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Abstract. We construct one−step iterative process for an α− nonexpan-

sive mapping and a mapping satisfying condition (C) in the framework of

a convex metric space. We study △−convergence and strong convergence

of the iterative process to the common fixed point of the mappings. Our

results are new and valid in hyperbolic spaces, CAT (0) spaces, Banach

spaces and Hilbert spaces, simultaneously.
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1. Introduction

Let K be a nonempty subset of a metric space X and T : K → K be a

mapping. Denote by F (T ), the set of fixed points of T. We say that T is:

(1) nonexpansive if d(Tx, Ty) ≤ d(x, y) for x, y ∈ K

(2) quasi-nonexpansive if d(Tx, y) ≤ d(x, y) for x ∈ K, y ∈ F (T )

Received 14 November 2016; Accepted 28 April 2018

c©2019 Academic Center for Education, Culture and Research TMU

167

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.ir
 o

n 
20

25
-0

7-
04

 ]
 

                             1 / 13

http://ijmsi.ir/article-1-985-en.html


168 H. Fukhar-ud-din

(3) said to satisfy condition(C) if 1
2
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤

d(x, y) for x, y ∈ K

(4) α−nonexpansive if d(Tx, Ty)2 ≤ αd(Tx, y)2+αd(x, Ty)2+(1− 2α) d(x, y)2

for x, y ∈ K and for some α < 1.

In 2008, Suzuki[15] proposed the condition (C) and showed that it is weaker

than nonexpansiveness but stronger than quasi-nonexpansiveness.

Aoyama and Kohsaka[2] introduced the class of α−nonexpansive mappings

in Banach spaces and concluded the following facts:

(i) 0− nonexpansive mapping is nonexpansive

(ii) 1
2
−nonexpansive mapping is nonspreading

(iii) 1
3
−nonexpansive mapping is hybrid mapping

The following example shows that α−nonexpansive mapping and a map-

ping satisfying condition(C) are two different generalizations of nonexpansive

mappings with a common fixed point.

Example 1.1. Take X = R,K = [0, 3] and T, S : K → K by

Tx =

{

0 if x 6= 3

1 if x = 3

and

Sx =

{

0 if x 6= 3

2 if x = 3.

Here we see that T satisfies condition(C) and S is 1
4
−nonexpansive with 0 as

their common fixed point. Also, T is not an α−nonexpansive and S does not

satisfy condition(C). Moreover, both S and T are discontinuous mappings and

therefore are not nonexpansive.

Takahashi and Tamura[17] studied the weak convergence of two nonexpan-

sive mappings T1 and T2 in the setting of Banach space using the scheme

x1 ∈ K, xn+1 = (1− αn)xn + αnT1 {βnT2xn + (1− βn)xn} (1.1)

where 0 < a ≤ αn, βn ≤ b < 1.

Dhompongsa et al. [5] used the scheme(1.1) to prove the weak convergence

theorem of a nonspreading mapping and a mapping satisfying condition(C)

in the framework of Hilbert spaces(see also [3],[10],[13]). Wattanawitoon and

Khamlae[18] also considered the scheme(1.1) for proving the convergence theo-

rem for an α−nonexpansive mapping and a mapping satisfying the condition(C)
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in Hilbert spaces. The proof of their main result depends on the following iden-

tity in Hilbert spaces

‖x+ y‖
2
= ‖x‖

2
+ ‖y‖

2
+ 2 〈x, y〉 . (1.2)

A nonlinear framework for the iterative construction of fixed points of cer-

tain classes of nonlinear mappings is a metric space embedded with a convex

structure.

Takahashi[16] introduced a convex structure W : X2 × I → X on a metric

space X satisfying

(W1): d (u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)

for all x, y, u ∈ X and λ ∈ I = [0, 1] .

A metric space X with a convex structure W is known as a convex metric

space and is also denoted by X.

In general, convex structure W is not continuous. However, if the inequality

d(W (x, y, λ),W (x, z, λ)) ≤ (1− λ) d(z, w)

holds in the convex metric space X, then it becomes continuous.

Kohlenbach [11] enriched the concept of Takahashi convex metric space as

”hyperbolic space” by including the following additional conditions in the def-

inition of a convex metric space.

