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1. INTRODUCTION

Fixed point theory has grown up into a rich literature and got utmost impor-
tance in some recent decades as the theory is utilized in proving various results
in branches of mathematical sciences. As the area of applicability got wider,
the new concepts and ideas emerged with the time and made the theory more
popular and attractive for the workers in area of research. Banach contraction
principle (BCP) and Schauder fixed point theorem (SFPT) for compact op-
erators are the two pioneering results in fixed point theory which attract the
highest citations and applications, and remain a constant source of inspiration
for large number of generalizations in the theory. Before stating these two re-
sults, we recall that, a point u in a set .S is a fixed point of a function T : S — S
if Tu = w is satisfied.

Theorem 1.1 (Banach). Let (S,m) be a complete metric space. Then a map-
ping T : S — S admits a unique fized point provided T is a contraction map,
that is, for each a,b € S there exists 0 < A < 1 such that m(Ta,Tb) < A m(a,b).

Theorem 1.2 (Schauder). A compact (self) operator on a bounded, closed and
convezx (nonempty) subset of a Banach space admits a fized point.

These two results forced to constitute a major part of the literature through
a lot of extensions and generalizations. We recall some of the notable ideas due
to which major breakthrough occurred in this doctrine of research.

1.1. Concepts used to generalize BCP. In order to generalize BCP, various
contractive conditions using auxiliary functions have been introduced by several
authors. We recall some of them. One of the extension of BCP is due to Meir-
Keeler [16], which attracted lot of attention.

Definition 1.3. [16] A self mapping 7' on a metric space (S,m) is called a
Meir-Keeler contraction if for each € > 0 there exists § > 0 such that for each
a,b € S, we have

e <m(a,b) < e+ 0 implies m(Ta,Th) < e.

Though this definition is not dependent on any auxiliary function, but Lim
in [15] proved its equivalence with following concept called L function.

Definition 1.4. [15] A mapping ¢ : RT — RT with ¢(p) > 0 for each p > 0,
©(0) = 0 and satisfying the condition

for each € > 0, there exists § > 0 such that p(p) <, for all p € [e, e+ 4],

is called an L-function.

In 2015, a novel notion called as ‘simulation function’ is brought into the
doctrine of fixed points by Khojasteh et al. [14]. However, R.-L.-de-Hierro and
Samet [20] modified this notion slightly and enlarged the class of simulation
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functions. Later, Argoubi et al. [2] found that the first condition is redundant
in definition of simulation function in [14, Definition 2.1] and redefined the
notion by removing first condition, which we present here.

Definition 1.5. [2] A mapping ¢ : R x RT™ — R satisfying

(Cl) C(tl,tg) <ty —1 for all t1,t0 > 0,
(¢2) if there are two sequences {s;} and {¢;} in R*\{0} such that Jlggo 55 =
jlirgotj >0 and ¢; < s; then ligtlp{(tj,sj) <0,

is called a simulation function. For examples of simulation function, refer to

[2, 7, 14].

Recently, in order to extend the concept of simulation function and Meir-
Keeler contractions, R.-L.-de-Hierro and Sahzad [21] coined the new concept
and called it as R-function. Let AT = AN (0,00), where A is a nonempty
subset of set of real numbers.

Definition 1.6. [21] A mapping p : A X A — R is called an R-function if p
satisfies the following conditions:

(Ry) if a sequence {s;} C A" satisfies p(sj41,s;) > 0, for all j € N, then
{Sj} — 0,

(R2) if there are two sequences {s;}, {¢;} in AT such that lim s; = lim ¢; =
j—00 j—o0

1 >0 with I < s; and p(s;j,t;) > 0, for all j € N then [ = 0.
Let R 4 denotes the class of all R-functions with domain A x A. For examples
of R-functions refer to [21].

Following property is also considered on R-functions:

(R3) if there are two sequences {s;} and {¢;} in A™ such that {¢;} — 0 and
p(sj,t;) >0, for all j € N, then {s;} — 0.

Definition 1.7. [21] A self mapping T on a metric space (S, m) is called an
R-contraction if for each a,b € S there is a p € R4 such that range of m is
contained in A and

p(m(Ty, Tz), m(y,z)) >0, x #y.

Remark 1.8. (1) Collection of R-functions with (R3) contains class of all sim-
ulation functions [21].

(2) Meir-Keeler contraction can’t be covered with Z-contractions which use
simulation function [13].

