
Iranian Journal of Mathematical Sciences and Informatics

Vol. 15, No. 1 (2020), pp 15-21

DOI: 10.21859/IJMSI.15.1.15

On the Diophantine Equation x6 + ky3 = z6 + kw3

H. Shabani-Solt., N. Yusefnejad, A. S. Janfada∗

Department of Mathematics, Urmia University,

Urmia 57561-51818, Iran.

E-mail: h.shabani.solt@gmail.com

E-mail: yusefnejadnazanin@yahoo.com

E-mails: a.sjanfada@urmia.ac.ir; asjanfada@gmail.com

Abstract. Given the positive integers m,n, solving the well known sym-

metric Diophantine equation xm +kyn = zm +kwn, where k is a rational

number, is a challenge. By computer calculations, we show that for all

integers 1 ≤ k ≤ 500 the Diophantine equation x6 + ky3 = z6 + kw3 has

infinitely many nontrivial (y 6= w and x 6= z) rational solutions. Clearly,

the same result holds for positive integers k whose cube-free part is not

greater than 500. We exhibit a collection of (probably infinitely many)

rational numbers k for which this Diophantine equation is satisfied. Fi-

nally, appealing these observations we conjecture that the above result is

true for all rational numbers k.
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1. Introduction

A symmetric Diophantine equation is an equation of the form

f(x, y) = f(z, w),

where f is a 2-variable polynomial with integer coefficients. Choudhry [1]

used certain properties of rational binary forms to solve several symmetric
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Diophantine equation. Inose [2] studied the quartic symmetric Diophantine

equations using Kummer surfaces (see also [4]). Of symmetric Diophantine

equations, the equation

xm + kyn = zm + kwn, (1.1)

where k is a rational number, is of more importance. In [5] the equation (1.1)

is considered via analytic number theory.

A technique to claim the existence for a Diophantine equation is to find an

elliptic fibration and use the specialization process to construct an elliptic curve

with positive rank. Using this technique, the authors of [3] proved that the

equation x6 + 6y3 = z6 ± 6w3 has infinitely many nontrivial integral solutions.

The exhibited fibration works for some other k’s, but not for all. Here, by a

trivial solution we mean a solution with y = w and x = z as well as any relation

leading to these qualities. In these circumstances, k and kd3, for all integers d,

doesn’t really make a difference for the type of results we are after.

In general, it is complicated to find a fibration works for all or, infinitely

many k’s. In this article we find a fibration for the Diophantine equation

x6 + ky3 = z6 + kw3. (1.2)

that works for the positive integers k up to 500 and establish the following

main result.

Theorem 1.1. For each integer k with 1 ≤ k ≤ 500, the Diophantine equation

x6 + ky3 = z6 + kw3 has infinitely many nontrivial rational solutions.

If (x, y, z, w) is a solution to x6 +ky3 = z6 +kw3 for a specific k in the range

1 to 500, then (mx,my,mz,mw) is also a solution for km3, for all integers m.

The following corollary is obvious.

Corollary 1.2. For all integers k whose cube-free part is not greater than 500,

the Diophantine equation x6 + ky3 = z6 + kw3 has infinitely many nontrivial

rational solutions.

The Diophantine equation (1.2) is also true for infinitely many rational num-

bers. For example, from Theorem 1.1 it is concluded that (1.2) is true for all

rational numbers of the form k
e6 , where 1 ≤ k ≤ 500 and e ∈ Z+. The following

results exhibit other collection of (probably infinitely many) rational numbers

k for which the Diophantine equation (1.2) is satisfied.

Theorem 1.3. Let a be a cube-free non-zero integer such that the elliptic curve

EA : Y 2 = X3 + AX + A + 1, A = 3a8 + a4 + 4,

has positive rank. Then the Diophantine equation

x6 +
1

a
y3 = z3 +

1

a
w3

has infinitely many nontrivial rational solutions.
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In the case a = 1, the elliptic curve E8 has positive rank. One sees that the

Diophantine equation of Theorem 1.3 for a = 1 is the same as that of Theorem

1.3 for k = 1. A quick search shows that for a = 2, 3, 4, the corresponding

elliptic curves EA have also positive ranks. This approach gives an isotriv-

ial family of positive rank elliptic curves, increasing the number of nontrivial

rational solutions of (1.2).

