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Introduction

There is extensive literature on the behavior of the unimodal map gµ(x) =
μx(1 − x), see, e. g. [1], [2], [3] and [5]. An elementary treatment of gµ for
μ > 4 can be found, among others, in [4], where the existence of an invariant
hyperbolic Cantor set is established. Following the methods of [4], we treat the
family fc(x) = c(x − x3

3 ) in the case |c| > 3. When 0 < |c| ≤ 2 the attracting
fixed and periodic points of period 2, when they exist, dominate the dynamical
behavior of the orbits that do not tend to infinity. When 0 < |c| ≤ 3 the orbits
of the points in the interval Ic = [−

√
3(1 + 1

|c|),
√

3(1 + 1
|c|)] are bounded.

If |c| > 3, there are some points in the interval Ic whose images leave this
interval. The interval Ic is divided into five subintervals, two open subintervals
which leave Ic after one iteration of fc, and three closed subintervals which are
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mapped monotonically onto Ic by fc. Continuing this process, we determine
the invariant subset of Ic under fc. Let Λfc = ∩∞

n=1f
−n
c (Ic).

In this paper, we will show that Λfc is

• repelling hyperbolic,
• totally disconnected,
• a Cantor set.

Following [4], we show in the first section that fc(x) = c(x − x3

3 ), c > 3, has
a repelling hyperbolic set. In the second section we show the hyperbolicity of
f−c, c > 3. It will follow from Lemma 1 and Theorem 1 that Λfc , |c| > 3, is a
Cantor set.

Lemma 1. If |c| > 3, then Λfc is a closed perfect subset of Ic.

Proof. It is clear that Λfc = ∩∞
n=1f

−n
c (Ic) is a closed set, since In = f−n

c (Ic)
is a closed set. Suppose x ∈ Λfc , then x ∈ In for every n, and there is an
interval Ink

⊂ In such that x ∈ Ink
. So x ∈ ∩∞

n=1Ink
. If x is the only

point of intersection, then there is a sequence of endpoints of Ink
’s, {ank

},
that converges to x and ank

∈ Λfc , because these points are finally mapped to
endpoints of Ic. If ∩∞

n=1Ink
contains more than one point, then it is an interval

and x is a limit point of this interval. �

Definition 1. Let f : R −→ R be a C1 function. A set Γ ⊆ R is a repelling
hyperbolic set if Γ is a compact subset of R that is invariant under f , and there
exists N > 0 such that |(fn)′(x)| > 1 for all n ≥ N and all x ∈ Γ

Lemma 2. [4] Suppose f : R → R is a C1 function, Γ is a compact subset of
R and f(Γ) ⊆ Γ. Then the following statements are equivalent.

(1) There is an integer N > 0 such that |(fn)′(x)| > 1 for all n ≥ N and
all x ∈ Γ.

(2) There is an integer n0 > 0 such that |(fn0)′(x)| > 1 for all x ∈ Γ.
(3) For every x ∈ Γ, there is an integer nx > 0 such that |(fnx)′(x)| > 1.

In order to prove the hyperbolicity of Λfc we will show that statement 3
of Lemma 2 is satisfied. We will use the notion Schwarzian derivative and its
properties.

Suppose f is a C3 function that has been defined in a neighborhood of x

and f ′(x) 	= 0, then Schwarzian derivative of f at x is

Sf(x) =
f ′′′(x)
f ′(x)

− 3
2
(
f ′′(x)
f ′(x)

)2
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It is well known that S(f ◦g) < 0, if S(f) < 0 and S(g) < 0 and also if I = [a, b]
and Sf(x) < 0 for all x ∈ (a, b), then f ′ has neither a positive local minimum
on I nor a negative local maximum on I, [2]. The following lemma holds as
well:

Lemma 3. [4] Let I = [a, b] and suppose f is C3 on I. If Sf < 0 on (a, b),
then |f ′(x)| > min{|f ′(a)|, |f ′(b)|} for all x ∈ (a, b).

It is easily seen that:

Lemma 4. Let fc(x) = c(x − x3/3), then Sfc(x) < 0 for all x ∈ R − {−1, 1}.
1. Hyperbolicity of Λfc , c > 3

Now suppose c > 3 and z0 =
√

3(1 + 1/c). There are three intervals that
are mapped homeomorphically onto [−z0, z0]. If

q1 =
(√

3(1 + 1/c) +
√

3(1 − 3/c)
)
/2, q0 =

(√
3(1 + 1/c) −

√
3(1 − 3/c)

)
/2

then these three intervals are

[−z0,−q1], [−q0, q0], [q1, z0]

Fixed points of fc are p1 =
√

3(1 − 1/c), −p1 and 0. Let p0 =
(−√

3(1 − 1/c)+√
3(1 + 3/c)

)
/2, then fc(p0) = fc(p1) = p1 and fc(−p0) = fc(−p1) = −p1

(Figure 1). Also, let J = (p0, q0) ∪ (q1, p1) and −J = (−q0,−p0) ∪ (−p1,−q1),
then we have the following lemma.

Lemma 5. Suppose fc(x) = c(x − x3/3), c > 3, x ∈ J ∪ −J and x is not
an eventually periodic point, then there is an integer n ≥ 2 such that fn

c (x) ∈
(−p1, p1).