(3) The class of Meir-Keeler contraction is contained in class of R-contractions
[21].
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1.2. Generalizations of Schauder FPT. SFPT (Theorem 1.2) is very of-
ten used in proving existence of solutions to problems related to partial and
ordinary differential equations, but still there are lot of generalizations and
extensions of this result appeared in literature as compactness is quite strong
condition. Darbo [8] and Sadovskii [22] obtain one of the important improve-
ment of SFPT using the concept of measure of noncompactness (MNC). Before
going into details about these generalizations we will recall the important no-
tion of measure of noncompactness. We present axiomatic definition of MNC
here. Let (S, m) be a metric space. We use following notations throughout this
article.

R : set of real numbers,

N : set of natural numbers,

B(w,~) : closed ball of radius v with center w,

D : closure of the set D,

con(D) : convex and closed hull of D,

diam(D) : diameter of the set D,

B(S) : collection of bounded subsets in metric space S.

Definition 1.9. [3, 5] An MNC is a mapping X : B(S) — R* satisfying the
following axioms:
(1) X(P) =0 if and only if P is relatively compact,
(2) R(P) =R(P), P € B(X),
(3) X(PUQ) = max{RX(P),X(Q)}, where P,Q € B(X).
An MNC X on B(S) satisfies following properties.
(a) P C Q implies X(P) < N(Q).
(b) X(P) =0if P is a finite set.
(¢) (PN Q) =min{R(P),R(Q)}, for all P,Q € B(X).
(d) If lim X(P,) = 0 for a nonincreasing sequence {P,} of bounded and
n—oo
closed (nonempty) subsets of X, then Py, = N,,>1 P, is compact (nonempty).
On a Banach space S, X has following properties.
(i) R(eon(Q)) = X(Q), for all Q € B(X).
(ii) N(AQ) = |AIR(Q) for any number A and @ € B(X).
(iii) R(P+ Q) < R(P) + X(Q).

ExXAMPLE 1.10. [4] The non-negative numbers
aC) =inf{r >0: P c UX,S;, diam(S;) <r, i=1,2,---N}

and
B(C) =inf{r>0:Cc U, B(xiyr), ;€ X, i=1,..,N},

assigned with a bounded subset C of a metric space S are called Kuratowski
MNC (K-MNC) and Hausdorff MNC (H-MNC) respectively.
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The MNC acquired great importance due to its applicability in operator the-
ory. One of the significant fact is that MNC eased the work of selecting a very
important class of mappings which are more general than compact operators.
The classical results generalizing the Theorem 1.2 using non-compactness mea-
sure are due to Darbo [8] and Sadovskii [22]. We present their combine state-
ment in Theorem 1.11. In what follows the term NBCC set means Nonempty,
Bounded, Convex and Closed set and nls means Normed Linear Space.

Theorem 1.11. [8, 22] A continuous self mapping T on a NBCC subset C of
a Banach space S, for every M C C satisfying one of the following

(D) 30 <\ <1 such that X(T(M)) < X R(M),
(S) R(M) >0, X(T'(M)) < X(M),

admits a fized point.

A mapping satisfying condition (D) is called A-set contraction (due to Darbo
[8]) whereas satisfying (5) is called as N-condensing (due to Sadovskii [22]).

Aghajani et al. [1] coined the notion of Meir-Keeler (M-K) condensing op-
erator and obtained the fixed point results for these operators which generalize
fixed point theorem of Darbo.

Definition 1.12. A self mapping 7" on a nonempty subset C of a Banach space
S is called M-K condensing if for each € > 0 there exists § > 0 such that for
any bounded subset M of {2, we have

e<RM) <e4+0=RTM) <e.

Since Meir-Keeler condensing mapping can be characterized using L function
so another analogous version of Definition 1.12 can be obtained with the help
of L-function. We skip to define it.

Chen and Tang [7] defined the notion of Zx contraction using simulation
function and obtained the fixed point theorem which generalizes various Darbo
type fixed point results. The statement can be given as:

Theorem 1.13. A continuous mapping (self) T which is a Zy contraction,
that is, T satisfies

CR(T(M)),R(M)) =0,

where ( is a simulation function and M C C is nonempty, defined on a N'BCC
subset C of a Banach space S, admits a fixed point.

Moreover, Patle and Patel [18] proved the Krasnoselskii type fixed point result
for sum of a compact operator with a Z-contraction.