With the above observations we now claim that,

Conjecture 1.4. For each rational number k, the Diophantine equation x6 +

ky3 = z6 + kw3 has infinitely many nontrivial rational solutions.

2. Preliminaries

Let K be a field and C be the algebraic curve defined over K with quartic

affine model

v2 = au4 + bu3 + cu2 + du + e, a 6= 0, (2.1)

Suppose C has a K-rational affine point (u, v) = (p, q). We may assume p = 0

by changing u to u+ p, if necessary. Then e = q2 and the equation (2.1) turns

to

v2 = au4 + bu3 + cu2 + du + q2, a 6= 0. (2.2)

Suppose q = 0. If d = 0, then the curve (2.2) will have a singularity at

(u, v) = (0, 0). Therefore, assume d 6= 0. Dividing both side of (2.2) by u4 we

get

(
v

u2
)2 = d(

1

u
)3 + c(

1

u
)2 + b(

1

u
) + a,

and putting X = 1/u and Y = 1/u2 we obtain the elliptic curve Y 2 = dX3 +

cX2 + bX +a which is clearly turned to the Weierstrass form. The harder case

is when q 6= 0. In this case we have the following result [6].

Theorem 2.1. Let K be a field of characteristic not 2 and C be the algebraic

curve defined over K by

v2 = au4 + bu3 + cu2 + du + q2, q 6= 0. (2.3)

Suppose C has a K-rational point (p, q). Let

X =
2q(v + q) + du

u2
, Y =

4q2(v + q) + 2q(du + cu2)− (d2u2/2q)

u3
.

Define

a1 = d/q, a2 = c− (d2/4q2), a3 = 2qb, a4 = −4q2a, a6 = a2a4.

Then the curve C is in one to one corresponding with the elliptic curve

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

The inverse transformation is

u =
2q(X + c)− (d2/2q)

Y
, v = −q +

u(uX − d)

2q
. (2.4)
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The point (u, v) = (0, q) on C corresponds to the point (X,Y ) = ∞ on E and

(u, v) = (0,−q) on C corresponds to (X,Y ) = (−a2, a1a2 − a3) on E.

3. proof of the main theorem

Proof of Theorem 1.1. Consider the intersection of the 3-fold x6 + ky3 = z6 +

kw3 with the hyperplane

x = u +
4

k
s2, y = v − u

2
, z = u− 4

k
s2, w = u + y = v +

u

2
. (3.1)

Put 4
ks

2 = t. With some straightforward calculations, we get

12u5t + 40u3t3 + 12ut5 = k(u3 + 3u2y + 3uy2).

Taking u 6= 0 we have

12u4t + 40u2t3 + 12t5 = k(u2 + 3uy + 3y2),

or,

v2 =
4

k
u4t +

(40t3

3k
− 1

12

)
u2 +

4

k
t5,

where v = y + u/2. Putting back t = 4
ks

2, we have

v2 =
(4

k
s
)2
u4 +

(10

3

(4

k

)4
s6 − 1

12

)
u2 +

(4

k

)6
s10. (3.2)

Now we use Theorem 2.1 for

a =
(4

k
s
)2
, b = 0, c =

10

3

(4

k

)4
s6 − 1

12
, d = 0, q =

(4

k

)3
s5. (3.3)

Therefor we get

a1 = 0, a2 =
10

3

(4

k

)4
s6 − 1

12
, a3 = 0, a4 = −4

(4

k

)8
s12 a6 = a2a4

and the curve in (3.2) transfers to the elliptic curve

Ek,s : Y 2 = X3 +
(10

3

(4

k

)4
s6− 1

12

)
X2−4

(4

k

)8
s12X− 40

3

(4

k

)12
s18 +

1

3

(4

k

)8
s12,

over Q(k, s). This elliptic curve can trivially be put into short Weierstrass

form, denoted again by Ek,s.