(W2) : d(W (x, y, λ1),W (x, y, λ2)) = |λ1 − λ2| d(x, y)

(W3) : W (x, y, λ) = W (y, x, 1− λ)

(W4) : d(W (x, z, λ),W (y, w, λ)) ≤ λd(x, y) + (1− λ) d(z, w)

for all x, y, z, w ∈ X and λ, λ1, λ2 ∈ I.

A nonempty subset K of X is convex if and only if W (x, y, λ) ∈ K for all

x, y ∈ K and λ ∈ I.

A convex metric space X is uniformly convex [14] if for all u, x, y ∈ X, r > 0

and ε ∈ (0, 2], there exists a δ > 0 such that d
(

W (x, y, 1
2
), u

)

≤ (1 − δ)r < r,

whenever d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ rε.

Let {xn} be a bounded sequence in X. We define r(., {xn}) on X by

r(x, {xn}) = lim sup
n→∞

d(x, xn), x ∈ X.

The asymptotic radius rK({xn}) of {xn} with respect toK ⊆ X is defined as

rK({xn}) = inf
x∈K

r (x, {xn})

and the asymptotic center AK({xn}) of {xn} with respect to K is the set

AK({xn}) = {y ∈ K : r(y, {xn}) = rK({xn})} .

A sequence {xn} in (X, d) (a) is Fejér monotone with respect to a subset K

of X if d(xn+1, x) ≤ d(xn, x) for all x ∈ K (b) △−converges to x ∈ X if x is
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the unique asymptotic center for every subsequence {un} of {xn}. In this case,

we write △− limn xn = x.

In this paper, we are interested to approximate common fixed point of an

α−nonexpansive mapping and a mapping satisfying condition(C) in the convex

metric space. Due to lack of the identity(1.2) in the convex metric space, we are

unable to approximate common fixed point of the mappings through convex

metric version of scheme(1.1). Therefore, we propose a one−step iterative

scheme to approximate common fixed point of an α−nonexpansive mapping

and a mapping satisfying condition(C) in the setting of a convex metric space.

Our scheme is as under

x1 ∈ K, xn+1 = W

(

Txn,W

(

Sxn, xn,
βn

1− αn

)

, αn

)

(1.3)

where 0 < a ≤ αn, βn ≤ b < 1 and αn + βn < 1.

When S = I in (1.3), it reduces to Mann iterative scheme [12]

xn+1 = W (Txn, xn, αn) .

In a normed space setting, (1.3) becomes one−step iterative scheme[19]

xn+1 = αnTxn + βnSxn + (1− αn − βn)xn

where 0 < a ≤ αn, βn ≤ b < 1 and αn + βn < 1.

Here, we state some results which will be needed in the main section.

Lemma 1.2. [15] Let T be a self-mapping on a subset K of a metric space X.

If T satisfies condition(C), then

d (x, Ty) ≤ 3d (Tx, x) + d (x, y)

holds for all x, y ∈ K.

Lemma 1.3. [4] Let K be a nonempty closed subset of a complete metric space

(X, d) and {xn} a Fejér monotone sequence with respect to K. Then {xn} con-

verges to some point p ∈ K if and only if limn→∞ d(xn,K) = 0.

Lemma 1.4. [6] Let K be a nonempty, closed and convex subset of a complete

and uniformly convex metric space X. Then every bounded sequence {xn} in

X has a unique asymptotic center with respect to K.

Lemma 1.5. [7] Let X be a uniformly convex metric space with continuous

convex structure W. Let x ∈ Xand {an} be a sequence in [b, c] for some b, c ∈

(0, 1). If {un} and {vn} are sequences in X such that lim supn−→∞ d(un, x) ≤

r, lim supn−→∞ d(vn, x) ≤ rand limn−→∞ d(W (un, vn, an) , x) = r for some

r ≥ 0, then limn→∞ d(un, vn) = 0.
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Lemma 1.6. [8] Let K be a nonempty, closed and convex subset of a metric

space X and T be an α− nonexpansive mapping on K. For any x, y ∈ K, the

following assertions hold:

(i) If 0 ≤ α < 1, then d (x, Ty)
2
≤ 1+α

1−α
d (x, Tx)

2
+ 2

1−α
{αd (x, y) + d (Tx, Ty)} d (x, Tx)+

d (x, y)
2
,

(ii) If α < 0,then d (x, Ty)
2
≤ d (x, Tx)

2
+ 2

1−α
{d (Tx, Ty)− αd (Tx, y)} d (x, Tx)+

d (x, y)
2
.