In recent advancement, Zarinfar et al. [23] defined the notion of SRy con-
tractions using SR-function and obtained the fixed point theorem which gen-
eralizes Darbo type fixed point results.
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Definition 1.14. SR-function is a mapping p : Ax A — R satisfying property
(R1) of Definition 1.6. The class of all SR-functions with domain A x A is
denoted by SR 4.

Theorem 1.15. A continuous mapping (self ) T which is a SRy contraction,
that is, T satisfies

pP(R(T'(M)),R(M)) > 0,
where p is SR-function and M C C is nonempty, defined on a NBCC subset C
of a Banach space S, admits a fized point.

Very recently Gabeleh and Markin [11] initiated to study the case of best
proximity points in the absence of fixed points for cyclic relatively condensing
operators. Before going into detail of this result, we recall the concept of best
proximity points.

Let us take two subsets (nonempty) P and @ of an nls S. Assume that a
pair (P, Q) satisfies a property, if P and @ individually satisfy that property,
e.g, we say a pair (P,Q) is compact if and only if P and @ are compact. We
define distance between two sets P and () as,

dist(P,Q) =inf{|la—b|]|:a € P, b€ Q}.
For the pair (P, Q), let us define
Po={aecP: 3V eQ||a-0|=dist(P,Q)},

Qo={beQ: 3d €P||d -] =dist(P,Q)}.
In Banach space S, (P, Qo) is convex and weakly compact (nonempty) pair if
(P, Q) is convex and weakly compact (nonempty). If P = Py and @ = Qo then
the pair (P, Q) of nonempty subsets in an nls S is called proximinal.

A mapping T : PUQ — P UQ is called cyclic if T" maps P into @ and @
into P whereas if T(P) C P and T(Q) C @ then it is called noncyclic. T is
called relatively nonexpansive if |Ta — Th|| < |la — b|| holds, whenever a € P
and b € Q. T is called nonexpansive mapping (self) if P = ). We consider
a best proximity point for a cyclic mapping 7', which is defined as, a point
w* € PU(Q satisfying

||lw* — Tw*|| = dist(P, Q).

In case of a noncyclic mapping T' we consider existence of a pair (b, a) € (P, Q)
for which a = Ta, b = Tb and |la — b|| = dist(P, Q). Such pairs are called best
proximity pairs.

Eldred et al. in [9] coined the idea of cyclic (noncyclic) relatively nonexpan-
sive mappings and obtained the best proximity point (pair) results in Banach
spaces. In doing so, they have used the concept which is called as proximal
normal structure (in short, PNS). In 2017, Gabeleh [10] proved that every con-
vex and compact (nonempty) pair in a Banach space has PNS. Considering
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this fact Gabeleh obtains following result. Recall that T: PUQ — PUQ is
compact means (T(P),T(Q)) is compact.

Theorem 1.16. [10] A relatively nonexpansive cyclic mapping T : P U Q —
PUQ admits a best proximity point provided T is compact and Py is nonempty,
where (P, Q) is a NBCC pair in a Banach space S.

Before stating the result for noncyclic mappings, let us recall a mathematical
concept of strictly convex Banach space. A Banach space S is strictly convex
if for p,q,7r € S and A > 0,

+
[lp =7l <A llg—rl <A p#q) = P52 —r]| <A

holds. The LP space (1 < p < oo) and Hilbert space are examples of strictly
convex Banach spaces.

Theorem 1.17. [10] Let Banach space S be strictly convex. A relatively non-
expansive noncyclic mapping T : PUQ — P U Q admits a best prozimity pair
provided it is compact and Py is nonempty, where (P, Q) is a NBCC pair in S.

We are now in a position to state the best proximity point result for relatively
nonexpansive cyclic condensing operator presented in [11].

Theorem 1.18. A relatively nonexpansive cyclic mapping T : PUQ — PUQ
which is condensing, that is, if there exists r € (0,1) for any NBCC proziminal
and T-invariant pair (M, Ms) = dist(P,Q), such that

R(T(M1)UT(Maz)) < rR(M; UMy), (1.1)
admits a best proximity point provided Py is nonempty.

In the same article they have proved the existence of best proximity pairs for
a relatively nonexpansive noncyclic condensing operator in a uniformly convex
Banach space. In sequel, Gabeleh and Vetro [12] have published another article
in which they obtained best proximity point (pair) results for relatively nonex-
pansive cyclic (noncyclic) Meir-Keeler condensing operators. Also in [17, 19],
the best proximity point (pair) results have been obtained for some different
classes of cyclic (concyclic) pair of mappings using measure of noncompactness.

