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ABSTRACT. The purpose of this paper is to prove the existence of a re-
normalized solution of perturbed elliptic problems

—div (a(z,u, Vu) + fb(u)) +g(z,u, Vu) = f —div F,
in a bounded open set 2 and u = 0 on 91, in the framework of Orlicz-
Sobolev spaces without any restriction on the M N-function of the Orlicz
spaces, where — div <a(z, u, Vu)) is a Leray-Lions operator defined from
WolLM(Q) into its dual, ® € CO(R,RY). The function g(z,u, Vu) is a
non linear lower order term with natural growth with respect to |Vul,

satisfying the sign condition and the datum g is assumed to belong to
LY Q) + WLEL(Q).
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1. INTRODUCTION

Let © be a bounded open set of RN, N > 2, and let M be an N-function.
In the present paper we prove an existence result of a renormalized solution of
the following strongly nonlinear elliptic problem

A(u) — div ®(u) + g(z,u,Vu) = f —div F in Q, (11
u=0 on 99. ’
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Here, ® € C°(R, RY), while the function g(z,u, Vu) is a non linear lower order
term with natural growth with respect to |Vu| and satisfying the sign condition.
The non everywhere defined nonlinear operator A(u) = —div (a(z, u, Vu)) acts
from its domain D(A) C Wy Lps(£2) into W~ Ly7(€). The function a(z, u, Vu)
is assumed to satisfy, among others, a(x, u, Vu) nonstandard growth condition
governed by the N-function M, and the source term f € L*(2) and

|F| € E57(Q), M stands for the conjugate of M.

We use here the notion of renormalized solutions, which was introduced
by R.J. DiPerna and P.-L. Lions in their papers [16, 15] where the authors
investigate the existence of solutions of the Boltzmann equation, by introducing
the idea of renormalized solution. This concept of solution was then adapted
to study (1.1) with ® = 0, g = 0 and L!(Q)-data by F. Murat in [29, 28], by
G. Dal Maso et al. in [13] with general measure data and then when f is a
bounded Radon measure datum and g grows at most like |Vu[P~! by Beta et
al. in [9, 10, 11] with ® = 0 and by Guibé and Mercaldo in [23, 24] when ®(u)
behaves at most like |u[P~1. Renormalization idea was then used in [12] for
variational equations and in [30] when the source term is in L'(£2). Recall that
to get both existence and uniqueness of a solution to problems with L'-data,
two notions of solution equivalent to the notion of renormalized solution were
introduced, the first is the entropy solution by Bénilan et al. [4] and then the
second is the SOLA by Dall’Aglio [14].

The authors in [5] have dealt with the equation (1.1) with g = g(x,u) and
e W‘lEﬁ(Q), under the restriction that the N-function M satisfies the Ao-
condition. This work was then extended in [2] for N-functions not satisfying
necessarily the As-condition. Our goal here is to extend the result in [2] solving
the problem (1.1) without any restriction on the N-function M. Recently, a
large number of papers was devoted to the existence of solutions of (1.1). In
the variational framework, that is u € W~1E37(Q), an existence result has
been proved in [3], Specific examples to which our results apply include the
following:

- div(|Vu\p*2Vu + |u|su) + u|VulP = pin Q,

— div<|Vu|p_2Vulogﬁ(1 + |Vul) + \u|su) = in Q,

M(|Vu|)Vu

— div( Vul?

+ \u|su) + M(|Vul) = pin
where p > 1, s > 0, 8 > 0 and p is a given Radon measure on ).

It is our purpose in this paper, to prove the existence of a renormalized
solution for the problem (1.1) when the source term has the form f — div F’
with f € LY(Q) and |F| € E37(f), in the setting of Orlicz spaces without
any restriction on the N-functions M. The approximate equations provide a
W¢ Ly (Q) bound for the corresponding solution u,. This allows us to obtain
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a function u as a limit of the sequence u,,. Hence, appear two difficulties. The
first one is how to give a sense to ®(u), the second difficulty lies in the need
of the convergence almost everywhere of the gradients of u,, in €2. This is done
by using suitable test functions built upon w, which make licit the use of the
divergence theorem for Orlicz functions. We note that the techniques we used
in the proof are different from those used in [2, 5, 12, 17, 25].

