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ABSTRACT. In this paper, we classify the skew cyclic codes over Fp +
vFp + U2]Fp, where p is a prime number and v3 = v. Each skew cyclic
code is a Fp +vF;, +v2Fp-submodule of the (Fp +vF, +v2Fp)[x; 6], where
v3 = v and (v) = —v. Also, we give an explicit forms for the generator of
these codes. Moreover, an algorithm of encoding and decoding for these

codes is presented.
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1. INTRODUCTION

Recently, there has been a vast interests on the study of cyclic codes. It is
mainly due to their applications in power management [21], secret sharing [24,
23], steganography [14], etc. Also, these codes are easy to design considering
their high accuracy and performance. In the last decades, the literature was
limited to study the cyclic codes over finite fields. But, recently, there are
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a lot of papers which studies the cyclic codes over finite rings like [8, 18, 9].
First, unlike the finite fields, there is not any limitation for the number of
input symbols in the cyclic codes over finite rings. Second, the polynomial ring
over a finite ring is not necessarily a UFD. Thus, there may be more divisors
for £™ — 1 which results in more possibilities to choose a generator polynomial.
These benefits pays the way to introduce new families of cyclic coding categories
like quasi cyclic codes [1], constacyclic codes [27], and double codes [11].

One of the most applicable type of cyclic codes is skew cyclic codes which
were introduced by Boucher in [4]. The structure of these codes are based
on the skew polynomial rings. The reason of choosing these non commutative
rings is the fact that factorization in these rings is even harder than the one
in polynomial rings. So the possibilities of choosing a generator polynomial
grows. Boucher also introduced different types of skew cyclic codes in [6, 5].
Then in the papers [19, 10, 26, 12], the skew cyclic codes over different rings
are proposed. Also the authors in [13] defined the skew cyclic codes over a
finite chain rings.

For a given automorphism 6 of R, the set R[x;6] consisting of polynomials
f=ay+aix+ -+ apx™, with a; € R forms a ring under usual addition
of polynomials and multiplication defined by the rule (az®)(bz?) = af*(b)z**7,
for each a,b € R, and is called the skew polynomial ring over R. Also, an
skew cyclic code C over a ring R is an R-submodule of R[z;6] such that if
(co,c1,++ yen—1) € C, then (6(cn—1),0(co), - ,0(cn_2) € C. If F is a field, it
is proved that codes are in fact the submodules of —-f) (e.g., see [4]). We

<zm—1>
prove the same result for the skew cyclic codes over F,, + vF,, + v*F,. Also for
each ring R, <f£“i(91]> is a ring if and only if ™ — 1 € Center(R[xz;0]). So we

need to find the center of R, if we want to exploit the ring structure of skew
cyclic codes.

The Hamming distance of U = (ug, - un—1),V = (vg, - Up_1) Over a ring
T, is the cardinality of the set {i|v; # u;}. Also the Lee distance U,V is:

n—1
(U, V) =" |u; — vil, (1.1)
i=0
where |.| means a metric over 7.

In this paper, we try to classify the skew cyclic codes over the ring F, +
vF, + v?F, where v®* = v and 6(v) = —v. We study the construction of
(Fp, +vF, +v2F,)[x; 0]. This helps us to classify the skew cyclic codes. Finally,
we propose an algorithm to encode and decode the principle codes. For the
other types of codes, we give an explicit form of their generators.

2. ON THE RING (F, + vF,, + v*F))[z; 0]

We study on the ring R = (F, + vF, + v’F,)[z; 0] where 0(v) = —v and
v® = v. First, we have to find the properties of S = F, + vF, + v°F,.
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Now, we try to find the units and nonzero divisors of S.

Proposition 2.1. Let u = a +bv + cv?> € S. Then u € U(S), if and only if
a#0anda—-b+c#0ora+b+c+#0.

Proof. <= As a # 0 it suffices to prove that v’ = 1+ a 1bv + a~tcv? € U(9).
For, = Let u = a + bv + cv? € U(S). w is unit, if and only if the following
matrix equation has a unique solution.

a 0 0
b at+c b |[x,y 2" =1[1,0,0. (2.1)
c b a+c
This equation has solution, if and only if the determinant of the above matrix
is nonzero. This follows the result. (]

Proposition 2.2. Let z = a+bv +cv? € S. Then z is a zero divisor in S, if
and only if eithera =0, ora+c—b=0, ora+b+c=0.