From now onwards, for an α−nonexpansive mapping T on K and S a map-

ping on K satisfying condition(C), we set F = F (S) ∩ F (T ).

2. Convergence Theorems

We start with the following lemma.

Lemma 2.1. Let K be a subset of a metric space X. Let T : K → K be

an α−nonexpansive sel-mapping for some α < 1 and S a self-mapping on K

satisfying condition(C) with F 6= φ. Then T and S are quasi-nonexpansive and

F is closed.

Proof. Let x ∈ K and z ∈ F. Consider

d (Tx, z)
2

= d(Tx, Tz)2

≤ αd(Tx, z)2 + αd(x, Tz)2 + (1− 2α) d(x, z)2

= αd(Tx, z)2 + αd(x, z)2 + (1− 2α) d(x, z)2

= αd(Tx, z)2 + (1− α) d(x, z)2.

That is,

d (Tx, z) ≤ d(x, z)

and
1

2
d (z, Sz) = 0

gives that

d (Sx, z) ≤ d(x, z).

Therefore, both S and T are quasi-nonexpansive.

Let {zn} be a sequence in F such that zn → z. We claim that z ∈ F.

Since

d (Sz, zn) ≤ d(z, zn) → 0 and d (Tz, zn) ≤ d(z, zn) → 0,

therefore Sz = z = Tz, proving that F is closed. �

Lemma 2.2. Let K be a nonempty, closed and convex subset of a convex

metric space X. Let T be an α−nonexpansive self-mapping on K and S a self-

mapping on K satisfying condition(C) such that F 6= φ. Then for the sequence

{xn} in (1.3), we have the followings:

(i) {xn} is a Fejér monotone sequence with respect to F

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.ir
 o

n 
20

25
-0

7-
04

 ]
 

                             5 / 13

http://ijmsi.ir/article-1-985-en.html


172 H. Fukhar-ud-din

(ii) limn→∞ d(xn, p) exists for each p ∈ F

(iii) limn→∞ d(xn, F ) exists.

Proof. With the help of (W1) and the scheme(1.3), for any p ∈ F, we have

d (xn+1, p) = d

(

W

(

Txn,W

(

Sxn, xn,
βn

1− αn

)

, αn

)

, p

)

≤ αnd (Txn, p) + (1− αn) d

(

W

(

Sxn, xn,
βn

1− αn

)

, p

)

≤ (1− αn)

[

βn

1− αn

d (Sxn, p) +

(

1−
βn

1− αn

)

d (xn, p)

]

+αnd (xn, p)

≤ (1− αn)

[

βn

1− αn

d (xn, p) +

(

1−
βn

1− αn

)

d (xn, p)

]

+αnd (xn, p)

= αnd (xn, p) + βnd (xn, p) + (1− αn − βn) d (xn, p)

= d (xn, p) .

That is,

d (xn+1, p) ≤ d (xn, p) . (2.1)

Immediately, (2.1) gives that (i): {xn} is a Fejér monotone sequence with re-

spect to F and (ii): limn→∞ d(xn, p) exists for each p ∈ F.

Finally infp∈F d (xn+1, p) ≤ infp∈F d (xn, p) provides that (iii): limn→∞ d(xn, F )

exists. �

Lemma 2.3. Let K be a nonempty, closed and convex subset of a complete and

uniformly convex metric space X with continuous convex structure W. Let T be

an α−nonexpansive self-mapping on K and S a self-mapping on K satisfying

condition(C) such that F 6= φ. If {zn} is any bounded sequence in K with

A({zn}) = {z} and

lim
n→∞

d (zn, Szn) = 0 = lim
n→∞

d (zn, T zn) ,

then z ∈ F.

Proof. Let A({zn}) = {z}. We show that z ∈ F.

By Lemma 1.2, we have

d (zn, Sz) ≤ 3d (zn, Szn) + d (zn, z)

which further implies that

lim sup
n→∞

d (zn, Sz) ≤ 3 lim sup
n→∞

d (zn, Szn) + lim sup
n→∞

d (zn, z)

= lim sup
n→∞

d (zn, z) .