In this article, first in Section 2 we present the notion of relatively nonex-
pansive cyclic (noncyclic) SR-condensing operators via SR-function and prove
the best proximity point (pair) theorems using the concept of measure of non-
compactness. The obtained results generalize and extend results of Aghajani
et al. [1], Chen and Tang [7], Darbo [8], Gabeleh and Markin [11], Gabeleh
and Vetro [12], Zarinfar et al. [23], etc. In Section 3 the main results are ap-
plied to actualize the optimum solutions of a system of second order differential
equations with two initial conditions.



182 P. R. Patle, D. K. Patel

2. MAIN RESULTS

Let us enunciate with the following concept of cyclic (noncyclic) SR-condensing
operator. Consider, S a Banach space, X be an MNC on § and P, @ be
nonempty and convex subsets of S, throughout this section.

Definition 2.1. An operator T: PUQ — PUQ is called a cyclic (noncyclic)
SR-condensing if for each N'BCC, proximinal and T invariant pair (Mj, M3) C
(P, Q) with dist(My, Ms) = dist(P, Q) there is a function p € SR 4 such that

pR(T'(M1) UT(Mz)),R(M; UMsz)) > 0.

Following theorem for relatively nonexpansive cyclic SR-condensing opera-
tor is our first main result. Some part of the proof is adopted from [12], for
the sake of completeness we are giving complete proof. In sequel we consider

(P,Q), a NBCC pair in S.

Theorem 2.2. A relatively nonexpansive cyclic SR-condensing operator T :
PUQ — PUQ admits a best proximity point provided Py is nonempty.

Proof. Clearly (Py, Qo) is nonempty because Py is nonempty. Taking into ac-
count the conditions on T', one can also show that (Py, Qo) is convex, closed,
T-invariant and proximinal pair. For a € Py, there is a b € @ such that
la —b|| = dist(P, Q). Since T is relatively non-expansive

|Ta — Tb| < |ja— b = dist(P,Q),

which gives Ta € Qq, that is, T'(Py) C Qo. Similarly, T(Qo) € Py and so T is
cyclic on Py U Q.
Let us define a pair (G, Hy,) as G,, = con(T(G,,—1)) and H,, = con(T(H,,—1)),

n > 1 with Gy = Py and Hy = Q. We claim that G,,41 C H, and H, C G,
for all n € N. We have H; = m(T(Ho)) = W(TQ())) = m(Po) C Py = Gy.
Therefore, T(Hl) Q T(Go) So H2 = W(T(Hl)) Q m(T(Go)) = Gl. Con-
tinuing this pattern, we get H,, C G,_1 by using induction. Similarly, we
can see that G411 C H, for all n € N. Thus G402 C Hy41 C G, € Hy 1
for all n € N. Hence, we get a decreasing sequence {(Gay,, Ha,)} of closed
and convex (nonempty) pairs in Py X Qo. Moreover, T(Hay,) C T(Gap—1) C
m(T(ng_l)) = ng and T(ng) Q T(Hgn_l) g W(T(Hzn_l)) = Hgn.
Therefore for all n € N, the pair (Gap, Hap) is T-invariant. Now if (u,v) €
Py x Qg is a proximinal pair then

dist(Gaon, Hap) < || T?"u — T?™0|| < ||u —v|| = dist(P, Q).

Next, we show that the pair (G,, H,) is proximinal using mathematical in-
duction. Obviously for n = 0, the pair (G, Hp) is proximinal. Suppose that
(G, Hy,) is proximinal. We show that (Gji1, Hrt1) is also proximinal. Let
x be an arbitrary member in G; = eon(T(G})). Then it is represented as
z =" NT(2) with 2; € G, m € N, \; > 0 and )" | \; = 1. Due to the
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proximinality of the pair (Gy, Hy), there exists y; € Hy for 1 < 1 < m such
that ||z, — yi|| = dist(Gy, Hy) = dist(P,Q). Take y = >, NT(y;). Then
y € con(T'(Hy)) = Hgy1 and

lz =yl = I D NT (@) =Y NT)l < Y Nller — wil| = dist(P,Q).
=1

1=1 =1

This means that the pair (Gg41, Hi4+1) is proximinal and mathematical induc-
tion does the rest to prove (G, Hy) is proximinal for all n € N. Now, it is
understood that there arise two cases: namely either max{R(Gq;), R(Hz;)} =0
for some j € N or max{R(Ga,),N(Ha,)} > 0 for all n € N.
First, let max{X(Ga;),N(Hg;)} = 0 for some j € N, then T : Go; U Hy; —
Goj U Hyj; is compact, so the outcome of Theorem 1.16 yields our result.
Second, let max{X(G,,),R(H,)} > 0 for all n € N. As G341 C T(G2,) and
H27L+1 g T(Hgn) we have

