1

A (S)

∫ ∫
S

wdS.

Proof. By taking the integral mean 1
A(S)

∫ ∫
S
(·) dS over the variables (u, v, w)

in the integral (3.1), we get

1

A (S)

∫ ∫
S

f (u, v, w) dS +
1

A (S)

∫ ∫
S

[
(xB − u)

∂f (u, v, w)

∂x

+(yB − v)
∂f (u, v, w)

∂y
+ (zB − w)

∂f (u, v, w)

∂z

]
dS

≤ 1

V (B)

∫∫∫
B

f (x, y, z) dxdydz

≤ 1

4

1

A (S)

∫ ∫
S

f (u, v, w) dS

+
1

4

1

V (B)

[∫ ∫
S

(
x− 1

A (S)

∫ ∫
S

udS

)
f (x, y, z) dy ∧ dz

+

∫ ∫
S

(
y − 1

A (S)

∫ ∫
S

vdS

)
f (x, y, z) dz ∧ dx

+

∫ ∫
S

(
z − 1

A (S)

∫ ∫
S

wdS

)
f (x, y, z) dx ∧ dy

]
,

which is equivalent to (3.6). □

Remark 3.6. The second inequality in (3.6) is an equivalent formulation of the
second inequality in (1.2).

4. Applications for three dimensional balls

Now, let us compute the surface integral

K (S (C,R) , f) :=

∫∫
S(C,R)

f (x, y, z) dS,
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where

S (C,R) :=
{
(x, y, z) ∈ R3

∣∣ (x− a)
2
+ (y − b)

2
+ (z − c)

2
= R2

}
.

If we consider the parametrization of S (C,R) given by:

S (C,R) :


x = R cosψ cosφ+ a

y = R cosψ sinφ+ b

z = R sinψ + c

; (ψ,φ) ∈
[
−π
2
,
π

2

]
× [0, 2π]

and putting

A :=

∣∣∣∣∣ ∂y
∂ψ

∂z
∂ψ

∂y
∂φ

∂z
∂φ

∣∣∣∣∣ = −R2 cos2 ψ cosφ,

B :=

∣∣∣∣∣ ∂x
∂ψ

∂z
∂ψ

∂x
∂φ

∂z
∂φ

∣∣∣∣∣ = R2 cos2 ψ sinφ,

and

C :=

∣∣∣∣∣ ∂x
∂ψ

∂y
∂ψ

∂x
∂φ

∂y
∂φ

∣∣∣∣∣ = −R2 sinψ cosψ,

we have that

A2 +B2 + C2 = R4 cos2 ψ for all (ψ,φ) ∈
[
−π
2
,
π

2

]
× [0, 2π] .

Thus,

K (S (C,R) , f) =

∫∫
S(C,R)

f (x, y, z) dS

=

∫ π
2

−π
2

∫ 2π

0

[f (R cosψ cosφ+ a,R cosψ sinφ+ b,R sinψ + c)

×
√
A2 +B2 + C2

]
dψdφ

= R2

∫ π
2

−π
2

∫ 2π

0

cosψf (R cosψ cosφ+ a,R cosψ sinφ+ b,R sinψ + c) dψdφ.

(4.1)
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We also have

L (S (C,R) , f) :=

∫ ∫
S(C,R)

(x− a) f (x, y, z) dy ∧ dz

+

∫ ∫
S(C,R)

(y − b) f (x, y, z) dz ∧ dx+

∫ ∫
S(C,R)

(z − c) f (x, y, z) dx ∧ dy

= −R3

∫ π
2

−π
2

∫ 2π

0

cos3 ψ cos2 φ

× f (R cosψ cosφ+ a,R cosψ sinφ+ b,R sinψ + c) dψdφ

+R3

∫ π
2

−π
2

∫ 2π

0

cos3 ψ sin2 φ

× f (R cosψ cosφ+ a,R cosψ sinφ+ b,R sinψ + c) dψdφ

−R3

∫ ∫
S

sin2 ψ cosψf (R cosψ cosφ+ a,R cosψ sinφ+ b,R sinψ + c) dψdφ.

(4.2)

Let us consider the transformation T2 : R3 → R3 given by:

T2 (r, ψ, φ) := (r cosψ cosφ+ a, r cosψ sinφ+ b, r sinψ + c) .

It is well known that the Jacobian of T2 is

J (T2) = r2 cosψ

and T2 is a one-to-one mapping defined on the interval of R3, [0, R]×
[
−π

2 ,
π
2

]
×

[0, 2π] , with values in the ball B (C,R) from R3. Thus we have the change of
variable:

I (B (C,R) , f) :=

∫∫∫
B(C,R)

f (x, y, z) dxdydz

=

∫ R

0

∫ π
2

−π
2

∫ 2π

0

f (r cosψ cosφ+ a, r cosψ sinφ+ b, r sinψ + c) r2 cosψdrdψdφ.

(4.3)

Assume that f is convex on the ball B (C,R) . From the inequality (3.2) we
get

f (a, b, c) ≤ 1

V (B (C,R))
I (B (C,R) , f)

≤ 1

4
f (a, b, c) +

1

4V (B (C,R))
L (S (C,R) , f) , (4.4)

where V (B (C,R)) = 4πR3

3 , while from the inequality (3.5) we also have

1

V (B (C,R))
I (B (C,R) , f) ≤ 1

3V (B (C,R))
L (S (C,R) , f) . (4.5)



190 S. S. Dragomir

Further, consider

J (S (C,R) , f) :=

∫ ∫
S(C,R)

[
(xB − u)

∂f (u, v, w)

∂x

+(yB − v)
∂f (u, v, w)

∂y
+ (zB − w)

∂f (u, v, w)

∂z

]
dS

= −R
∫ π

2

−π
2

∫ 2π

0
cosψ cosφ

∂f (R cosψ cosφ+ a,R cosψ sinφ+ b, R sinψ + c)

∂x
dψdφ

−R

∫ π
2

−π
2

∫ 2π

0
cosψ sinφ

∂f (R cosψ cosφ+ a,R cosψ sinφ+ b, R sinψ + c)

∂y
dψdφ

−R

∫ π
2

−π
2

∫ 2π

0
sinψ

∂f (R cosψ cosφ+ a,R cosψ sinφ+ b, R sinψ + c)

∂z
dψdφ.

Then from the inequality (3.6) we get the following inequalities of interest:

1

A (S (C,R))
K (S (C,R) , f) +

1

A (S (C,R))
J (S (C,R) , f)

≤ 1

V (B (C,R))
I (B (C,R) , f)

≤ 1

4

1

A (S (C,R))
K (S (C,R) , f) +

1

4

1

V (B (C,R))
L (S (C,R) , f) , (4.6)

where A (S (C,R)) = 4πR2 is the area of the sphere.
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