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Abstract. The paper presents an L
r− analogue of an inequality re-

garding the s
th derivative of a polynomial having zeros outside a circle of

arbitrary radius but greater or equal to one. Our result provides improve-

ments and generalizations of some well-known polynomial inequalities.
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1. Introduction and Statement of Results

Let P (z) be a polynomial of degree at most n and P ′(z) be its derivative,

then

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)| (1.1)

∗Corresponding Author

Received 26 February 2015; Accepted 05 December 2015

c©2017 Academic Center for Education, Culture and Research TMU

101



102 A. Mir, B. Dar, Q. M. Dawood

and for every r ≥ 1,

{ 2π
∫

0

|P ′(eiθ)|rdθ

}
1

r

≤ n

{ 2π
∫

0

|P (eiθ)|rdθ

}
1

r

. (1.2)

Inequality (1.1) is a classical result of Bernstein[6] whereas inequality (1.2) is

due to Zygmund[15] who proved it for all trigonometric polynomials of degree

n and not only for those which are of the form P (eiθ). Arestov[1] proved that

(1.2) remains true for 0 < r < 1 as well. If r → ∞ in inequality (1.2), we get

(1.1).

If we restrict ourselves to the class of polynomials having no zeros in |z| < 1,

then both the inequalities (1.1) and (1.2) can be sharpened. In fact, If P (z) 6= 0

in |z| < 1, then (1.1) and (1.2) can be respectively replaced by

max
|z|=1

|P ′(z)| ≤
n

2
max
|z|=1

|P (z)| (1.3)

and

{ 2π
∫

0

|P ′(eiθ)|rdθ

}
1

r

≤ nAr

{ 2π
∫

0

|P (eiθ)|rdθ

}
1

r

, (1.4)

where Ar =

{

1
2π

2π
∫

0

|1 + eiα|rdα

}

−1

r

.

Inequality (1.3) was conjectured by Erdös and later verified by Lax[11],

whereas inequality (1.4) was proved by De-Bruijn[7] for r ≥ 1. Rahman and

Schemeisser[13] later proved that (1.4) holds for 0 < r < 1 also. If r → ∞ in

(1.4), we get (1.3).

As a generalization of (1.3) Malik[12] proved that if P (z) 6= 0 in |z| < k, k ≥

1, then

max
|z|=1

|P ′(z)| ≤
n

1 + k
max
|z|=1

|P (z)|, (1.5)

whereas under the same hypothesis, Govil and Rahman[9] extended inequality

(1.4) by showing that

{ 2π
∫

0

|P ′(eiθ)|rdθ

}
1

r

≤ nEr

{ 2π
∫

0

|P (eiθ)|rdθ

}
1

r

, (1.6)

where Er =

{

1
2π

2π
∫

0

|k + eiα|rdα

}

−1

r

, r ≥ 1.

In the same paper, Govil and Rahman[9, Theorem 4] extended inequality

(1.5) to the sth derivative of a polynomial and proved under the same hypothesis
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for 1 ≤ s < n that

max
|z|=1

|P (s)(z)| ≤
n(n− 1) · · · (n− s+ 1)

1 + ks
max
|z|=1

|P (z)|. (1.7)

Inequality (1.7) was refined by Aziz and Rather [3, Corollary 1] by involving

the binomial coefficients C(n, s), 1 ≤ s < n and coefficients of the polynomial

P (z). In fact they proved that if P (z) =
n
∑

j=0

ajz
j does not vanish in |z| <

k, k ≥ 1, then for 1 ≤ s < n,

max
|z|=1

|P (s)(z)| ≤
n(n− 1) · · · (n− s+ 1)

1 + ψk,s
max
|z|=1

|P (z)|, (1.8)

where

ψk,s = ks+1

(

1 + 1
C(n,s)

∣

∣

∣

as
a0

∣

∣

∣
ks−1

1 + 1
C(n,s)

∣

∣

∣

as
a0

∣

∣

∣
ks+1

)

. (1.9)

In the literature there exist various results regarding the estimates for poly-

nomials and for general analytic functions and also the approximations of poly-

nomials and their derivatives (for example see[8],[14]). In this paper, we prove

the following result which refines the inequality (1.8).

Theorem 1.1. If P (z) =
n
∑

j=0

ajz
j is a polynomial of degree n having no zeros

in |z| < k, k ≥ 1, and m = min|z|=k |P (z)| then for 1 ≤ s < n,

max
|z|=1

|P (s)(z)| ≤
n(n− 1) · · · (n− s+ 1)

1 + ψk,s

(

max
|z|=1

|P (z)| −
mψk,s

kn

)

, (1.10)

where ψk,s is defined by (1.9).