pP(R(Gany1 U Hony1), R(Gan U Hay))
p(maX{N G2n+1) N(H2n+1)}7 N(ng U Hgn))
p(maX{N con(T(Gan))), R(con(T(Hay)))}, R(Gapn U Hgn))
p(maX{N (G2n)), R(T'(Hz2n)) }, N(Gan UH2n))

By definition of SR-function we have
lim N(ng U Hgn) =0. (21)
n—oo

Also it is easy to show that {(N(G2,UH3,))} is a decreasing sequence of positive
real numbers. Thus (2.1) yields, max{nlirrgo N(ng),nlirgo N(Hz,)} = 0. Now
let Goo = NS G2y and Ho = N2 Hay,. By property (d) of MNC, the pair
(G0, Ho) is nonempty, convex, compact and T-invariant with dist(Goo, Hoo) =
dist(P,@Q). All this is sufficient to ensure that 7' admits a best proximity
point. (Il

We now present the second main result of the section which is analogous to
the above theorem for relatively nonexpansive noncyclic SR-condensing map-
ping.

Theorem 2.3. Let Banach space S be strictly conver and (P, Q) be a NBCC
pair in S such that Py is nonempty. Then every relatively nonexpansive non-
cyclic SR-condensing operator T : P U Q — P UQ admits a best proximity
pair.

Proof. Tt is clear that (Py,Qp) is NBCC pair which is proximinal and T-
invariant. Let (p,q) € Py X Qo be such that ||p — ¢|| = dist(P,Q). As T
is relatively nonexpansive noncyclic mapping

|Tp — Tql| < |lp—qll = dist(P,Q),
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which gives Tp € Py, that is, T(Py) C Py. Similarly, T(Qo) C Qo and so T is
noncyclic on Py U Qq. Let us define a pair (G, Hy) as G, = con(T(G,—1))
and H, = con(T(H,-1)), n > 1 with Go = Py and Hy = Qo. We have
H1 = m(T(H())) = m(T(Qo)) Q QO = Ho. Therefore, T(Hl) g T(H())
Thus He = con(T(Hy)) C con(T(Hp)) = H;. Continuing this pattern, we get
H, C H,_1 by using induction. Similarly we can see that G,, C G,,_; for all
n € N. Hence we get a decreasing sequence {(Gy,, Hy)} of closed and convex
(nonempty) pairs in Py X Qo. Also, T'(H,) C T(H,-1) Ccon(T(Hp-1)) = Hy
and T(G,) C T(Gp-1) C con(T(Gp-1)) = Gp. Therefore for all n € N, the
pair (G,,, H,) is T-invariant. From the proof of Theorem 2.2, we have (G, H,)
is a proximinal pair such that dist(G,, Hy,) = dist(P,Q) for all n € NU {0}.
Now as the case in Theorem 2.2, there arise two situations: namely either
max{RX(G;),N(H,)} = 0 for some j € N or max{R(G,),N(H,)} > 0 for every
n € N. First, suppose max{X(G;),X(H;)} = 0 for some j € N, then T :
G;UH; — G; U Hj is a compact. Then Theorem 1.17 does the rest to prove
the theorem as T is relatively nonexpansive noncyclic mapping.
Next, we assume that max{R(G,,), R(H,)} > 0 for all n € N. Since G,,41 C
T(G,) and H,4+1 C T(H,,), we have
P(R(Gng1 U Hng1),X(Gn U Hy)) = p(max{R(Gp1), R(Hnt1)},R(Gn U Hy))

= p(max{R(con(T(Gn))), N(@n(T(Hn)))},R(Gn U Hy))

= p(max{R(T(Gn)), R(T'(Hn))},R(Gn U Hp))

= p(N(T(Gn) UT(Hy)),R(Gn U Hy)) > 0.

