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ABSTRACT. In this work, we give a product Nystrom method for solving a
Fredholm functional integral equation (FIE) of the second kind. With this
method solving FIE reduce to solving an algebraic system of equations.
Then we use some theorems to prove the existence and uniqueness of the

system. Finally we investigate the convergence of the method.
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1. INTRODUCTION

Functional integral equations have a significant role in important branches
of linear and nonlinear functional analysis and their applications. Equations
of such a type are often arise in physics, mechanics, control theory, economics
and engineering, for instance [16]-[22]. Functional integral equations have been
studied widly in several papers and monographs [23]-[28].

*Corresponding Author

Received 18 August 2013; Accepted 3 August 2014
(©2016 Academic Center for Education, Culture and Research TMU
35



36 N. Aghazadeh, S. Fathi

Consider the following Fredholm functional integral equation of the second
kind

b
y(z) — pla)y(h(z) — A / k(e y(O)dt = g(z), a<z<b,  (L1)

where p(z), h(x), g(x) and k(x,t) are known functions and A is known parame-
ter and y(z) is the unknown function to be determined. Here, we suppose that
the kernel k(z,t) is discontinuous at finite points and the unknown function
y(x) is continuous. Usually we can write the discontinuous kernel k(z,t) as
k(z,t) = p(x,t)k(x,t), where p(x,t) and k(x,t) are ill-posed and well-posed
functions with respect to their arguments, respectively. In the sequel, we sup-
pose that we have such representation.

2. THE METHOD

We divide the interval [a, ] into N subinterval such that

b—a

N

and N is multiplication of integer s > 1. The integral part of (1.1) can be write
as

h =

xz:tzza—i—zh, ’i:O,17...,N,

b b -
/k(x,t)y(t)dt = /p(x,t)k(z,t)y(t)dt

N—s

= Z / Sj+sp(ir7t)15(x,t)y(t)dt, (2.1)

=0 Ytsj

where choosing s is depend upon the used integration method, e.g. s =1 in
the Trapezoidal rule and s = 2 in the Simpson rule.
In the product Nystrom method, the well-posed part of integration over
every subinterval
. N —s
Ij:[tsj7tsj+s]a .7:0717"'7 S )
approximated by using Lagrange polynomials of degree s which interpolates at
points

tsj, tsj+17 - ,tsj+s~
If we use the notation Ly ; for the Lagrange polynomial at the subinterval I,
we have:
- AN - N —s
k(x’t)y(t)hj 2LN,j = Z lZ,](t)k(xatZ)y(tl)7 .] = Oala"'a s ) (22)
i=sj

where [; ;(t) denote the Lagrange polynomial of degree s at the interval I;, and

is defined as
, 1=s85,87+1,...,87+s 53=0,1,..., ,

Li(t) =
=TI +—+ -

k=sj, ki

t—tk N —s
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so, for every subinterval I},

tsjts Lsjts
/ k(x, t)y(t)dt ~ / Ly jp(z,t)dt,
¢ ¢

sj sJ

and the approximation error can be find by

tsj+s tsj+s
e= ’/ k(x, t)y(t)dt —/ Ly jp(z,t)dt|.

tsj tsj

By substituting the interpolation polynomial Ly ; in the relation (2.1), the
approximate value of integral part of the equation (1.1) reduce to

b s tsjts
/ k(z, y(t)dt ~ / Ly (. t)dt
a ; tsj

(k(m,my(ti) /ts li,o(t)P(v’Uat)dt>

(uauwua/N’awf@m@JMQ,

’ s
tN—s

thus, fori =sj (j =1,..., N;s), we have two integral and one for other is.