Proof. Let z(d + fv + hv?) = 0. So the following equations holds.

ad =0
bd+(a+c)f+bh=0
cd+af+h(c+a)=0 (2.2)

The above equation has a nonzero solution for the vector (d, f, k), if and only
if the determinant of the following matrix is zero.

a 0 0
b a+c b |. (2.3)
c b a+c

It means that d + fv + hv? # 0, if and only a((a + ¢)? — b*) = 0. So either
a=0,ora+c—b=0,ora+b+c=0. O

Corollary 2.3. u € S is nonzero divisor, if and only if u is unit.

Proposition 2.4. The only automorphisms of S are 0(a+bv+cv?) = a—bv+
cv? and the identity.

Proof. Let a+bv+cv? f+gv+ hv? € S. Let O(v) = x + yv + 202 If § is an
automorphism, then

z+yv+ 202 =0(v) = 0(v?) = (z + yv + 20?)3
=23 + v(3yz? + 6zyz + y° + 32%y)
+02 (2% 4 3x2% + 3y°2 + 3222 + 3xy?) (2.4)

If z = 0, one can find that b = £1,z =0 or y = 0,2z = £1. But v # v?, so
z = %1 is impossible. So either §(v) = —v or 6 is identity.
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Assume that z = £1. Since v is zero divisor and 6 is an automorphism,z +
yv + zv? is also a zero divisor. Considering the fact that z # 0, y = +2. So

y=y>+£6y> +6y , F*y=4=+y>+6y>+3y (2.5)
One can see that these equations do not have any solution except y = 0. But
0(v) # 1, since 6 is surjective. This ends the proof. O
Proposition 2.5. Nil(S) = 0.

Proof. Let 2™ = 0. Without loss of generality, suppose that n is even. So
(a4 bv + cv?)™ = 0 which means that ™ = 0. Hence z = v(b+ cv). Since
v(b + cv) is a zero divisor, b2 = ¢% or b = 0 by lemma 2.2. If b = 0, z = 0.
Assume that b? = ¢2. So

%
0 =0%b+ cv)" = 2" (1 + vz

0
This implies Z?:O (21.11) =0and > 2, (5) = 1. So (1 —1)" = 2 which is

impossible. Hence Nil(S) = 0. O

Now, we try to study the structure of R = S[z;6]. In the first place, we find
the center of R.

Theorem 2.6. center(R) = {3, 2,2"|3an, by € Fp, 2, = ap, + c,,v°}.

Proof. Let f(x) = ), zna™ € center(R). Let zpr41 # 0 for some k. So if

f(x) = h(z) + 201412+, then

vf(x) =vh(z)+ vzghp1 2L £ h(z)v — vzgpp a2kl =h(x)v + Zoppr22F Ly
=f(z)v. (2.7)

So center(R) C S[x?;6]. Now assume that z, = a, + vb, + v%c,. So

zf(z) == Z(an + b, +vie,)az™ = Z(anx + zvb, + 2vc, )"
= Z(an — wby, 4+ vie,)x" (2.8)
n

Also, f(z)z =Y, (an + vb, + v?c,)xz™ . This means that zf(z) = f(z)z, if
and only if b, = 0 for all n. On the other hand, since x2,v%2? € center(R), so
(Fp + v?°F,)[2?] C center(R). This completes the proof. O

Corollary 2.7. 2™ — 1 € center(R), if and only if n is even.

So if n is even, R, = is a ring. Otherwise, R,, is just an R-module.

_R
<z"n—1>

Proposition 2.8. Let I 9 R, and n is even. If g € I is the polynomial with
the least degree and the leading coefficient of g is a zero divisor, then all of its
coefficients are zero divisors.
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Proof. Let g(z) = 3", gna™ be the polynomial with the least degree. Assume
that g, is a zero divisor. So there exists h € S such that hg,, = 0. Since I is
an ideal, hg € I and its degree is less than the degree of g. This contradicts
with the definition of g. So h € Ann(g,) for 0 <n < m. O

The following example shows that R is not an Euclidean ring.
EXAMPLE 2.9. Let f(x) = vz? + 1,g(x) = vz. Then
F() = — 2g(x) +1
f(z) = —vixg(x) + 1. (2.9)
It is clear that —x # —vx and deg(1l) < deg(vz). So R is not Euclidean.
We know that being FEuclidean is very useful in decoding process. Unfortu-

nately, R is not Euclidean, but we prove the following theorem to address this
problem.

Theorem 2.10. Let f,g € R and g be a polynomial with unit leading coeffi-
cient. Then there exists unique q,7 € R such that f = qg + r and deg(r) <

deg(g).