By the uniqueness of asymptotic centers (Lemma 1.4), we have that Sz = z.

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.ir
 o

n 
20

25
-0

7-
04

 ]
 

                             6 / 13

http://ijmsi.ir/article-1-985-en.html


Iterative process for an α− nonexpansive mapping and a mapping · · · 173

Next, we show that Tz = z.

Since {zn} is bounded and limn→∞ d (zn, T zn) = 0, therefore {Tzn} is also

bounded. Set M = supn≥1 {d (zn, z) , d (Tzn, z) , d (Tzn, T z)} < ∞.

Applying Lemma 1.6 (i)-(ii) for 0 ≤ α < 1 and α < 0, respectively, we have

that

d (zn, T z)
2

≤
1 + α

1− α
d (zn, T zn)

2
+

2

1− α
(αd (zn, z) + d (Tzn, T z)) d (zn, T zn)

+d (zn, z)
2

≤
1 + α

1− α
d (zn, T zn)

2
+

2M (1 + α)

1− α
d (zn, T zn) + d (zn, z)

2

and

d (zn, T z)
2

≤ d (zn, T zn)
2
+

2

1− α
(d (Tzn, T z)− αd (Tzn, z)) d (zn, T zn)

+d (zn, z)
2

≤ d (zn, T zn)
2
+ 2Md (zn, T zn) + d (zn, z)

2

Taking lim supn→∞ on both sides in the above two inequalities and using the

fact that limn→∞ d (zn, T zn) = 0, we have that

lim sup
n→∞

d (zn, T z)
2
≤ lim sup

n→∞

d (zn, z)
2
.

By the uniqueness of asymptotic centers (Lemma 1.4), Tz = z. �

Lemma 2.4. Let K be a nonempty, closed and convex subset of a uniformly

convex metric space X with continuous convex structure W. Let T be an α−nonexpansive

self-mapping on K and S be a self-mapping on K satisfying condition(C) such

that F 6= φ. Then for the sequence {xn} in (1.3), we have

lim
n→∞

d (xn, Sxn) = 0 = lim
n→∞

d (xn, Txn) .

Proof. It follows from Lemma 2.2 that limn→∞ d(xn, p) exists for p ∈ F. Set

limn→∞ d(xn, p) = c.

For c > 0, limn→∞ d(xn+1, p) = c can be expressed as

lim
n→∞

d

(

W

(

Txn,W

(

Sxn, xn,
βn

1− αn

)

, αn

)

, p

)

= c. (2.2)

As T is an α−nonexpansive and p ∈ F (T ) , therefore

lim sup
n→∞

d(Txn, p) ≤ c. (2.3)

Since S satisfies condition(C) and p ∈ F (S) ,we have

d

(

W

(

Sxn, xn,
βn

1− αn

)

, p

)

≤
βn

1− αn

d(Sxn, p)

+

(

1−
βn

1− αn

)

d(xn, p)

≤ d(xn, p).

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.ir
 o

n 
20

25
-0

7-
04

 ]
 

                             7 / 13

http://ijmsi.ir/article-1-985-en.html


174 H. Fukhar-ud-din

That is,

lim sup
n→∞

d

(

W

(

Sxn, xn,
βn

1− αn

)

, p

)

≤ c. (2.4)

In the light of (2.2)-(2.4), we use Lemma 1.5 for the values x = p, r = c, an =

αn, un = Txn, vn = W
(

Sxn, xn,
βn

1−αn

)

and get

lim
n→∞

d

(

Txn,W

(

Sxn, xn,
βn

1− αn

))

= 0. (2.5)

With the help of (2.5) and the the inequality

d(xn+1, Txn) ≤ d

(

W

(

Txn,W

(

Sxn, xn,
βn

1− αn

)

, αn

)

, Txn

)

≤ (1− αn)d

(

W

(

Sxn, xn,
βn

1− αn

)

, Txn

)

≤ (1− b)d

(

W

(

Sxn, xn,
βn

1− αn

)

, Txn

)

,

we get that

lim
n→∞

d(xn+1, Txn) = 0. (2.6)