Ek,s : Y 2 = X3 + AX + (A + 1), where A =
3s12 + s6k4 + 4k8

k8
(3.4)

We now use the software MWRANK. We take a fixed k and find s = sk so that

the elliptic curve has positive rank. The result of implementation is recorded

in Table 1.

Now let (X,Y ) be a point on the elliptic curve Ek,sk . Substituting the

equations of (3.3) in (2.4) we find u, v and putting these in (3.1) we obtain a

rational solution (x, y, z, w) for the Diophantine equation x6 + ky3 = z6 + kw3

which, in turn, gives a rational solution. Since the rank of Ek,sk is positive,

there are infinitely many rational solutions. This completes the proof. �
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k=1,3,7,9,10,11,13,14,16,29,30,32,38,39,44,47,52,58,61,68,81,82,86,100, 
103,114,116,126,127,136,139,152,184,191,199,213,220,227,238,241,242, 
251,256,271,292,293,323,324,332,346,364,367,378,412,422,436,473,476 

sk=1/2,r=1 

k=2,6,15,18,19,25,27,28,37,46,51,53,54,56,59,62,63,64,66,71,72,74,75,83,88,104, 
123,125,154,174,187,192,216,217,226,248,298,308,328,338,433,456,472,488,498 

sk=1, r=1 

k=4,8,20,22,24,31,43,60,80,85,92,111,112,115,120,121,129,132,140,141, 
143,145,147,148,150,156,166,171,194,212,218,219,221,228,232,240, 
247,249,255,304,312,319,352,360,373,376,396,406,416,424,428,499 

sk=2, r=1 

k=5,23,35,41,48,49,50,65,73,79,89,93,113,124,155,157,159,161,163,164,168,169,170, 
173,177,178,180,186,189,193,195,206,209,210,223,224,225,230,233,235,239,258,262, 
265,269,272,275,302,310,345,349,355,356,357,362,363,365,370,371,374,375,388,390, 
393,399,401,413,414,415,417,419,421,427,434,435,440,443,453,455,461,474,493,495 

sk=k/4, r=1 

k=12,87,144,198,204,211,252,276,297,301,320,409,464,485,496 sk=2, r=2 

k=17,33,40,67,69,76,84,102,106,137,142,158,176,208,383,438,446,497 sk=1/2, r=2 

k=21,34,55,57,97,101,122,133,138,146,179,190,197, 
202,203,281,295,347,359,361,389,395,405,478,491 

sk=k/2, r=1 

k=26,36,42,45,70,118,128,165,167,172,264,321,348 sk=1, r=2 

k=90,109,131,183,196,229,250,279,280,285,286,289,290,306,309, 
311,315,316,317,325,326,329,330,335,336,337,341,344,353,379, 
382,384,387,400,402,403,425,441,442,448,450,458,465,467,470 

sk=k/8, r=1 

k=91,95,96,98,99,153,181,205,207,215,231,234,236,245,253,254,257,259,260,261, 
266,267,291,303,313,331,350,351,369,397,398,407,411,418,420,429,432,452,457,471 

sk=k/4, r=2 

 

