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ABSTRACT. In this paper, by the use of Gauss-Ostrogradsky identity, we
establish some integral inequalities of Hermite-Hadamard type for func-
tions of three variables defined on closed and bounded convex bodies of
the Euclidean space R3. Some examples for 3-dimensional balls are also

provided.
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1. INTRODUCTION

Recall the following inequalities of Hermite-Hadamard’s type for convex
functions defined on a ball B (C, R), where C' = (a,b,c) € R*, R > 0 and

B(C,R) := {(x,y,z) R (z—a)’ + (y—b)* + (2 — )’ gR?}.

The following theorem holds [6].
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Theorem 1.1. Let f : B(C, R) — R be a convex mapping on the ball B (C, R) .
Then we have the inequalities:

f(a,b,¢) < ///B(CR) x,y, 2) dedydz

*A //S(CR) (z,y,2)dS, (1.1)

S(C,R) = {(x,y,Z) R (z—a)’+(y—b)’+(z—¢)? :RQ}

where

and )
AT R?
3

Let D be a bounded convex domain from R? with a piecewise smooth bound-

V(B(C,R)) = , A(B(C,R)) = 47 R

ary S. We use the notations

) ://SdS,V(D):///DdV,
ot L5 [l = i [l

75)//536(15’ yfs;:ﬁ//sydsand@:ﬁs)//szds.

Let us assume that the surface S is oriented with the aid of the unit normal
h directed to the exterior of D

and

h = (cos a, cos 3, cos ) .
The following Hermite-Hadamard type inequalities for convex functions de-

fined on general convex domains were obtained by B. Gavrea in 2000, [9]:

Theorem 1.2. Let f : D — R be a convex function on D, a bounded con-
vex domain from R3 with a piecewise smooth boundary S. Then we have the
inequalities

/ (75,75, 75) < ///f < g [ oS

// Yeosa+ (y —Ys) cos B+ (2 — Zg) cos ] f (x,y, 2) dS.
(1.2)

For other multivariate Hermite-Hadamard type inequalities, see [2]-[4] and

[11]-[18].
Motivated by the above results, we obtain in this paper other integral in-
equalities of Hermite-Hadamard type for convex functions defined on convex
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domains from the space. Some examples for three dimensional balls are also
provided.

2. SOME PRELIMINARY FACTS AND RESULTS

Following Apostol [1], consider a surface described by the vector equation
%
r(u,v):x(u,v)7+y(u,v)7+z(u,v)k (2.1)

where (u,v) € [a,b] x [c,d] .
If x, y, z are differentiable on [a, b] X [c, d] we consider the two vectors

or 5‘x—> 8y—> 0z—
+ =7 +—k

ou _ou' " ou’ T ou
and

or  Ox— 6y—> 0z —

= 1 +—J + k.

o v v BN
The cross product of these two vectors g—r X % will be referred to as the
fundamental vector product of the representation r. Its components can be
expressed as Jacobian determinants. In fact, we have [1, p. 420]

oy o 9z o o oy
or or ou ou — ou ou — ou du |
woov dy 9z 9z oz o dy
v v ov ov v ov

_ 02> 0(zx)>  O(xy)p
0 (u,v) ! +8(u,v)] +8(u,v) i

Let S = r(T') be a parametric surface described by a vector-valued function
r defined on the box T' = [a, b] X [¢,d]. The area of S denoted Ag is defined by
the double integral [1, p. 424-425]

37“

Ag = dudv (2.3)

2 2 2
9 (z,2) 9(z,y)
dudv.
+(se) +(Gey) we
We define surface integrals in terms of a parametric representation for the

surface. One can prove that under certain general conditions the value of the
integral is independent of the representation.

Let S = r(T') be a parametric surface described by a vector-valued differen-
tiable function r defined on the box T = [a, ] x [¢,d] and let f : S — C defined
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and bounded on S. The surface integral of f over S is defined by [1, p. 430]

[ foos=[ [ seewa 53]

:/ab/cdf(x(u,v),y(u,v),Z(U,U))

0(y.2)\" , (0(z2)\", (@)
dudv.
X¢<mmw o) o)
If S = r(T) is a parametric surface, the fundamental vector product N =

% X % is normal to S at each regular point of the surface. At each such point

there are two unit normals, a unit normal n, which has the same direction as

dudv (2.4)

N, and a unit normal ny which has the opposite direction. Thus

ny = —— and ny = —nj.
[Vl

Let n be one of the two normals ny or ns. Let also F' be a vector field defined
on S and assume that the surface integral,

//S(Fon)dS,

called the flux surface integral, exists. Here F' - n is the dot or inner product.
We can write [1, p. 434]

//S(F.n)dS:i/ab/CdF(r(U,v)).(gzxgz>dudv

”

where the sign ” +” is used if n = n; and the ” —” sign is used if n = no.