Thus by definition of SR-function, we get

lim N(G,, UH,) = 0.

n—oo
That is, max{ lim N(G,), lim RX(H,)} = 0. Now let Goc = N2 ,G, and
n—roo n— oo
Ho = NS yHy,. By property (d) of MNC, (G, Hs) is convex, compact
and T-invariant (nonempty) pair with dist(Geo, Heo) = dist(P, Q). All this is
sufficient to ensures that T" admits a best proximity pair. ]

Keeping in mind Remark 1.8 and equivalence of Meir-Keeler contraction and
L-function, we get following corollaries as consequences of above results which
generalize Darbo fixed point theorem.

Corollary 2.4. A relatively nonexpansive cyclic mapping T : PUQ — PUQ
which is Meir-Keeler condensing, that is, if for any ¢ > 0 there exists 6 >
0 such that for any NBCC proxziminal and T-invariant pair (My, Ma) with
dist(My, Ms) = dist(P,Q), such that

e <NMjUMs) <e+d = R(T(M;)UT(My)) <e, (2.2)

admits a best proximity point provided Py is nonempty.
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Corollary 2.5. Let Banach space S be strictly convex and (P, Q) be a NBCC
pair in S such that Py is nonempty. Then a relatively nonexpansive noncyclic
mapping T : PUQ — P UQ which is Meir-Keeler condensing, admits a best
prorimity pair.

Corollary 2.6. A relatively nonexpansive cyclic mapping T : PUQ — PUQ
which is (-condensing that is, if for every NBCC, prozximinal and T invariant
pair (Mq, M) C (P,Q) with dist(Mq, Mz) = dist(P,Q) there exists a ( €

Zasy such that
CR(T (M) UT(Mz)), R(M1 UMz)) > 0.
admits a best prozimity point provided Py is nonempty.

Corollary 2.7. Let Banach space 8 be strictly convex and (P, Q) be a NBCC
pair in S such that Py is nonempty. Then a relatively nonexpansive noncyclic
(-condensing mapping T : PUQ — P UQ admits a best proximity pair.

Corollary 2.8. A relatively nonexpansive cyclic mapping T : PUQ — PUQ
which is L-condensing, that is, if there exists an L-function ¢ : Rt — RT and
for any N'BCC, proximinal and T-invariant pair (M1, Ms) = dist(P,Q), such
that

N(T'(M1) UT(Mz)) < o(R(M;y U Ma)), (2.3)

admits a best prorimity point.

Corollary 2.9. Let Banach space S be strictly conver and (P, Q) be a NBCC
pair in S such that Py is nonempty. Then a relatively nonexpansive noncyclic
mapping T : PUQ — P UQ which is p-condensing, admits a best prorimity
pair.

Corollaries 2.10 and 2.11 which are main results of Gabeleh and Markin
[11] are direct consequence of Theorems 2.2 and 2.3 respectively if one takes
plg,p) =rp—q,0<r <L
Corollary 2.10. A relatively nonexpansive cyclic mapping T : PUQ — PUQ

which is condensing, that is, if there exists v € (0,1) for any NBCC proximinal
and T-invariant pair (My, Ms) = dist(P,Q), such that

R(T(M1)UT(Mys)) <rR(M; UMy), (2.4)
admits a best prorimity point provided Py is nonempty.

Corollary 2.11. Let Banach space S be strictly convex, (P, Q) be a NBCC pair
in S and Py is nonempty. Then a relatively nonexpansive noncyclic mapping
T:PUQ — PUQ which is condensing, admits a best prozimity pair.

If we take p(q,p) = ¢(p) — q where p : RT — R* satisfying lim sup ¢(p) < 1,
p—rt

for all p > 0 in Theorem 2.2 and 2.3, then we get the Corollaries 2.12 and 2.13.
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Corollary 2.12. A relatively nonexpansive cyclic mapping 7' : PUQ — PUQ
admits a best proximity point if it satisfy following condition

N(T(M1) UT(Mz)) < p(R(M1UMa)) R(M1UMs), (2.5)

for any N'BCC, proximinal and T-invariant pair (M1, Ms) = dist(P, Q) where
¢ : RT — RT satisfying limsup ¢(p) < 1, for all p > 0.

p—rt

Corollary 2.13. Let Banach space S be strictly convezx and (P, Q) be a NBCC
pair in S such that Py is nonempty. Then a relatively nonexpansive noncyclic
mapping T : PUQ — PUQ satisfying condition (2.5), admits a best proxzimity
pair.

If we take p(q,p) = k(p)p — q where k : R — [0, 1) is a mapping such that
for every sequence {a,;}, a; > 0 we have

lim k(a;) <1= lim a; =0

J—00 J—00

in Theorem 2.2 and 2.3, then we get the Corollaries 2.14 and 2.15.