Proof. The proof is similar to the one in [6] for Galois rings. Let f(x) =
St fixt, g(z) = Zf:o g;x'. We will do it by induction. Let m = 0. Since
f(x) = fo € U(R), g(z) = g(x)fy ' fo + 0. So assume that the result holds for
integers less than m. Then if h = f — emfi,?(qk)xm’kg, deg(h) < deg(f). So
there exists ¢, € S such that h = gqg + r and deg(r) < deg(g). This means
that ;
=i
Now let f = q1g+ 711 = gag + 2. So (r1 —r2) = (g2 — q1)g. ¢ is monic, so
deg(ry — 2) = deg((q2 — q1)g) > deglg) > deg(r1) > deg(ry —r2).  (2.10)

This is impossible and the proof is complete. O

™k qQ)g + .

Theorem 2.11. Let I <R. Suppose that g € I be the polynomial with the least
degree. If g is monic, then I = Rg.

Proof. Let f € I. There exists ¢, € R such that f = qg + r,deg(r) < deg(g).
Since f,qg € I, r € I. This contradicts by the definition of g. O

Proposition 2.12. Let f € R. Then there exists g € R such that fv = vg.

Proof. Let f(x) =3, fna" for some a,b,c € Fp[z]. Then
fo= (Z fax™)v = Z vfpx™ — Z v fpz™. (2.11)

n=2k n=2k+1
So g(x) =3, oy, fn2™ — Zn:2k+1 fna™. 0
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Definition 2.13. The partaker of f € R is the polynomial f’ such that fv =
vf.
Next theorem gives a condition for the unit elements of R.
Theorem 2.14. Let f € U(R). If f(z) =", (an +vb, +v%c,)a™, then ag # 0
and a, = 0,n > 0.
Proof. Let f € U(R). If k(z) = >, anz™, g(z) = >, bpa™, h(z) = >, cha™
If f~' = u + vw + v?y, then
1= (k4 vg +v2h)(u + vw + v?y) =ku + v(k'w + gu + gy + h'w)
+ 0% (gw+ hy + gy + A w).  (2.12)
So k,u € F, which follows the result. O

Lemma 2.15. Let h € S. Then there are three possible cases.
i) There exists t,s € S such that th + s(1 —v?) = 1.
it) 1 —vlh.
iii) 1+ v|h.
Proof. Let he S. If 1 —vthand 1 +vth, hy —ha + hs # 0. One can see

(thgl(v — (hy + h3)hy )1 — (hy + hg)hgl)) (hy + vhy 4 vh)

+ ((1 — (h1 + h3)hyt) +0*hy (v — (hy + h3)hyP)(1 — (hy + hg)h21)> (1—v%)
- 1. (2.13)
O

Theorem 2.16. Let I be an R-submodule of R. Suppose that there is no
monic polynomial in I of minimal degree and f(x) is a non-monic polynomial
in I of minimal degree. Let f = f,h for some monic polynomial h. Then
I C Rg+ ), Rbh for someb; € S.

Proof. Let f(z) = fo+ faiz+ -+ fma™ € I be a non-monic polynomial in I
of minimal degree. Since there is no monic polynomial in I of minimal degree,
f(x) = fih for some monic polynomial h. If

I'={k € Ildeg(f) < deg(k) < deg(g)} (2.14)

is empty, there will be nothing to prove. Otherwise, let w(x) be the polynomial
with minimal degree k. First, let k¥ — m is even. Then there are four cases.

a) There exists [,t € R such that lwy + tf,, = 1. Hence tx™ *f + [w is
a polynomial in C with degree less than deg(g) and unit leading coefficient,
which is impossible.

b) There exists [, € R such that If,, = twg. So lz¥~™f — tw has degree
less than deg(w). Hence, lz*~™f — tw = rf for some » € R. Thus w = bh for
some b € S.
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Now, assume that k € I. There exists ¢,s € R such that w = gg + s and
deg(s) < degg. So there exists b € R such that s = bh. So I C RG+ ), Rb;h.

Second, assume that k& — m is odd. It is enough to discuss the same cases
for 6(g,,) instead of g,,.

So if h € I and h = qg + r where deg(r) < deg(g), then h = qg + ", lzﬁ
Hence I = Spg+3, Snﬁ-. O

Corollary 2.17. Each submodule I of R is in only one of the following forms.
i) I = Rg, where g is the polynomial with the least degree and g is monic.
ii) I € Rg+ ), Rbih, where b; € S and g be the monic polynomial with the

least degree.Also, if f is the polynomial with the least degree in I, there exists

t sich that th = f.