By lim infn→∞ on both sides in the following inequality

d(xn+1, p) ≤ d(xn+1, Txn) + d

(

Txn,W

(

Sxn, xn,
βn

1− αn

))

+d

(

W

(

Sxn, xn,
βn

1− αn

)

, p

)

,

we have

c ≤ lim inf
n→∞

d

(

W

(

Sxn, xn,
βn

1− αn

)

, p

)

. (2.7)

The combined effect of (2.4) and (2.7) provides that

lim
n→∞

d

(

W

(

Sxn, xn,
αn

1− βn

)

, p

)

= c. (2.8)

Again by Lemma 1.5 for values x = p, r = c, an = αn

1−βn
, un = Sxn, vn = xn,

we get

lim
n→∞

d(xn, Sxn) = 0. (2.9)
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Now with the help of (2.5), (2.6), (2.9) and the inequality

d(xn+1, xn) ≤ d(xn+1, Txn) + d

(

Txn,W

(

Sxn, xn,
αn

1− βn

))

+d

(

W

(

Sxn, xn,
αn

1− βn

)

, xn

)

≤ d(xn+1, Txn) + d

(

Txn,W

(

Sxn, xn,
αn

1− βn

))

+

(

1−
αn

1− βn

)

d(xn, Sxn)

≤ d(xn+1, Txn) + d

(

Txn,W

(

Sxn, xn,
αn

1− βn

))

+

(

1− 2a

1− b

)

d(xn, Sxn),

we get that

lim
n→∞

d(xn+1, xn) = 0. (2.10)

Taking lim supn→∞ on both sides in the following inequality

d(xn, Txn) ≤ d (xn, xn+1) + d (xn+1, Txn)

and using (2.6) and (2.10), we get

lim
n→∞

d(xn, Txn) = 0.

Therefore

lim
n→∞

d(xn, Sxn) = 0 = lim
n→∞

d(xn, Txn).

�

Here is our △−convergence theorem.

Theorem 2.5. Let K be a nonempty, closed and convex subset of a complete

and uniformly convex metric space X with continuous convex structure W. Let

T be an α−nonexpansive self-mapping on K,S a self-mapping on K satisfying

condition(C) and {xn} given in (1.3). If F 6= φ, then △− limn xn = x ∈ F.

Proof. Lemma 2.2 provides that {xn} is bounded and therefore Lemma 1.4

appeals that {xn} has a unique asymptotic centre, that is, A({xn}) = {x}.

For any subsequence {un} of {xn}, Lemma 1.4 gives that A({un}) = {u} and

Lemma 2.4 provides that

lim
n→∞

d(un, Tun) = 0 = lim
n→∞

d(un, Sun).
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Then by Lemma 2.3, we conclude that u ∈ F. We claim that x = u. If not,

then by the uniqueness of asymptotic centres, we have

lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, u)

= lim sup
n→∞

d(un, u),

a contradiction.

Therefore, A({un : {un} is any subsequence of {xn}}) = {x}. This proves that

△− limn xn = x ∈ F. �

A self-mapping T : K → K is semi-compact if for any bounded sequence

{xn} in K with d(xn, Txn) → 0, we must have that {xn} has a convergent

subsequence in K.

Two self-mappings S and T on K with a nonempty subset F of K are said

to satisfy condition (AV) if there exists a nondecreasing function f on [0,∞)

with f(0) = 0 and f(t) > 0 for all t ∈ (0,∞) such that

1

2
[d (x, Tx) + d (x, Sx)] ≥ f(d(x, F )) for all x ∈ K.

Using Lemma 2.2 and Lemma 2.4, we obtain the following strong conver-

gence theorems.

Theorem 2.6. Let K be a nonempty, closed and convex subset of a complete

and uniformly convex metric space X with continuous convex structure W. Let

T be an α−nonexpansive self-mapping on K, S a self-mapping on K satisfying

condition(C) and {xn} given in (1.3). If F 6= φ and either S or T is semi-

compact, then the sequence {xn} converges strongly to an element of F.

Proof. Suppose that T is semi-compact. Since {xn} is bounded and d (xn, Sxn) →

0, there exists a subsequence {xnj
} of {xn} such that xnj

→ q ∈ K and

lim
j→∞

d(xnj
, Sxnj

) = 0 = lim
j→∞

d(xnj
, Txnj

).