Let us briefly summarize the contents of the paper. The Section 2 is devoted
to developing the necessary preliminaries, we introduce some technical lemmas.
Section 3 contains the basic assumptions, the definition of renormalized solution
and the main result, while the Section 4 is devoted to the proof of the main
result.

2. PRELIMINARIES

Let M : RT — R* be an N-function, i. e., M is continuous, increasing,

convex, with M(t) > 0 for t > 0, 2 5 0 as ¢ — 0, and @ — 400 as

t
t — +oo. Equivalently, M admits the representation:

M(t) = /Ot a(s)ds,

where a : Rt — R is increasing, right continuous, with a(0) = 0, a(t) > 0 for
t > 0 and a(t) tends to +oo as t — +oo.
¢
The conjugate of M is also an N-function and it is defined by M = / a(s) ds,
0
where @ : RT™ — RT is the function a(t) = sup{s: a(s) <t} (see [1]).
An N-function M is said to satisfy the As-condition if, for some k,
M(2t) < kM(t) Vt>0, (2.1)

when (2.1) holds only for ¢ > ¢ > 0 then M is said to satisfy the As-condition
near infinity. Moreover, we have the following Young’s inequality

st < M(t)+ M(s), Vs, t>0.

Given two N-functions, we write P < @) to indicate P grows essentially less

rapidly than Q; i. e. for each € > 0, 5((:2) — 0 as t — 4o00. This is the case if
and only if
Q'(t)

2 Py =

Let 2 be an open subset of RY. The Orlicz class ks (2) (vesp. the Orlicz space

L () is defined as the set of (equivalence classes of) real valued measurable
functions w on € such that

/QM(\u(gc)|)dx<+oo (resp. /QM<

u(;:c)|) dx < 400 for some A > 0).
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The set Ly (£2) is a Banach space under the norm

||u||M,Q=inf{A>0:/QM(W(;)|> dxg1},

and ks () is a convex subset of L (€2).
The closure in L (€2) of the set of bounded measurable functions with com-
pact support in € is denoted by Ej/(2). The dual of Ej(£2) can be identified

with L37(€2) by means of the pairing / uvdz, and the dual norm of Ly7(12)

is equivalent to ||.|57 - We now turn tg the Orlicz-Sobolev space, WL (Q)
[resp. W1E)(Q)] is the space of all functions u such that u and its distribu-
tional derivatives up to order 1 lie in L/ () [resp. Ea(R2)]. It is a Banach
space under the norm

lulliare = ) ID%ullar0
le|<1

Thus, WLy (Q) and W E)p(Q) can be identified with subspaces of product
of N 4 1 copies of Ly;(€2). Denoting this product by [[ Las, we will use the
weak topologies o([[ Lar, [[ Ey7) and o([[ Las, [T Lyp)-

The space Wi Ep () is defined as the (norm) closure of the Schwartz space
D(Q) in W' Ep(Q) and the space W Ly (Q) as the o([] L, [ Ezf) closure of
D(Q) in WLy (). We say that u,, converges to u for the modular convergence

D, — D°
in WLy (Q) if for some A > 0, / M Z dx — 0 for all |o| < 1.

A
Q
This implies convergence for o([[ Las, [[ L37). If M satisfies the Ay condition

on R (near infinity only when © has finite measure), then modular convergence
coincides with norm convergence.

Let W™1L17(Q) [resp. W1E57(2)] denote the space of distributions on
which can be written as sums of derivatives of order < 1 of functions in Ly;(£2)
[resp. Eg7(€Q)]. It is a Banach space under the usual quotient norm (for more
details see [1]).