3. SKEw CycLIC CODES OVER S

We know that each skew cyclic code is an R-submodule of R,,. So we try to
classify the codes with arbitrary length over S.

Theorem 3.1. C is an skew cyclic code with length n over S, if and only if C
is a submodule of R,,.

Proof. Let C be an skew cyclic code over S and ¢,d € C. Let c¢(z) = Z;:Ol ¢l
d(z) = Z;:Ol d;z'. Since C is a linear code, ¢+ d € C. Also, zc € C, because
C' is cyclic. This means that f(z)c € C for some f € R,,. So C' is a submodule.

Now assume that C' is a submodule of R,, and ¢,d € C. The definition of
submodule causes that ¢ +d € C, xc € C. So C is an skew cyclic code over
S. O

Theorem 3.2. Let C be a code over S. Then C can be as only one of the
following form.

i) C = R,g,where § € R, is the polynomial with the least degree; also it is
monic and x™ — 1 = gl for somel € R.

ii) C C R,g+>_, %, where g € R, is the monic polynomial with
the least degree; also f = fmh is the polynomial with the least degree and h is

monic. Moreover, x'™ — 1 = gl for somel € R.

Proof. This is because of the fact that C' is in the form of ﬁ for some
I < R by correspondence theorem for modules. The rest is followed by theorem
217 and 2™ —1 € 1. |

The following theorem shows a correspondence between skew cyclic codes
and quasi cyclic codes.

Theorem 3.3. Let n be odd and C' be an skew cyclic code of length n. Then
C is equivalent to a cyclic code of length n over R.

Proof. Tt is similar to the proof of theorem 3.7 in [10]. O
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Lemma 3.4. Let g(x) € R and g(z)h(z) = 2™ — 1 for some h € R. Then
h(z)g(xz) = a™ — 1.

Proof. The proof is similar to the one in lemma 2 in [12]. |

Definition 3.5. Let X = (1,22, -+ ,2,) and Y = (y1, -+ ,yn) be a couple
of elements in R”. The Euclidean and Hermitian inner products of X,Y are
defined as

< XY >p=) ziy (3.1)

< XY >p=)Y z:0(y;). (3.2)

Also, the Ecleadian dual code C+(C+#) of C is

Ct ={z € R"Vce C,< z,c >p=0}
Ctn ={x € R"|Vc€ C,< x,c >u=0} (3.3)

Now we try to explain the encoding and decoding of principle codes.

Encoding of Principle Codes:

Let C =< g >and U = (ug,ug, - ,ur—1) be the impute of the transmission.
Suppose that u(z) = >, w;z". To encode, we need to compute u(z)g(z) as
follows

[ug, ug, -+ up—1]x

go g1 g2 In—k—1 0 0

0 6(go) 6(g1) -+ 0(gn-r-2) 6O(gn—r-1) e 0

0 0 0%(go) -+ O(gn-k-3) O(gn—r—2) 0

0 0 0 S 0% (o) 0" N (gn_r—2) 0" (gn_t_1)
= [vo, 1, , Vn-1]. (3.4)

Decoding of Principle Codes:

kxn
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Assume that Y = (y1,- -, yn) is received through the channel. Suppose that
g(z)h(z) = 2™ — 1 and h(z) = >, h;z'. To decode, first, we should compute

To
1
T'n
ho h1 ho hi 0 0
0 6O(ho) 6(h1) O(hk-1) 0(hi) 0 Yo
Y1
0 0 ho hi—2 hi—1 0 X | .
: : : . .. - : : Un
0 0 0 . ankfl(ho) 9n7k71(9k72) gnfkfl(hk)
(3.5)
Then, we can check the vector [ry,---,r,]T in the syndrome decoding table

and find the codeword.

Theorem 3.6. The minimum distance of C is equal to the maximum number
of dependent columns of the following matrix

hO hl h2 . hk 0 . 0
0 O(ho) 6(h1) --- 0(hk—1) 0(h) e 0
H=|0 0 ho - hy—2 i1 : 0
i : : o nfkfl o nfkflj nfkf:l
0 O 0 9 (ho) 0 (gkfz) (9 (hk) kX
(3.6)

Proof. Let Y is received. Assume that the error is not detectable. Assume
that the real input is L. So L + F = Y where FE is the error vector. So
the error vector E with minimum weight, which is necessary for occurring a
non-detectable error satisfies (L + E)H = 0. Also, since L is the codeword,
LH = 0. This implies EH = 0. So if the non zero entries of E are the nonzero
coefficients of a linear combination of columns of H, a non detectable error
occures. This completes the proof. ([l
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