If
— —
F(r,y.2) = P0,9.2) 7 +Q@.3,2) J + Rla,y.2) k
and
r(u,v) = x(u,v)? —&—y(u,u)?> + z(u,v)z> where (u,v) € [a,b] X [c,d]

then the flux surface integral for n = ny can be explicitly calculated as [1, p.
435]

//S(F'")dsz/ab/cdp(x(u,v)ay(u,v),z(uw))a(Z’i)dudv (2.5)

9 (u,v)

b pd 9 (2 2)
[ Qo) o) s o) D dude
e 9 (z,)
+/a /c R(:c(u,v),y(u,v),z(u,v))a(u’v)dudv.
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The sum of the double integrals on the right is often written more briefly as [1,
p. 435]

//SP(x,y,Z)dy/\dz+//SQ(x,y,z)dz/\d:E+//SR(;U,y,z)dacAdy.

Let B C R? be a solid in 3-space bounded by an orientable closed surface S,
and let n be the unit outer normal to S. If F' is a continuously differentiable
vector field defined on B, we have the Gauss-Ostrogradsky identity

/ / [ (awr)av - / /S (F-n)dS. (GO)

If we express

— - —
F(r,y,2)=P(x,y,2) i +Q(x,y,2) j +R(z,y,2) k,

then (GO) can be written as

///( (z,y,2 +862(;6 Y, )+3R(w Y, ))dmdydz
//P T,Y, 2 dy/\dz—|—//Q x,y,z)dz A\ dx
+//SR(x,y,z)da:/\dy. (2.6)

By taking the real and imaginary part, we can extend the above inequality
for complex valued functions P, @}, R defined on B.
For the body B we consider the coordinates for the center of gravity G (T5,vyE5,ZB)

defined by
g = ;/// xdzxdydz, yp := L/// ydxdydz
v (B) )5 T v(B) ) s
and
! /// dadyd
= — zdxdydz.
V(B)JJ)/s
We have:

Lemma 2.1. Let B be a solid in the three dimensional space R® bounded by
an orientable closed surface S. If f : B — C is a continuously differentiable
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function defined on a open set containing B, then we have the equality

//Bf x,y, z) drdydz
///{O‘ Wﬂﬂy)w

+ (v —2) W(g%)] drdydz

+:1)){//S(xa) T,Y, 2 dy/\dz+// y—0)f(z,y,z)dz Ndx
// z—7) f(z,y,z)de Ndy| (2.7)

for all o, B and vy complex numbers.
In particular, we have

///Bf x,y, z) dedydz
/// [xB_w xy’ )+(y3_y)5f(§;jM)

+(z5 — 2) fﬁ(gf,)] dxdydz

+§U/S(m—ame)f(w,y72)dy/\dz+//s(y—yB)f(w,y,Z)dz/\dw
+//S<z—5>f<z,y7z>dmdy . (29)

Proof. We have

a[(x_a)f(m’yvz)]:f(l,yz)+(xia)af(xayaz)
Ox Y or
8[(y—5()9£(m,y,z)] Zf(x,y,z)—i-(y—b’) 8f(‘;;qyaz)

and

By adding these three equalities we get
8[(.’1,' — a) f(m,y,z)] + a[(y — ﬁ)f(a:7y7z)] + 8[(2 — ’y)f(ﬂc,y,z)]

ox dy 0z
= 3f (a:,y,z)
b r—a) of (g;;y,Z) +y—B) of (gjyy,Z) Fe—) of (!gzy, ) (2.9)

for all (z,y,2) € B.
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Integrating this equality on B we get

///( z—a) (xvy,zn+a[<y—ﬂg§<x,y,zﬂ

0 [(Z - ’7) f (LL' Y, )]> dxdydz

_3// f(z,y,2)dedydz
///[ ) 2 xmy’ )+(y_B)W

of (x,y,2)
0z

Applying the Gauss-Ostrogradsky identity (2.6) for the functions
P(xayaz) = (m _O‘)f(x7y7z)7 Q('rayvz) = (y_ﬁ)f(xvyvz)