The result is best possible for k = 1 and equality holds for P (z) = zn + 1.

Remark 1.2. For s = 1 and m = 0, Theorem 1.1 reduces to a result of Govil

et. al.[10, Theorem 1] and for k = s = 1, inequality (1.10) reduces to a result

of Aziz and Dawood[2, Theorem A].

Remark 1.3. Note by inequality (2.2) of Lemma 2.1 (stated in section 2) that
1

C(n,s)

∣

∣

as
a0

∣

∣ks ≤ 1, which can easily be shown to be equivalent to ψk,s ≥ ks, 1 ≤

s < n. Using this fact in inequality (1.10), we get the following improvement

of inequality (1.7).

Corollary 1.4. If P (z) =
n
∑

j=0

ajz
j is a polynomial of degree n having no zeros

in |z| < k, k ≥ 1, and m = min|z|=k |P (z)| then for 1 ≤ s < n,

max
|z|=1

|P (s)(z)| ≤
n(n− 1) · · · (n− s+ 1)

1 + ks

(

max
|z|=1

|P (z)| −
m

kn−s

)

. (1.11)
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In order to prove the Theorem 1.1, we prove the following more general re-

sult which extends Theorem 1.1 to its corresponding Lr− analogue.

Theorem 1.5. If P (z) =
n
∑

j=0

ajz
j is a polynomial of degree n having no zeros

in |z| < k, k ≥ 1, and m = min|z|=k |P (z)|, then for every complex number β

with |β| ≤ 1 and 1 ≤ s < n, we have

{ 2π
∫

0

∣

∣

∣
P (s)(eiθ)+

βmn(n− 1) · · · (n− s+ 1)ψk,s
kn(1 + ψk,s)

∣

∣

∣

r

dθ

}
1

r

≤ n(n− 1) · · · (n− s+ 1)Cr

{ 2π
∫

0

|P (eiθ)|rdθ

}
1

r

, (1.12)

where Cr =

{

1
2π

2π
∫

0

|ψk,s + eiα|rdα

}

−1

r

, r > 0 and ψk,s is defined by (1.9).

Remark 1.6. Using the fact that ψk,s ≥ ks and take β = 0 in inequality (1.12),

we obtain a result of Aziz and Shah[5].

2. Lemmas

We need the following lemmas for the proofs of Theorems. Here, throughout

this paper we write Q(z) = znP ( 1
z
).

Lemma 2.1. If P (z) =
n
∑

j=0

ajz
j is a polynomial of degree n which does not

vanish in |z| < k, k ≥ 1, then for 1 ≤ s < n and |z| = 1,
∣

∣Q(s)(z)
∣

∣ ≥ ψk,s
∣

∣P (s)(z)
∣

∣, (2.1)

and
1

C(n, s)

∣

∣

as

a0

∣

∣ks ≤ 1, (2.2)

where ψk,s is defined by (1.9).

The above lemma is due to Aziz and Rather[3].

Lemma 2.2. If P (z) is a polynomial of degree n, then for each α, 0 ≤ α < 2π

and r > 0, we have

2π
∫

0

2π
∫

0

∣

∣

∣
Q′(eiθ) + eiαP ′(eiθ)

∣

∣

∣

r

dθdα ≤ 2πnr
2π
∫

0

|P (eiθ)|rdθ. (2.3)
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The above lemma is due to Aziz and Shah[4].

Lemma 2.3. If P (z) =
n
∑

j=0

ajz
j is a polynomial of degree n which does not

vanish in |z| < k, k ≥ 1, then for 1 ≤ s < n and |z| = 1,

∣

∣Q(s)(z)
∣

∣ ≥ ψk,s
∣

∣P (s)(z)
∣

∣+
mn(n− 1) · · · (n− s+ 1)

kn
ψk,s, (2.4)

where m = min|z|=k |P (z)|.

Proof. Since m ≤ |P (z)| for |z| = k, we have for every β with |β| < 1,
∣

∣

∣

mβzn

kn

∣

∣

∣
< |P (z)| for |z| = k.

Therefore by Rouche’s theorem P (z) + mβzn

kn
has no zero in |z| < k, k ≥ 1.

