On Diameter of Line Graphs

Harishchandra S. Ramanea, Ivan Gutmanb,* and Asha B. Ganagia

aDepartment of Mathematics, Gogte Institute of Technology, Udyambag, Belgaum–590008, Karnataka, India
bFaculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia

E-mail: hsramane@yahoo.com
E-mail: gutman@kg.ac.rs
E-mail: abganagi@yahoo.co.in

Abstract. The diameter of a connected graph G, denoted by $\text{diam}(G)$, is the maximum distance between any pair of vertices of G. Let $L(G)$ be the line graph of G. We establish necessary and sufficient conditions under which for a given integer $k \geq 2$, $\text{diam}(L(G)) \leq k$.

Keywords: Line graph, Diameter (of graph), Distance (in graph).

2000 Mathematics subject classification: 05C12, 05C75.

1. Introduction

Let G be a simple connected graph on n vertices. Let the vertices of G be labeled as v_1, v_2, \ldots, v_n. The distance between the vertices v_i and v_j in G is equal to the length of a shortest path joining v_i and v_j, and is denoted by $d_G(v_i, v_j)$. The diameter of G, denoted by $\text{diam}(G)$ is the maximum distance between any pair of vertices of G.

The above distance provides the simplest and most natural metric in graph theory, and is one of the popular areas of research in discrete mathematics. Details on distance in graph theory can be found in the books [3, 5, 8] and the papers [1, 6, 7, 15, 16] published in this journal.

*Corresponding Author

Received 30 October 2012; Accepted 14 January 2013
©2013 Academic Center for Education, Culture and Research TMU
As usual, by K_n, P_n, and $K_{1,n-1}$ we denote, respectively, the complete graph, the path, and the star on n vertices.

The line graph $L(G)$ of G is the graph whose vertices correspond to the edges of G and two vertices of $L(G)$ are adjacent if and only if the corresponding edges of G are adjacent. The second line graph of G is $L^2(G) = L(L(G))$.

Metric properties of line graphs have been much studied in the mathematical literature [2,4,9,12,14,17–20], and found remarkable applications in chemistry [10,11,13,14].

We first recall some known established properties of line graphs, needed for the considerations that follow.

Lemma 1.1. [17] If G_1 is an induced subgraph of G then $L(G_1)$ is an induced subgraph of $L(G)$.

Theorem 1.2. [19] If $\text{diam}(G) \leq 2$ and if none of the three graphs F_1, F_2, and F_3 depicted in Fig. 1 are induced subgraphs of G, then $\text{diam}(L(G)) \leq 2$.

![Fig. 1. The graphs mentioned in Theorem 1.2](image)

In this paper we establish structural conditions for the graph G, under which for a given integer k, $k \geq 2$, the diameter of $L(G)$ does not exceed k. We also establish conditions under which for a given integer k, $k \geq 3$, the diameter of $L(G)$ is not less than k.

2. **Main results**

Let F_1^k be the path on $(k+3)$ vertices, $k \geq 2$. The vertices of F_1^k are $v_1, v_2, \ldots, v_{k+3}$, labeled so that v_i is adjacent to v_{i+1}, $i = 1, 2, \ldots, k + 2$.

Let F_2^k be the graph obtained from F_1^k by adding to it an edge between the vertices v_1 and v_3. Let F_3^k be the graph obtained from F_1^k by adding to it edges between v_1 and v_3 and between v_{k+1} and v_{k+3} (see Fig. 2).

Theorem 2.1. Let $k \geq 2$. For a connected graph G, $\text{diam}(L(G)) \leq k$, if and only if none of the three graphs F_1^k, F_2^k, and F_3^k, depicted in Fig. 2, are an induced subgraph of G.
Proof. The result can be easily verified for graphs of order \(n \leq 4 \). We thus assume that \(n > 4 \).

Let \(k \geq 2 \) and let \(\text{diam}(L(G)) \leq k \). Suppose that \(F_k \) is an induced subgraph of \(G \). By Lemma 1.1, \(L(F_k) \) is an induced subgraph of \(L(G) \). It is straightforward to check that \(\text{diam}(L(F_k)) = \text{diam}(P_{k+1}) = k + 1 > k \). Hence \(\text{diam}(L(G)) > k \), a contradiction. Therefore \(F_k \) is not an induced subgraph of \(G \).

![Graphs mentioned in Theorems 2.1 and 2.3](image)

Fig. 2 The graphs mentioned in Theorems 2.1 and 2.3

Similarly we can show that \(F_2 \) and \(F_3 \) are also not induced subgraphs of \(G \).