k=77,175,243,246, 
263,380,386,404,469 

sk=2, 
1 ≤ 𝑟 ≤ 2 

k=117,149,151,268, 
287,342,426,500 

sk=1, 
1 ≤ 𝑟 ≤ 2 

k=162,343,381 
 

sk=k/2, 
r=3 

k=78,110,182,237, 
277,307,314,368 

sk=1/2, 
1,≤ 𝑟 ≤ 2 

k=119,322,394, 
437,460,481 

sk=k, 
r=1 

k=222,278,296,299,300, 
305,451,466,477,479,483 

sk=k/8, 
r=2 

k=94,107,135,185, 
188,200,372,377,463 

sk=k/2, 
r=2 

k=130,333,482 sk=13, 
r=1 

k=273,294,339, 
392,445,492 

sk=1, 
1 ≤ 𝑟 ≤ 3 

k=105,201,244,284, 
288,340,408,410,444 

sk=1/2, 
1 ≤ 𝑟 ≤ 3 

k=134,354 
 

sk=2, 
r=3 

k=366,431,486 sk=k/8, 
r=3 

k=108,391 sk=1, 
r=3 

k=141,318,327, 
334,358,439 

sk=k/2, 
1 ≤ 𝑟 ≤ 3 

k=449,459,475 sk=k, 
1 ≤ 𝑟 ≤ 2 

 

k=160 sk=k/4, r=3 k=423 sk=k/8, 1 ≤ 𝑟 ≤ 2 k=480 sk=6, r=1 

k=214 sk=8, r=2 k=430 sk=19, 1 ≤ 𝑟 ≤ 2 k=484 sk=4, 1 ≤ 𝑟 ≤ 3 

k=270 sk=5, 1 ≤ 𝑟 ≤ 2 k=447 sk=k/2, r=4 k=487 sk=14, 1 ≤ 𝑟 ≤ 2 

k=274 sk=k, 1 ≤ 𝑟 ≤ 3 k=454 sk=7, 1 ≤ 𝑟 ≤ 2 k=489 sk=k, r=3 

k=283 sk=3k/4, r=2 k=462 sk=9, r=1 k=490 sk=8, 1 ≤ 𝑟 ≤ 3 

k=385 sk=12, 1 ≤ 𝑟 ≤ 2 k=468 sk=14, r=1 k=494 sk=19, r=1 

 

Table 1. The results of implementation
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Proof of Theorem 1.3. We first prove that the Diophantine equation

A =
3s12 + s6k4 + 4k8

k8
(3.5)

has rational solutions. Write (3.5) as

3s4
( s
k

)8
+ s2

( s
k

)4
+ 4−A = 0.

Take s = h and g = h
k . Then the above equation changes to a quadratic

polynomial in h2g4, positive root of which is

h2g4 =
−1 +

√
1− 12(4−A)

6
= a4.

Putting h = t2 and g = a
t we obtain the solutions s = t2, k = 1

a t
3. With this

solutions, the elliptic curve EA coincides with the elliptic curve Ek,s in (3.4)

in the proof of Theorem 1.1. The result now comes from the last paragraph of

the proof of Theorem 1.1. �

4. Closing comments

Finding the curves of arithmetic genus zero over the 3-fold (1.1) may be of

importance. The following example shows the existence of these curves.

Example 4.1. The identity

a6 +
1

2
(b2 + ab− a2)3 = b6 +

1

2
(a2 + ab− b2)3

establish a parametric solution for the 3-fold x6 + 1
2y

3 = z6 + 1
2w

3.

The family of Diophantine equations x6 + ky3 = z6 + kw3 may be studied

other ways. To see this we need the next result.

Proposition 4.2. The cubic curve Ck : x3 + y3 = k is birationally equivalent

to the elliptic curve Ek : Y 2 = X3 − 432k2.

Proof. The rational map

X =
12k

y + x
, Y =

36k(y − x)

y + x

is a birational map from Ck to Ek with the inverse

x =
Y + 36k

6X
, y =

Y − 36k

6X
.

�

For example consider the equation

x6 + 7y3 = z6 + 7w3. (4.1)

We may write

(x3 − z3)(x3 + z3) = 7(w3 − y3).
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Putting x = 2, z = −1 we have

w3 + (−y)3 = 9. (4.2)

By the substitutions in the proof of Theorem 4.2 we obtain the elliptic curve

Y 2 = X3 − 34992. Now the software MWRANK to compute the ranks of

elliptic curves. This shows that the Diophantine equation (4.1) has infinitely

many nontrivial rational solutions
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