Proof. We know fc(p0, q0) = fc(q1, p1) = (p1, z0) and fc(p1, z0) = (−z0, p1).
Suppose x ∈ J , then y = f2

c (x) ∈ (−z0, p1). Let the orbit of y never leaves
(p1, z0) ∪ (−z0,−p1). Now if y ∈ (p1, z0), then f2

c (y) ∈ (p1, z0), so f2
c (y) = y

or {f2n
c (y)} is a monotonic sequence that must converge to a periodic point

of period 2, but it is easily seen that all the periodic points of period 2 are
repelling and this is impossible. �
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Figure 1. fc(x) = c(x − x3

3 ); c = 7
2

Lemma 6. If c > 3, then p1 − q1 < q0 − p0 < z0 − p1

Proof. Straightforward computation shows p1 − q1 < q0 − p0. In order to
prove (q0 − p0)2 < (z0 − p1)2 we should show 3c − 5 <

√
(c + 1)(c − 3) +√

(c + 1)(c + 3) +
√

c2 − 9. That is correct because
c − 3 <

√
(c + 1)(c − 3)

c + 1 <
√

(c + 1)(c + 3)
c − 3 <

√
c2 − 9 . �

Theorem 1. Let c > 3 and x ∈ Λfc , then there is an integer n such that
|(fn

c )′(x)| > 1.

Proof. If x ∈ [p1, z0] then |f ′
c(x)| > |f ′

c(p1)| = | − 2c + 3| > 1 and if x is an
eventual fixed point, there is an integer n such that |(fn

c )′(x)| > 1. If x = q1,
since fc(q1) = z0 and z0 is a repelling periodic point then there exist n such
that |(fn

c )′(q0)| > 1.
Now suppose x ∈ Λfc and x ∈ (q1, p1). According to Lemma 5, there exists

n ≥ 2 such that fn
c (x) ∈ (−p1, p1). Since x ∈ Λfc , there is n such that

x ∈ In and there is an interval Inj ⊂ In such that x ∈ Inj and fn
c maps Inj

monotonically onto [−z0, z0].
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First we suppose Inj ⊆ [q1, p1). We divide Inj to three subintervals, Inj =
Lnj ∪ Knj ∪ Rnj , such that

fn
c (Lnj ) = [−z0,−p1], fn

c (Knj ) = (−p1, p1), fn
c (Rnj ) = [p1, z0]

According Lemma 6, |fn
c (Lnj )| > |Lnj | and |fn

c (Rnj )| > |Rnj |. By using
Mean Value Theorem, there exists y ∈ Lnj such that |(fn

c )′(y)| > 1 and there
is z ∈ Rnj such that |(fn

c )′(z)| > 1. Since x is between y and z and since
Sfc(Inj ) < 0, then according to Lemma 3, |(fn

c )′(x)| > 1.
Now suppose Inj � [q1, p1), so x < p1, x ∈ Inj and p1 ∈ Inj . As before we

define Rnj , Knj and Lnj . Again, x ∈ Knj and Lnj or Rnj is a subset of [q1, p1).
Suppose Lnj has this property. As before there exists y with this property that
|(fn

c )′(y)| > 1 and p1 is a repelling fixed point, therefore |(fn
c )′(p1)| > 1. x is

between y and p1 and we conclude that |(fn
c )′(x)| > 1.

The other cases are proved similarly. �

2. Hyperbolicity of Λfc , |c| > 3

In this section we describe how the case c < −3 can be deduced from the
case c > 3.

Lemma 7. Λfc = Λfk
c

for all k ∈ N.

Proof. It is clear that Λfc ⊆ Λfk
c
. Let x ∈ Λfk

c
, but x /∈ Λfc . Then limn→∞ |fn

c (x)| =
∞, especially limn→∞ |fkn

c (x)| = ∞ whereas {|fkn
c (x)|}n≥0 is bounded. �

Corollary 1. For any c, Λfc = Λf2
c

= Λf2
−c

= Λf−c .

Lemma 8. (fn
c )′(−x) = (fn

c )′(x) and (fn−c)′(x) = (−1)n(fn
c )′(x).

Proof. We know f ′
−c(x) = −f ′

c(x), f ′
c(−x) = f ′

c(x), fc(−x) = −fc(x). Now
lemma is proved by induction. �

Now let c > 3, the following lemma shows that f−c on Λf−c is repelling
hyperbolic.

Lemma 9. For any x ∈ Λf−c , there exists nx ∈ N such that |(fnx−c)
′(x)| > 1.

Proof. Let x ∈ Λf−c = Λfc . Therefore, by Theorem 1 there exists nx ∈ N
such that |(fnx

c )′(x)| > 1. By Lemma 8, |(fnx−c)
′(x)| = |(−1)n(fnx

c )′(x)| =
|(fnx

c )′(x)| > 1. �

Theorem 2. If |c| > 3, Λfc is totally disconnected.
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Proof. Suppose [x, y] ⊆ Λfc . According to Theorem 1 and Lemma 2 there is
N > 0 such that |(fn

c )′(z)| > 1 for all z ∈ Λfc and n ≥ N . Let |(fN
c )′(z)| ≥

λ > 1. By Mean Value Theorem we have |fkN
c (x) − fkN

c (y)| ≥ λk|x − y| and
fkN

c (x), fkN
c (y) ∈ Λfc , for k ∈ N and this is a contradiction. �
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