A domain 2 has the segment property if for every x € 90 there exists an
open set G and a nonzero vector y, such that z € G, and if 2 € QN G, then
z +ty, € Q for all 0 <t < 1. The following lemmas can be found in [6].

Lemma 2.1. Let F : R — R be uniformly Lipschitzian, with F(0) = 0. Let M
be an N-function and let u € WYLy (Q) (resp. WEEN(Q)). Then

F(u) € WYLy (Q) (resp. WEEp (). Moreover, if the set D of discontinuity
points of F' is finite, then

aa}F(u) _ {F'(u){fciu a.e. 'in {z€Q:u(x)¢ D},
T 0 a.e. in{x € Q:u(zr)e D}
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Lemma 2.2. Let F : R — R be uniformly Lipschitzian, with F(0) = 0. We
suppose that the set of discontinuity points of F' is finite. Let M be an N-
function, then the mapping F : WLy (Q) — WLy (Q) is sequentially contin-
uous with respect to the weak™* topology o([[ L, 1 Eqp)-

Lemma 2.3. ([21]) Let Q have the segment property. Then for each

v € WL (Q), there exists a sequence v, € D(Q) such that v, converges to v
for the modular convergence in W3 Ly (Q). Furthermore,

if v € WLy (Q) N L°(Q), then

Wl Lo ) < (N + 1) V|| oo -

We give now the following lemma which concerns operators of the Nemytskii
type in Orlicz spaces (see [8]).

Lemma 2.4. Let Q be an open subset of RY with finite measure. Let M, P,Q
be N-functions such that Q < P, and let f : Q2 x R — R be a Carathéodory
function such that, for a.e. x € Q and all s € R:

|f(x,5)] < cx) + ki P~ M (ko s)),

where k1, ky are real constants and c(x) € Eg().

Then the Nemytskii operator Ny defined by Ny(u)(z) = f(z, u(z)) is strongly
continuous from P(En(Q), 5) = {u € Lu(Q) : d(u, Em(Q)) < 1} into
Eq(9).

We will also use the following technical lemma.

Lemma 2.5. ([26]) If {f.} C L*(Q) with f, — f € LY(Q) a.e. inQ, fn, f >0
a.e. in Q cmd/ fn(x)dz — / f(z)dx, then
Q Q

fn— fin Ll(Q).
3. STRUCTURAL ASSUMPTIONS AND MAIN RESULT

Throughout the paper Q will be a bounded subset of RY, N > 2, satisfying
the segment property. Let M and P be two N-functions such that P < M.
Let A be the non everywhere defined operator defined from its domain
D(Q) C Wy Ly (Q) into W1 Ly7(2) given by

A(u) = — div a(-, u, Vu),

where a : @ x Rx RY — R is a Carathéodory function. We assume that there
exist a nonnegative function ¢(z) in Eg7(€2), a > 0 and positive real constants
k1, ko, k3 and kg4, such that for every s € R, £ € RV, ¢ € RN (¢ # ¢') and for
almost every x € Q)

la(z,,6)| < c(z) + k1P M(ka|s|) + ks M M(kal€]), (3.1)


http://ijmsi.ir/article-1-936-en.html

[ Downloaded from ijmsi.ir on 2025-11-04 ]

100 M. EL MOUMNI

(a(x, S, g) - a(m, 5, fl))(g - fl) > Oa (32)
a(z,s,£)§ > aM([]). (3.3)

Here, g(x,5,€) : @ x R x RN — R is a Carathéodory function satisfying for
almost every = € Q and for all s € R, £ € RY,

gz, 5,8)] < b(|s]) (d(x) + M(IE])) , (3.4)
9(x,5,§)s 2 0, (3.5)
where b : R — R* is a continuous and increasing function while d is a given

nonnegative function in L' (€2).
The right-hand side of (1.1) and ® : R — R are assumed to satisfy

f e LYQ) and |F| € Eq7(Q), (3.6)