+

+(z—7) } dzdydz. (2.10)

and
R(x,y,z) = (z—’y)f(x,y,z)
we obtain

///( z—a) (xvy,zn+a[<y—ﬂg§<x,y,zﬂ

a[(z - w)ajz” (2,9, Z)]> dudyd:

+//S(Z—7)f(%y72)dx/\dy. (2.11)

+

By (2.10) and (2.11) we get

3// f(z,y,2)dedydz

///[ XUi a:xy7>+(y_ﬁ)M+(2_w% dndyds

// z—a)f(x,y,z dy/\dz+// y—0) f(z,y,2)dz ANz
// z—7) f(z,y,2)dx A dy,

which is equivalent to the desired result (2.7). g

Remark 2.2. For a function f as in Lemma 2.1 above, we define the points

z,Y,% of (z,y,z
15 x%dzdydz ynop = I y%dwdydz
1T Ty 17, Tyt

$B73f =
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and
[115 222552 dwaya:

1 P2y

provided the denominators are not zero.

ZB,0f ‘=

If we take o = zp gf, B = yp,of and v = zp gy in (2.7), then we get

///Bf(x,y,z) dxdydz
_ % [//S(x—xs,af)f(x,y,z) dy/\dZ—F//S(y_ﬁyB,Bf)f(x’y’Z)dz/\dx

+//S(Z—ZB,af)f(:E,y,z) dx/\dy], (2.12)

since, obviously,

/// [‘”Baf‘x ) L5 )+<y3,af—y>8f(f§’yy’z)

of (x,y,2)

-l-(ZB’af — Z) 92

} dxdydz = 0.

We also have the following dual approach:

Remark 2.3. For a function f as in Lemma 2.1 above, we define the points

e ffswfxy, z)dy A dz . ffsyfxy, 2)dz A dx
S [ Js f(xy, 2 dy/\dz’ys’f. J s f (@ y,2)dz Adx

and
ffszf x,y,z)dx A dy

=S I Js f(xy,z)de ndy

provided the denominators are not zero.

If we take o« = zg s, B = yg 5 and v = zg ¢ in (2.7), then we get

// ; f(z,y,2)dedydz

///[xsf_x f(gy’ )+(ys,f—y)W

of (x,y,2)

92 dedydz (2.13)

+ (25,1 — 2)

since, obviously,

//(x—xs,f)f(x,y&)dy/\dzﬂL//(y—ys7.f)f(x,y,2)dz/\dx
s s
—l—//s(z—zs,f)f(m,y,z)dx/\dy:0.



Some Hermite-Hadamard Type Inequalities for Convex Functions ... 183

3. INEQUALITIES FOR CONVEX FUNCTIONS

We have the following result:

Theorem 3.1. Let B be a convex body in the three dimensional space R3
bounded by an orientable closed surface S and f : B — C a continuously
differentiable function defined on a open set containing B. If f is convexr on
B, then for any (u,v,w) € B we have

f<%v,wH<@w)W
+(@_U)M+(@_w)w

(13 // f(x,y,2)dedydz

1
Sif(uﬂhw IV (B {// x—u) f(z,y,2)dy Ndz

—|—//S(y—v)f(x,y,z)dz/\dx—k//S(z—w)f(x,y,z)dx/\dy . (3.1)

In particular, we have

f(@B,9B, %) < /// f(z,y,2)dedydz

1
Saf(@ﬂ?w@ {// I (z,y,2)dy ANdz

+//S(y—gTB)f(x,y,z)dz/\dx+//S(Z—E)f(x,y,z)dx/\dy . (3.2)

Proof. By the gradient inequality for the convex function f on the convex set
B we have

(x—“)W+(y—v)W+(z—w)W

§ f(x,y,z)ff(u,v,w)

of (x,y, 2) of (x,y, 2)
ox oy

of (x,y,2)

+ (z —w) o

<(z—wu) +(y—v)

for all (u,v,w), (z,y,2) € B.
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If we take the integral mean over the variables (x,y, z) € B, we get

/// (z — )dmdydz—‘r /// _ ) A, w)dmdydz
e
< VLB)/// f (@92 dxdydzfm///;f(u,v,w)dmdydz
<l 22 ] -5
V(B /// 8““” @Y 4o gyas

namely

of (wv,w) of (wv,w) of (u,v, w)
TwL(nyv)TJr(zBfw)T

< ﬁ // f(z,y, 2)dzedydz — f (u,v,w)
il s g o
B) /// w) 2@ y’ )d dydz  (3.3)