After collecting we can rewrite the above integral as

b
/MWMMMgﬁmmmmm, (2.3)
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where
S
t—1
/ ooz, t)dt
to oy T0 Tk
s RS 4y
wsj(z / J:tdt—l—/ H : Y p(x, t)dt,
JSksgss tsj ksg+1sj
N —
for j=1,2,..., 5
S
tsjts sjts t—t
Wjtm(T) = / 7kp(x,t)dt,
sy k=sj, k#sj+m tsj—i—m o tk
N —
fOI’j:1,2,..., 87 m:1,2,...,8—1
S
tn N—-1
t— 1t
wy(z) = / 1T e— p(x, t)dt. (2.4)
EN—s k=N—s

Now, we approximate y(h(x)) as

z)) ~ Zli,N(h(x))y(xi),

where I; y(h(x)) is defined as the following

N
h(z) — zp,

ey = T EE
k=0, ki 1 Uk

Substituting these relations in (1.1), we have an approximate to the integral
equation (1.1) as the following

N N
2) Y Ln @)y (@) =2 D wi@)k(e, t)yn (t:) = g(x), a <z <D,
=0 =0

(2.5)
where yy(x) shows the approximate solution from product Nystréom method
for y(z). From z; = ¢; = a + ih, (2.5) can be rewritten as the following

N
yn (2)= > {p(@)li v (h(@) + Mwi @)k, ) fun (t) = 9(a), a <@ <b. (2.6)
i=0
Theorem 2.1. Forx = x; =t;, j=0,1,...,N, solving (2.6) is equal to
solving the following system of linear algebraic equation
N

yn (1) = D { Pt (h(E) + Mwgh(ts t) fyw (t) = (t), = 1,2, N,

i=0
(2.7)
where w;; = w;(t;), and the vector Y = [yn(to), ..., yn(tn)]T is unknown.
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Proof. See [2]. O

The unknown function Yy (x) can be calculated from (2.6) by having ap-
proximate values of yy(t;) as following

uv (@) = 9(@) + 3 {p(@)lsn (@) + hws(@)h(at) pun (1) (28)

The (2.8) is called Nystrom interpolation formula.
In the next section we prove the existence and uniqueness of the system of
linear algebraic equations (2.7).

3. SYSTEM OF LINEAR ALGEBRAIC EQUATIONS

In this section we discuss the necessary conditions for existence and unique-
ness of the system of linear algebraic equations (2.7) in the Banach space L.
For easy discussing, consider the following functional integral equation of the
second kind

y(z) — p(e)y(h(z)) — A / POy =), el (1)

where g(x) is a known continuous function and p(z,t) is a weakly singular
kernel. By using the product Nystrom method for equation (3.1) at nodes
{z; };VZO, we have the following linear algebraic system

N
un (1) = 9(t5) + Y {p)lin (h(t) + wi fyn(t), j=0,1....N.
=0

Theorem 3.1. Suppose a function f(x) is interpolated on the interval [a,b] by
a polynomial p,(x) whose degree does not exceed n. Suppose further that f is
arbitrarily often differentiable on [a,b] and there exists M such that | f (z)| <
M fori = 0,1,2,... and any = € [a,b]. It can be shown without additional
hypotheses about the location of the support abscissas x; € [a,b], that p,(x)
converges uniformly on [a,b] to f(x) as n — oo.

Proof. See [8]. O

Theorem 3.2. Let {z;}71% j=0,1,...,Y=% be the s + 1 support points of

1=87"
Lagrange polynomial of degi’ee s on subintemjal [tsjstsj+s]. Moreover suppose
that the weakly singular kernel p(x,t) satisfies the condition p(x,t) € Ly for
g > 1 and let In ;(f,t) denotes the interpolating Lagrange polynomial of degree
< s that interpolate function f at the nodes {xl}sztj Then, for every function
f € C[—1,1] which satisfies the hypothesis of theorem (3.1), we have

Jim H/_llp(x,t)f(t)dt—/ p(x,t)zN,j(f,t)dtH —0 (3.2)

1
N—o0 1
oo
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H/ (z,t)f dt—/ (x,t)n;(f,t)d H

Proof.

lN](fv )dt‘
t€7+€
— sup Z / plar ) (F(0) — (£, ) |
xT ]=0 tsj
N—s
s tS]‘_*_S
<sup > ([ 01 170 - s ().
xT ]=O tsj
Applying Holder inequality for ¢,¢ > 1, (% % = 1), we have
N-s Nos
s Lsjts s
sup S ([ pla 01190~ b (F0kde) < sup D ol -1 = bl
L, tsj T =0

Also from theorem 3.1 imy—c0 In,;(f,t) = f(t). Thus [|f —Inllz, — 0 as
N — o0. Also according to the assumption p € L4, we obtain that

1 1
tim sup| [ ple, 050t~ [ ol s (700 =0,
N—oo g 1 1
and this complete the proof. O

For proving the existence and uniqueness of the solution of the linear al-
gebraic system (2.7), we use the Banach fixed point theorem. For providing
the conditions of the Banach fixed point theorem, we define the operator T as
following

T(y;)n =T(y;)n + 95,
where, g; = g(t;), (yj)n = yn(t;),

N

T(yi)n = Y {pt)ln(h(t) +wi f i)y, G=0.1,... N,

i=0
We will show that T is a contraction in Banach space L>. For this, we need

the following lemmas.