Using x = xnj
and y = q in Lemma 1.2 and Lemma 1.6, we get that q ∈ F.

Therefore xn → q ∈ F as limn→∞ d(xn, p) exists for every p ∈ F (Lemma

2.2). �

Theorem 2.7. Let K be a nonempty, closed and convex subset of a complete

and uniformly convex metric space X with continuous convex structure W. Let

T be an α−nonexpansive self-mapping on K, S a self-mapping on K satisfying

condition(C) and {xn} given in (1.3). If F 6= φ and S and T satisfy condition

(AV), then the sequence {xn} converges strongly to an element of F.
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Proof. By Lemma 2.1, F is closed. Using condition (AV) and Lemma 2.4,

we have that limn→∞ d(xn, F ) = 0. Finally by Lemma 1.3, xn → p for some

p ∈ F. �

The followings are corollaries to our Theorems 2.5-2.7 and yet they are new

in the literature.

Corollary 2.8. Let K be a nonempty, closed and convex subset of a complete

and uniformly convex metric space X with continuous convex structure W. Let

T be a nonspreading(or hybrid) self-mapping on K,S a self-mapping on K

satisfying condition(C) and {xn} given in (1.3). If F 6= φ, then △− limn xn =

x ∈ F.

Proof. Choose α = 1
2
in Theorem 2.5 for a nonspreading mapping (α = 1

3
in

the case of a hybrid mapping) to get the required result. �

Corollary 2.9. Let K be a nonempty, closed and convex subset of a complete

and uniformly convex metric space X with continuous convex structure W. Let

T be a nonspreading(or hybrid) self-mapping on K, S a mapping on K satis-

fying condition(C) and {xn} given in (1.3). If either S or T is semi-compact,

then the sequence {xn} converges strongly to an element of F.

Proof. Set α = 1
2
in Theorem 2.6 for a nonspreading self-mapping (α = 1

3
in

the case of a hybrid self-mapping) to get the required result. �

Corollary 2.10. Let K be a nonempty, closed and convex subset of a complete

and uniformly convex metric space X with continuous convex structure W. Let

T be a nonspreading(or hybrid) self-mapping on K, S a mapping on K satisfy-

ing condition(C) and {xn} given in (1.3). If S and T satisfy condition (AV),

then the sequence {xn} converges strongly to an element of F.

Proof. Take α = 1
2
in Theorem 2.7 for a nonspreading self-mapping (α = 1

3
in

the case of a hybrid self-mapping) to get the required result. �

Remark 2.11. Observe that

(i) Hyperbolic spaces, CAT (0) spaces, Banach spaces and Hilbert spaces are

convex metric spaces, therefore our results also hold in Hyperbolic spaces,

CAT (0) spaces, Banach spaces and Hilbert spaces, simultaneously.

(ii) Every nonexpansive self-mapping is α−nonexpansive and satisfy condi-

tion(C) also, therefore our theorems generalize the corresponding ones in [1, 7,

9, 10] etc.

(iii) Results of this paper are analogues of Theorem 3.1-Theorem 3.3 in [18].

(iv) A nonexpansive mapping is always continuous but an α−nonexpansive

mapping and a mapping satisfying condition(C) may or may not be continu-

ous. Therefore our results also hold for discontinuous mappings.

(v) The approximation of common fixed point of an α− nonexpansive self-

mappingT onK and a self-mapping S onK satisfying condition(C) via Ishikawa
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iterative scheme: x1 ∈ K,xn+1 = W (T (W (Sxn, xn, βn)) , xn, αn) requires the

extensive use of identity (1.2) (see [18]) while our scheme(1.3) does not. There-

fore our scheme is better than Ishikawa iterative scheme. Also our scheme is

computationally simpler than Ishikawa iterative scheme.

Remark 2.12. The essentials of hypotheses in our theorems are natural in view

of the following observations: Take X = R,K = [0, 3] , T, S : K → K as

in Example 1.1.Then F (S) ∩ F (T ) = {0} .If αn = n+1
3n

and βn = n+1
4n

, then

0 < αn, βn < 1.

Open Problem: Can we approximate common fixed point of an α−nonexpansive

mapping and a mapping satisfying condition(C) via scheme(1.1) under the hy-

pothesis of Theorem 2.5?
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