(5 —u)

for all (u,v,w) € B, which is an inequality of interest in itself.
The first inequality in (3.3) gives now the first part of (3.1). From the
identity (2.7) we get for («, 5,7) = (u, v, w) that

//Bf(x,y,z)dxdydz
///[ xxy’ )+(vy)3f(5§;f/,2)

of (z,y,2)
0z

+§[//ﬂ(xu)f(x,y,zmwdw//swv)f(x,y,z>dzAdx
+//S(z—w)f(x,y,z)dx/\dy ,

+(w—2) } dxdydz
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namely

///{x_“ xxy’ )+(y_v)<9f(ﬂgyy’Z)

of (x,y,2)
0z

—&-V(IB)[//S(x—u)f(m,y,z)dy/\dz—l—//(y—v)f(x,y,z)dz/\dx
+//S(Z—w)f(x,y, )d:v/\dy}—?) // f(z,y,2) dedyd:z.
From the second part of (3.3) we get
VB ///fxy, ) dzdydz — f (u,v,w)
{// x—u)f(z,y,z dy/\dz+// —v) f(z,y,2)dz Ndx

+//S<zw>f<x,y,z>dmd4 S [ £ @) dedy
namely

VLB)///Bf(gc,y,z)dxdydz < f(u,v,w)
+‘/(1B)[//S(m—u)f(x,y,z)dy/\dz-i—//s(y—v)f(%yaz)dz/\dw
+//S(z—w)f(x,y,z)do:/\dy ,

which gives the second part of the inequality (3.1). |

+(z —w) } dxdydz =

S

Remark 3.2. The first inequality in (3.2) is the same as the one from inequality
(1.2).

Corollary 3.3. With the assumptions of Theorem 3.1 and if (x5, ¢, ys.f, 25,f) €
B, then

Of (ws,£,Ys.f25,1)
ox

f(xs.pys,p:25.8) + (T — 2s,1)

Of (xs,5,Ys,f25,f)
0z

Of (xs,f,Ys,f,25,f)
y

< VYEI-B)//Bf(ZL'ayaz) dxdydz < %f(xS,fayS,hZS,f). (34)

+ (YB — ys.f) + (ZB — 2s,1)
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The proof follows by (3.1) observing that

// z—zgy) f(zy, 2 dy/\dz—|—// —ys,r) f(z,y,2)dz ANdz
—I—// z—zsf) f(x,y,2)de Ndy = 0.
s

Corollary 3.4. With the assumptions of Theorem 3.1, we have

7///f(x,y,z)dxdydz§%VB {// r—7p) f(z,y,2)dy ANdz

// y—9B) [ (z,y,2)dz ANdx + //(z—zB)f(x y,z)dx ANdy| . (3.5)

Proof. From (3.2) we get

// f(x,y,2) dedydz

< f($B7yB,ZB 3(7 {// f(z,y,2)dy Adz

+//(y—y73) Ty, 2 dz/\dz+// 2—7p) f(z,y,2 dz/\dy}
3(7///]“ z,Y, 2 dxdydz+4v [// f(z,y,2)dy Ndz
+//S(yyB)f(x,y,z)dz/\d:ch//S(ZZB)f(%va)dx/\dy],

which implies that

z) dxdydz < ){// x—Tg) f(z,y,2)dy Ndz

// y—1B) f(x,y,2)dz ANd // z—2p) f (z,y,2z)dx AN dy

that is equivalent to (3.5). O
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Corollary 3.5. With the assumptions of Theorem 8.1 we have

ﬁ//sf(u,v,w)ds—i— //[xB—u 8f(uvw)

+(yBiv)cp)‘f(uvw) Bf(zévw)]ds

*V ///fxy7 ) dxdydz
iA(S //fuvwd5'+4v [// f 2,y 2)dy Ndz

—|—/ (y—73s) f (x,y,2 )dz/\da:+// (z—23) f(z,y,2 )dx/\dy} (3.6)

where
_ //dS 1//dS*——1//dS
= U Ys = A(S v ,Zs—A(S) Sw .