Conversely, suppose that \(k \geq 2 \) and that \(\text{diam}(L(G)) > k \). Then \(G \) must possess two independent edges, say \(e_i = (uv) \) and \(e_j = (xy) \), such that neither \(u \) nor \(v \) are adjacent to either \(x \) or \(y \). If so, then because the diameter of \(L(G) \) is greater than \(k \), there must exist \(k - 1 \) vertices, say \(u_1, u_2, \ldots, u_{k-1} \) such that \(u \) is adjacent to \(u_1 \), \(u_i \) is adjacent to \(u_{i+1} \), \(i = 1, 2, \ldots, k - 2 \), and \(u_{k-1} \) is adjacent to \(x \). If \(u_i \), \(i = 1, 2, \ldots, k - 1 \) are not adjacent to either \(v \) or \(y \), then \(G \) has \(F_1 \) as an induced subgraph (spanned by the vertices \(v, u, u_1, u_2, \ldots, u_{k-1}, x, y \)). If \(u_1 \) is adjacent to \(v \) (or \(u_{k-1} \) is adjacent to \(y \)), then \(G \) has \(F_2 \) as an induced subgraph. If \(u_1 \) is adjacent to \(v \) and \(u_{k-1} \) is adjacent to \(y \), then \(G \) has \(F_3 \) as an induced subgraph, a contradiction. Hence \(\text{diam}(L(G)) \leq k \). \(\square \)

Theorem 1.2 is a special case of Theorem 2.1, for \(k = 2 \). From Theorem 2.1, we observe that the condition \(\text{diam}(G) \leq 2 \), in Theorem 1.2 was not necessary.
Theorem 2.2. Let G be a connected graph with $n \geq 3$ vertices. Then $\text{diam}(L(G)) = 1$ if and only if $G \cong K_3$ or $G \cong K_{1,n-1}$.

Proof. If $G \cong K_3$, then $L(K_3) = K_3$ and $\text{diam}(L(K_3)) = \text{diam}(K_3) = 1$. If $G \cong K_{1,n-1}$, then all the edges of $K_{1,n-1}$ are incident to a common vertex. Therefore all vertices are adjacent to each other in $L(K_{1,n-1})$ and thus $L(K_{1,n-1}) \cong K_{n-1}$. Hence $\text{diam}(L(K_{1,n-1})) = 1$.

Conversely, let $\text{diam}(L(G)) = 1$. Suppose that $G \not\cong K_3$, $K_{1,n-1}$. Then in G there exists at least two independent edges, say $e_i = (uv)$ and $e_j = (xy)$. Therefore $d_{L(G)}(e_i,e_j) > 1$. Thus $\text{diam}(L(G)) > 1$, a contradiction. Hence it must be $G \cong K_3$ or $G \cong K_{1,n-1}$.

\(\square\)

Evidently, the diameter of $L(G)$ is zero if and only if $G \cong K_1$ or $G \cong K_2$.

A statement equivalent to Theorem 2.1 is:

Theorem 2.3. Let G be a connected graph with $n \geq 3$ vertices. Let $k \geq 2$. Then $\text{diam}(L(G)) > k$, if and only if either F^k_1 or F^k_2 or F^k_3, depicted in Fig. 2, is an induced subgraph G.

3. A RESULT FOR SECOND LINE GRAPH

Let P_{k-1} be the path with vertices $u_1, u_2, \ldots, u_{k-1}$, where u_i is adjacent to u_{i+1}, $i = 1, 2, \ldots, k-2$, $k \geq 3$. Let F^k_4 be the graph obtained from P_{k-1} by joining two vertices to u_1 and another two vertices to u_{k-1} (see Fig. 3). F^k_4 has $k + 3$ vertices and $k + 2$ edges.

\[F^k_4\]

Fig. 3. The graph mentioned in Theorem 3.1

Theorem 3.1. Let $k \geq 3$. If F^k_4 is an induced subgraph of G, then $\text{diam}(L^2(G)) \geq k - 1$.

Proof. Let $k \geq 3$. Let F^k_4 be the induced subgraph of G. Then $L(F^k_4)$ is isomorphic to F^{k-1}_3, and by Lemma 1.1, $L(F^k_4)$ is an induced subgraph of $L(G)$. Therefore F^{k-1}_3 is an induced subgraph of $L(G)$. Hence by Theorem 2.3, $diam(L(L(G))) = diam(L^2(G)) > k - 1$.

\(\square\)

Acknowledgments. All authors thank the referees for helpful comments.
On Diameter of Line Graphs

REFERENCES