Lemma 3.3. For a given set of nodes {x; }fvo defined as in theorem 3.2, let
l;,;(t) denotes the corresponding Lagrange polynomial on subinterval [te;,tsjts).
Then sup ijo |wij| exists for all functions p € Lq, (@ > 1) with [|p||z, =

{2 Gy}
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Proof. Applying Hélder inequality for every p(x,t) € Lq (¢, ¢ > 1, %4— % =1),

we have

IN

tsj+s
/ Ipla. )] - iy (8)|dt
t

sJ

tsjts
/ p(x,t)lm(t)dt
t

sJ

IN

Ipllz,-Niesllz,

Since p € L, and also for all j, [; ; is a polynomial of degree s and hence belong
to Ly so

tsjts
dE; > 0, / p(x,t)lz,j(t)dt < Eq,
tsj
so,
N—s
il tsjts
3B, > 0, ‘/ pla, s (D]di] < B,
§=0 " tes

Therefore from the relation (2.4), we get
N

3E >0, Y |wy| <E.
3=0

Since this inequality satisfies for all IV, thus sup, Z;.V:O |w;;| exists. O

Lemma 3.4. Assume that we have the same assumptions of the lemma 3.3,
and let the kernel p satisfies the conditions

{pGLq,7 qg>1; (3.3)
hm:m%l% “p(‘r]?t) _p(xkat)HLq =0, V$j7xk € [_1a 1]7
then
N
x]h_rgk sgp; |w;(z;) — w;i(zr)| = 0. (3.4)

Proof. Suppose that z;,xz, € [—1,1] are arbitrary points of partition points
set, then for all functions p(z,t) € L, we have
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By using Holder inequality for ¢, q" > 1( é + % =1), we get

N—s
sup g
N r=0

/tt”+s Lin(t) (p(a:j, £) — plzn, t)> dt‘

sr

N—s
s tsrts 1
< sup p(xj,t) = py, )|t ¢ lir ]|y, -
N q
r=0 tsr

Since [; ;- is a polynomial of degree s for every r, thus l; , € L. Also we have
limg, 4, [|p(25,t) — p(ak,t)||L, = 0. Therefore the relation (2.4) completes the
proof. |

Lemma 3.5. If sup, |g(t;)|,sup; |p(t;)| and supy E;-V:O lwi;| exist, then T is
an operator from L into itself.

Proof. Let U be the set of all functions yx = (y;)~ in L™ such that
Yyn,  llynllr= = sup|(y;)n| < B,
j

where § is constant. We define operator norm in Banach space L™ as

ITyn || L = sup [T (y;)n|- (3.5)
J

From the definition of the operator T' we have
N

L (hg) [ sup |(yi) v |+ Y lwis | sup |(y:) v| + sup |g;,
v i=0 ¢ J

N
IT(y)n| < Ipil D>
1=0

from the lemma assumptions

EIHla Sup|g]‘ SHl,
J

3H», sup|p;| < Ha,
J

and
N

E'El, supz |wij| S El.
N izo

Since l; y is a polynomial of degree N for every 4, thus

N
E'EQ; 5upz |lz,N(h])| S EQ.
J =0
So
sup [T'(y;)n| < HaEa|[(y;) NIl + Exl[(y;) w2 + Hi.
J

Since this inequality satisfies for all j, therefore

1T (y;)n L= < o1l (yj) Nz~ + Hi,
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where 01 = HyFEy + E1. So TyN € L™ ie. ||TyN||Loo < 8. Also ||TyN||Loo <
o018 + Hy. By comparing two last relations we have:

H
O'1,B+H1S,BZ}(H2E2+E1)ﬁ+H1SB#FlSl—HQEQ—El.