Applying Lemma 2.1 to the polynomial P (z)+ mβzn

kn
, we get for 1 ≤ s < n and

|z| = 1,

∣

∣Q(s)(z)
∣

∣ ≥ ψk,s

∣

∣

∣
P (s)(z) +

mn(n− 1) · · · (n− s+ 1)β

kn

∣

∣

∣
. (2.5)

Choose the argument of β so that
∣

∣

∣
P (s)(z) +

mn(n− 1) · · · (n− s+ 1)βzn−s

kn

∣

∣

∣
=
∣

∣P (s)(z)
∣

∣+
mn(n− 1) · · · (n− s+ 1)|βzn−s|

kn
,

it follows from (2.5) that for |z| = 1,

∣

∣Q(s)(z)
∣

∣ ≥ ψk,s

∣

∣

∣
P (s)(z)

∣

∣

∣
+
mn(n− 1) · · · (n− s+ 1)|βzn−s|

kn
ψk,s. (2.6)

Letting |β| → 1 in inequality (2.6), we get

∣

∣Q(s)(z)
∣

∣ ≥ ψk,s

∣

∣

∣
P (s)(z)

∣

∣

∣
+
mn(n− 1) · · · (n− s+ 1)

kn
ψk,s.

This completes the proof of Lemma 2.3. �

Lemma 2.4. If A,B,C are non-negative real numbers such that B + C ≤ A.

Then for every real α,
∣

∣(A− C) + eiα(B + C)
∣

∣ ≤
∣

∣A+ eiαB
∣

∣ . (2.7)

The above lemma is due to Aziz and Shah[4].

3. Proofs of Theorems

Proof of the Theorem 1.5. Since P (z) is a polynomial of degree n ,

P (z) 6= 0 in |z| < k, k ≥ 1 , and Q(z) = znP ( 1
z
). Therefore, for each α, 0 ≤

α < 2π, F (z) = Q(z) + eiαP (z) is a polynomial of degree n and we have

F (s)(z) = Q(s)(z) + eiαP (s)(z),
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which is clearly a polynomial of degree n − s, 1 ≤ s < n. By the repeated

application of inequality (1.2), we have for each r > 0,
∫ 2π

0

∣

∣Q(s)(eiθ) + eiαP (s)(eiθ)
∣

∣

r
dθ

≤ (n− s+ 1)r
∫ 2π

0

∣

∣Q(s−1)(eiθ) + eiαP (s−1)(eiθ)
∣

∣

r
dθ

≤ (n− s+ 1)r(n− s+ 2)r
∫ 2π

0

∣

∣Q(s−2)(eiθ) + eiαP (s−2)(eiθ)
∣

∣

r
dθ

.

.

.

≤ (n− s+ 1)r(n− s+ 2)r . . . (n− 1)r
∫ 2π

0

∣

∣Q′(eiθ) + eiαP ′(eiθ)
∣

∣

r
dθ.

(3.1)

Integrating inequality (3.1) with respect to α over [0, 2π] and using inequality

(2.3) of Lemma 2.2, we get
∫ 2π

0

∫ 2π

0

∣

∣

∣
Q(s)(eiθ) + eiαP (s)(eiθ)

∣

∣

∣

r

dθdα

≤ 2π(n− s+ 1)r(n− s+ 2)r . . . (n− 1)rnr
∫ 2π

0

∣

∣P (eiθ)
∣

∣

r
dθ. (3.2)

Now, from inequality (2.4) of Lemma 2.3, it easily follows that

ψk,s

{
∣

∣

∣
P (s)(eiθ)

∣

∣

∣
+
mn(n− 1) . . . (n− s+ 1)ψk,s

kn(1 + ψk,s)

}

≤
∣

∣

∣
Q(s)(eiθ)

∣

∣

∣
−
mn(n− 1) . . . (n− s+ 1)ψk,s

kn(1 + ψk,s)
. (3.3)

Taking A =
∣

∣Q(s)(eiθ)
∣

∣ , B =
∣

∣P (s)(eiθ)
∣

∣ , C =
mn(n−1)...(n−s+1)ψk,s

kn(1+ψk,s)

and noting that ψk,s ≥ ks ≥ 1, 1 ≤ s < n, so that by (3.3),

B + C ≤ ψk,s(B + C) ≤ A− C ≤ A,

we get from Lemma 2.4 that
∣

∣

∣

∣

∣

{

∣

∣Q(s)(eiθ)
∣

∣−
mn(n− 1) . . . (n− s+ 1)ψk,s

kn(1 + ψk,s)

}

+ eiα
{

∣

∣P (s)(eiθ)
∣

∣+
mn(n− 1) . . . (n− s+ 1)ψk,s

kn(1 + ψk,s)

}

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣
Q(s)(eiθ)