Proof. By taking the integral mean A(S) Ik fs ) dS over the variables (u, v, w)

+(Zg —w)

in the integral (3.1), we get

i s g f [ -0 20320

8f(uvw) 8f(uvw)]ds

+(UB —v) + (3 —w)

0
1 //f ) dxdyd
V(B x,y, z) dedydz

i?//f u,v,w) dS
iv)[ /S<:c //udS> (2,9, 2) dy A dz
Tt o L) sans
TS

which is equivalent to (3.6). O

Remark 3.6. The second inequality in (3.6) is an equivalent formulation of the
second inequality in (1.2).

4. APPLICATIONS FOR THREE DIMENSIONAL BALLS

Now, let us compute the surface integral

K(S(C,R).f) = //S(CR)f(w,y,z)dS,
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where
S(CR) = {(@,9,2) R (z =)’ + (y = 1)’ + ( = 0)* = B2}
If we consider the parametrization of S (C, R) given by:

x = Rcosycosp+a o
S(C,R):{ y=Rcos¢sinp+b ;(1,p) € [—5,5} x [0, 27]

z= RsinyY + ¢
and putting
Oy 0z
A= g‘; %f = —R?cos? 1) cos @,
9y dp
9z Oz
B = g‘fc’ ‘g‘f = R%cos? ¢ sin o,
9o Bp
and
oz Oy
C:= gf ?915 = —R?sin1 cos 1,
9o dp

we have that

A? 4+ B? 4+ 0? = R*cos® ¢ for all (¥, ) € [—g, g] x [0, 27 .

Thus,

K(S©R.N)= [[  flawaas
5(C,R)
5 27
:/ / [f (Rcostcosp + a, Rcostsing + b, Rsiny + c)
-z Jo
x\/AZ+ B2 + 02] dibdy

5 27
= R2/ / costf (Rcosvcosp + a, Rcostpsing + b, Rsiny + ¢) didp.
(4.1)
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We also have

L(S(C,R),f) :://S(CR) (x—a) f(z,y,2)dy Ndz

+//S(C7R)(y—b)f(x,y,z)dz/\dx—f—//s(am (z—c¢) f(z,y,2)dx ANdy

3 5o 3 2
=—-R cos” ¢ cos” ¢
jus
-z Jo
2

x f(Rcostcose + a, Rcosysinp + b, Rsiny + ¢) dypdyp

5 27 )
—|—R3/ / cos® 1 sin? ¢
I 0
2

X f(Rcostcose + a, Rcosypsinp + b, Rsiny + ¢) dypdyp

—R?’//sin2¢cos¢f(Rcos1/)cos<p+a,Rcosz/)sin<p+b,Rsinw+c)dz/;dgp.
s

(4.2)
Let us consider the transformation 75 : R — R? given by:
Ty (r, ), ¢) := (rcostcos + a,rcospsing + b, rsiny + ¢).
It is well known that the Jacobian of T is
J (T3) = r* cosp
and T is a one-to-one mapping defined on the interval of R?, [0, R] x [—g, g} X

[0,27], with values in the ball B (C, R) from R®. Thus we have the change of
variable:

I(B(C,R),f):= ///B(C’R) f(x,y,z) dedydz

R 5 2w
= / / / f (rcostpcosp + a,rcostpsing + b, rsin 4 ¢) 72 cos Ydrdipdep.
o J-zJo
(4.3)

Assume that f is convex on the ball B (C, R). From the inequality (3.2) we
get

(
! L L(S(C.R).[). (44)

bt i ey

where V (B (C, R)) = 4”;{3, while from the inequality (3.5) we also have

1 1

mI(B (C,R),f) <

< mL (S(C,R), f). (4.5)
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Further, consider

of (u,v,w
sser. = [ [ @2
S(C,R) Oz
g ) | f )]
Oy 0z
z 27T . .
:—R/2 / Coswcoswaf(Rcoswcosgo+a,Rcoswsmcp+b,Rs1n1/J+c)dwd<p
,% 0 ox
z 27 . .
7R/‘2 / Coswsincpaf(Rcoswcosap—i-a,Rcoswsmgo—&—b,Rsmw—&—c)dwd(p
-z Jo Oy
_R/% /27rSind}&f(Rcoszbcosp—l—a,R;oswsian—i-b,Rsin@Z}+c)d¢d(p.
— Jo z
2

Then from the inequality (3.6) we get the following inequalities of interest:

1 1
mK(S(QR)»f)+mJ(5(C,R),f)
1
v 1 1

K(S(C.R), f) + L(S(C,R),f), (4.6)

4V (B(C,R))
where A (S (C, R)) = 4w R? is the area of the sphere.
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