Since H; > 0 and 8 > 0 thus HyF> + E; < 1, that is 01 < 1. Furthermore
the operator T is bounded because |Tyn|r < o1|lyn|lLe. Therefore from
definition of T we conclude that T is a bounded operator. O

Lemma 3.6. With the conditions of lemma 3.5, T is a contraction operator
in Banach space L*°.

Proof. According to the definition of operator T', for functions yy = (y;)n and
zn = (2;)n from L> we have:

N

IT(y;)n = T(z)n] < Ipslllin (hy)] + [wij| sup |(y;)x = () w]-
i=0 7

By using the conditions of lemma 3.5, we get
T(yj)n = T(zj)n| < (HaBa + B1) | (y5)n — (25)wll -
This inequality satisfies for all j, so
ITyn — Tenllpe < o1llyn — 2nllpe.

Consequently under the condition of o; < 1, T is a contraction operator in
Banach space L°. O

Theorem 3.7. With the assumptions of lemma 3.5, the system of equations
(2.7) has a unique solution in Banach space L.

Proof. According to the Banach fixed point theorem, since T is a contraction
operator, thus the system of equations (2.7) has a unique solution in L*. O

4. CONVERGENCE OF THE METHOD

By applying the product Nystrom method for solving the integral equation
(3.1), we obtain the approximate solution yy(z) as follows:

N
yn () = g(2) + 3 {p@)li v (b)) + wile) pyn (22),
1=0

where w;(x) can be obtain from relation (2.4).

Definition 4.1. The product Nystrom method is convergent of order r in
[—1,1], if and only if for sufficiently large N, there is a constant ¢ > 0 indepen-
dent from N such that

ly(z) — yn ()|l e < N7,
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Local approximate error obtains from

y(@) = yv(e) = i |wi(@) + p(@)li (h(@)] [y(@s) =y ()] + en(@).
So )
(=) = 3 [wila) + @i (@) [yw) =y ()] = ew(e). @)

Now we define linear operator Ay as

Ay C[-1,1] = C[-1,1]
N
Anf(@) = Y [wil@) + p@ln (h@)| F@), feCl-1,1], ze[-1,1]
1=0

So we can rewrite the relation (4.1) as follow

(1 - 4x) (y(@) — yv (@) = en(a),

thus
(v —yn(2) = (I - AN)_leN(x),

since this satisfies for every x, therefore

sgpﬂy—fyw)hﬁlSsgpMIAfAN)flav@O7
SO

ly =yl <[ (1= an) 7|

OO.||eNHOO. (4.2)
Theorem 4.2. If we define integral operator A" as follow
A o C[-1,1] = C[-1,1],

Afr) = /p(x,t)f(t)dt, FeCl-11], vel-11]

-1
then the integral operator A" with weakly singular kernel of p(x,t) is a compact
operator on C[—1,1].

Proof. See [1]. O

Now we define operator A as follow

A O[-1,1 = C[-1,1]

—1

1 N
Af@) = [ e 7@+ 3 p (b)),
1=0

Since operator A’ is compact, thus the operator A is compact too. Also ac-
cording to the definition of operators A and Ay we have

/ e (0t / eI, t)dtH e

-1 -1 0o

A= ANl =
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where Ly ; is the Lagrange interpolation polynomial of the continues function
f. Also from (4.2) the right hand side of relation (4.3) converges to zero, when
N — 0o, So limy 00 ][4 — AN|leo = 0.

For studying behavior of ||(I — AN)_1||OC, we have the following theorem
from [7].

Theorem 4.3. Suppose that A : C[—1,1] — C[-1,1] is a linear, compact oper-
ator and Ay is a sequence of linear, bounded operators such that limy_, o0 ||A—
Anlloo = 0, then the inverse operator (I — AN)_1 : C-1,1] = C[-1,1] ewists
for all sufficiently large N, and there exist constant ¢ > 0 independent of N
such that ||(I — AN)_1||OO <ec.

From (4.2), limy_o exy = 0, so we have the following theorem for conver-
gence of product Nystrom method:

Theorem 4.4. Under the conditions of theorem 4.3 the approzimate solution
yn(z) from product Nystrom method is uniformly convergent to exact solution

y(@).
Proof. The proof follows from (4.3) and theorem 4.3. O
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