Corollary 2.14. A relatively nonexpansive cyclic mapping T : PUQ — PUQ
admits a best proximity point if it satisfy following condition

N(T(./Vh) U T(MQ)) < H(N(Ml U MQ)) N(Ml U MQ), (26)
for any NBCC, proziminal and T-invariant pair (M, Ms) = dist(P, Q) where

k:RY —[0,1) is a mapping such that for every sequence {a;}, a; > 0 we have

lim k(a;) <1= lim a; = 0.

J]—00 J—00

Corollary 2.15. Let Banach space S be strictly convezx and (P, Q) be a NBCC
pair in S such that Py is nonempty. Then a relatively nonexpansive noncyclic
mapping T : PUQ — PUQ satisfying condition (2.6), admits a best proximity
pair.

If we take p(q,p) = ¥(p) — ¥(q) — #(q) where 1, ¢ : RT — RT are two
mapping such that 1 is increasing and continuous from right and ¢ is lower

semicontinuous with ¢({0}) = {0}, in Theorem 2.2 and 2.3, then we get the
Corollaries 2.16 and 2.17.

Corollary 2.16. A relatively nonexpansive cyclic mapping T : PUQ — PUQ
admits a best proximity point if it satisfy following condition

PR(T(M1) UT(My))) < p(RM1UMz)) = ¢(RM UMz)),  (2.7)

for any NBCC, proziminal and T-invariant pair (M, Ms) = dist(P, Q) where
P, : RT — RT are two mapping such that v is increasing and continuous
from right and ¢ is lower semicontinuous with $({0}) = {0}.
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Corollary 2.17. Let Banach space S be strictly convezx and (P, Q) be a NBCC
pair in S such that Py is nonempty. Then a relatively nonexpansive noncyclic
mapping T : PUQ — PUQ satisfying condition (2.7), admits a best proximity
pasr.

Remark 2.18. As we know, the best proximity point theorems reduce to the
case of fixed point if the two sets P and ) under consideration are same.
Keeping this fact in view, we can reduce all the above best proximity theorems
to the case of fixed points. In addition to the above consequences our theorem
generalize the results of Aghajani et al. [1], Chen and Tang [7], Darbo [8] and
Zarinfar et al. [23].

3. AN APPLICATION

This section is dedicated to prove a result which shows the existence of
optimum solutions of system of second order differential equation with two
initial conditions.

Let 7,v € RY, Z = [0,7] and (E,|.||) be a Banach space. Let By =
B(ag,7), B2 = B(Bo,7y) where ag, Sy € E. We consider the following sys-
tem of second order differential equation with two initial conditions

2" (s) = f(s,2(5)), 2(0) = ap, #'(0) = o,

(3.1)
y (s)=g(s,9(5)), y(0) = Bo, y (0) = B,
where, f : Z x By - R, g : Z x By — R are continuous functions such that
1f(s,2)|| < Ax, [lg(s,9)|| < A2, s € T and oy, 81 € E. Twice integrating (3.1)

and usage of initial conditions yields us

x(s) = ao + [y (a1 + (s =) f(r,2(r))dr,
(3.2)

y(s) = Bo+ [5 (Br + (s = r)g(r,z(r))dr.

It is clear that the systems (3.1) and (3.2) are equivalent to each other. Let
J CZ,S8=C(J,E) be a Banach space of continuous mappings from J into
FE endowed with supremum norm and consider

§$=0C(T,B1)={x:J > B1:x€S8, z(0) =, 2/(0) =a1},

So=C(J,B2) ={y:T = Ba:y eS8, y(0)=pHo, ¥y(0) =p1}.

So, (81,82) is NBCC pair in S. Now, for every x € §; and every y € Sa, we
have

|z =yl = sup [|[z(s) — y(s)| = [l — Boll-
seJ
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So, dist(S1,82) = ||ao — Bo|- Let us define operator T : S;USy — S as follows:

Bo + fos <B1 + (s — T)g(r,x(r)))dr, T € S,
Tx(s) =

ao+ [y (al + (s — r)f(r,x(r)))dr, zeS,.

It is clear that T is cyclic operator. It is known that w € S;US5 is an optimum
solution of the system (3.2) if ||w—Tw|| = dist(S1US>) is satisfied. Equivalently,
w is the best proximity point of the operator T. Before proving the actuality
of optimum solution of system (3.2) we recall mean value theorem’s extension
for integral, which is presented according to our notations.