∣

∣

∣
+ eiα

∣

∣

∣
P (s)(eiθ)

∣

∣

∣

∣

∣

∣

∣

∣

.
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This implies for each r > 0,

∫ 2π

0

∣

∣F (θ) + eiαG(θ)
∣

∣

r
dα ≤

∫ 2π

0

∣

∣

∣

∣

∣

∣
Q(s)(eiθ)

∣

∣

∣
+ eiα

∣

∣

∣
P (s)(eiθ)

∣

∣

∣

∣

∣

∣

r

dα, (3.4)

where

F (θ) =
∣

∣

∣
Q(s)(eiθ)

∣

∣

∣
−
mn(n− 1) . . . (n− s+ 1)ψk,s

kn(1 + ψk,s)

and

G(θ) =
∣

∣

∣
P (s)(eiθ)

∣

∣

∣
+
mn(n− 1) . . . (n− s+ 1)ψk,s

kn(1 + ψk,s)
.

Integrating inequality (3.4) with respect to θ on [0, 2π] and using inequality

(3.2), we obtain

1

2π

∫ 2π

0

∫ 2π

0

∣

∣F (θ) + eiαG(θ)
∣

∣

r
dαdθ

≤
1

2π

∫ 2π

0

∫ 2π

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q(s)(eiθ)

∣

∣

∣

∣

+ eiα
∣

∣

∣

∣

P (s)(eiθ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

r

dαdθ

=
1

2π

2π
∫

0

2π
∫

0

∣

∣

∣
Q(s)(eiθ) + eiαP (s)(eiθ)

∣

∣

∣

r

dαdθ

≤ (n− s+ 1)r(n− s+ 2)r . . . (n− 1)rnr
∫ 2π

0

∣

∣P (eiθ)
∣

∣

r
dθ.

(3.5)

Now for every real number α and t1 ≥ t2 ≥ 1, we have

|t1 + eiα| ≥ |t2 + eiα|,

which implies for every r > 0,

∫ 2π

0

|t1 + eiα|rdα ≥

∫ 2π

0

|t2 + eiα|rdα.



108 A. Mir, B. Dar, Q. M. Dawood

If G(θ) 6= 0, we take t1 =
∣

∣

∣

F (θ)
G(θ)

∣

∣

∣
and t2 = ψk,s, then from (3.3) and noting that

ψk,s ≥ 1, we have t1 ≥ t2 ≥ 1, hence
∫ 2π

0

∣

∣F (θ) + eiαG(θ)
∣

∣

r
dα = |G(θ)|r

∫ 2π

0

∣

∣

∣

∣

F (θ)

G(θ)
+ eiα

∣

∣

∣

∣

r

dα

= |G(θ)|r
∫ 2π

0

∣

∣

∣

∣

∣

∣

∣

∣

F (θ)

G(θ)

∣

∣

∣

∣

+ eiα
∣

∣

∣

∣

r

dα

≥ |G(θ)|r
∫ 2π

0

∣

∣ψk,s + eiα
∣

∣

r
dα

=

{

∣

∣

∣
P (s)(eiθ)

∣

∣

∣
+
mn(n− 1) . . . (n− s+ 1)ψk,s

kn(1 + ψk,s)

}r

∫ 2π

0

∣

∣ψk,s + eiα
∣

∣

r
dα. (3.6)

For G(θ) = 0, this inequality is trivially true. Using this in (3.5), it follows for

each r > 0,
∫ 2π

0

{

∣

∣P (s)(eiθ)
∣

∣+
mn(n− 1) . . . (n− s+ 1)ψk,s

kn(1 + ψk,s)

}r

dθ

≤
(n− s+ 1)r(n− s+ 2)r . . . (n− 1)rnr

1
2π

∫ 2π

0

∣

∣ψk,s + eiα
∣

∣

r
dα

∫ 2π

0

∣

∣P (eiθ)
∣

∣

r
dθ.

(3.7)

Now using the fact that for every β with |β| ≤ 1,
∣

∣

∣
P (s)(eiθ) +

βmn(n− 1) . . . (n− s+ 1)ψk,s
kn(1 + ψk,s)

∣

∣

∣
≤
∣

∣P (s)(eiθ)
∣

∣+
mn(n− 1) . . . (n− s+ 1)ψk,s

kn(1 + ψk,s)
,

the desired result follows from (3.7).

Proof of the Theorem 1.1 Making r → ∞ and choosing the argument of β

suitably with |β| = 1 in (1.12), Theorem 1.1 follows.
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