Theorem 3.1. [11] For Z,J, By, Ba, f and g as given in above discussion with
s € J we have

ag +/ (a1 + (s =7r)f(r,z(r)))dr € ao + s W({al +(s=7)f(r,z(r)) : r €0, s]})
0
and

Bo + /(;3(61 + (s =r)g(r,z(r)))dr € Bo + s con({B1 + (s — r)g(r,z(r)) : 7 € [0,5]}).

The following theorem shows the actuality of optimum solutions for the
system (3.2).
Theorem 3.2. Let X be an arbitrary MNC on S, (1A +||51]) <7, 7(TA1+
lea]]) < v and T < 1. The system (3.1) has an optimal solution if the following
condition holds true:
(1) For any bounded pair (N1, N2) C (Bi,Bs), there is a upper semi-
continuous function r : RY — R satisfying r(p) < p such that
H(N(Nl @] NQ))

R(f(J x N1)Ug(J x Ng)) < —

(2) For each x € S and for all y € Ss,

lg(r,x(r)) = f(r,y(r)] < Sig(llx(r) =yl = 1Po — aoll + 51 — calls).

Proof. As the system (3.1) and (3.2) are equivalent to each other, in order to
show (3.1) has an optimal solution it is sufficient to show (3.2) has optimal
solution. From the above discussion it is clear that the operator T is cyclic.
Our first task is to show that T'(S;) is bounded and equicontinuous subset of
S,. For each x € Sy,

nme|=n&ryé7m+ws—mmnww»mn

snmu+é|wy+@frmmx@mw

< |1Boll + 7(|[B1]] + TA2)
< 1Boll + -
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Thus T'(S1) is bounded. Now for s,s" € J and z € Sy,

’

|Tx(s) — Tx(s')]| = H / "B+ (s — gl a(r)dr — / "By + (s — gl x(r))dr

{/ " 181 + (s = gl | dr

<(rAz +[|Bu]) lIs = 'l
<M]|s —s'|, where M = 1A+ 311,

this means T'(S1) is equicontinuous. With the similar argument T'(Ss) is
bounded and equicontinuous subset of S;. Thus application of Arzela-Ascoli
theorem concludes (S1, S2) is relatively compact.

Now our aim is to show 7" a relatively nonexpansive cyclic SR-condensing
operator. For each (z,y) € 81 x Sz with the help of assumption (2), we have

[Tz(s) = Ty(s)|

\ Bo + / "B+ (s — P)g(r,2(r))dr — ao + / Y + (s — ) fry ()]

<1180 — oll + H / [y — o) + (s — P)(g(r 2(r)) — F(r.x(r))]dr

<[|Bo — aoll + |81 — cul| s+

s / (gl 2(r) — flr,a(r))dr
<1160 — aoll + 161 — aall 5 + (2(s) — ()| — l1Bo — a0l — 1Br — au ]l )
—lle(s) — y(s)]1

This means T is relatively nonexpansive. In order to show T is cyclic SR-
condensing, suppose that the pair (Ny, No) C (Sl,Sg) is NBCC, proximinal,
T-invariant and dist(Ny, Na) = dist(S1, S2)(= |Jao— Bol|). Now using Theorem
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3.1 and assumption (1) we have

R(T(N1) UT(N2)) = max{R(T(N1)), R(T(N2))}

:mw{ig{muw@yxewﬁn,QEQHTM$:y€NﬂH}
:nmx{ig{nuﬂw+é7ﬁr+@—rM@umw»m:weAhH},
ﬁg{mﬁm+zﬂarws—ﬂﬂnﬂﬂnw:weNﬂﬂ}
o sup {X({fo + 5 com({1-+ (s~ Ng(ra(r) s 7 € 0.5},
sup {N({a +5 m({as + (s =) ra) 7 € 05 |}

=max {N({ﬁo +s (B +eon({g(r,z(r)) :r € [0,5]})}),
N({an-+s (ar-+em({ (o)) 5 € (0.5}

< ma [N ((0(7 % N0}). N7 x N2

:wqﬂijnuﬂijngsﬂﬂﬂgﬂﬁﬁ
Thus we get
Taking p(t, s) = k(s) — ¢, we have

p(R(T' (N1 UT(N2))),R(N1 U Nz)) > 0.

Thus necessary requirements of Theorem 2.2 are satisfied. So the operator T
has best proximity point and hence the system (3.1) has an optimal solution.
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