® € CO(R,RY). (3.7)

Our aim in this paper is to give a meaning to a possible solution of (1.1).
In view of assumptions (3.1), (3.2), (3.3) and (3.6), the natural space in which
one can seek for a solution w of problem (1.1) is the Orlicz-Sobolev space
We Ly (Q). But when u is only in W Lys(£2) there is no reason for ®(u) to be
in (L'(Q))" since no growth hypothesis is assumed on the function ®. Thus,
the term div (®(u)) may be ill-defined even as a distribution. This hindrance is
bypassed by solving some weaker problem obtained formally trough a pointwise

multiplication of equation (1.1) by h(u) where h belongs to C1(R), the class of
C'(R) functions with compact support.

Definition 3.1. A measurable function u : @ — R is called a renormalized
solution of (1.1) if u € W La(Q), a(x,u, Vu) € (Ly(2)V,
g(z,u, Vu) € L), g(z,u, Vu)u € L' (Q),

lim a(z,u, Vu)Vudr = 0,
M= Ho0 JlreQ: m< u(z)|<m+1}

and
—div a(z, u, Vu)h(u) — div (®(u)h(u)) + 2/ (u)®(u)Vu 338)
+g(x,u, Vu)h(u) = fh(u) — div (Fh(u)) + #'(u) FVu in D' (Q), .
for every h € CL(R).

Remark 3.2. Every term in the problem (3.8) is meaningful in the distribu-
tional sense. Indeed, for A in C}(R) and u in W¢ L (), h(u) belongs to
WLy (Q) and for ¢ in D(Q) the function ph(u) belongs to Wi Ly (). Since
(—div a(z,u, Vu)) € WLLi7(€2), we also have

(=div a(z,u, Vu)h(u), )p(0).p(Q)
= (—div a(z,u, Vu), @h(u»W*lLﬁ(ﬂ),W(}LM(Q)
Yo € D(Q).
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Finally, since ®h and ®h’ € (C?(R))", for any measurable function u we have
®(u)h(u) and ®(u)h/(u) € (L>°Q))N and then div (®(u)h(u)) € W-1>(Q)
and ®(u)h'(u) € Las(2).

Our main result is the following

Theorem 3.3. Suppose that assumptions (3.1)—~(3.7) are fulfilled. Then, prob-
lem (1.1) has at least one renormalized solution.

Remark 3.4. The condition (3.4) can be replaced by the weaker one

l9(,5,8)| < d(x) + b([s]) M([¢]),
with b: R — RT a continuous function belonging to L'(R) and d(x) € L' ().

Actually the original equation (1.1) will be recovered whenever h(u) = 1,
but unfortunately this cannot happen in general strong additional requirements
on u. Therefore, (3.8) is to be viewed as a weaker form of (1.1).

4. PROOF OF THE MAIN RESULT

From now on, we will use the standard truncation function Ty, k > 0, defined
for all s € R by T(s) = max{—k, min{k, s}}.

Step 1: Approximate problems. Let f, be a sequence of L*°(Q2) functions
that converge strongly to f in L'(2). For n € N, n > 1, let us consider the
following sequence of approximate equations

—div a(x, up, Vu,) + div @, (uy) + gn (2, un, Vu,) = f, — div F in D'(Q),
(4.1)
where we have set ®,,(s) = ®(T,,(s)) and g, (z,s,§) = % For fixed
n > 0, it’s obvious to observe that

gn(2,5,8)s 20, [gn(z,5,6)| <|g(z,s,§)| and |gn(z, s, )| < n.

Moreover, since ® is continuous one has |®,,(t)| < max; <y |®(t)|. Therefore,
applying both Proposition 1, Proposition 5 and Remark 2 of [22] one can de-
duces that there exists at least one solution u,, of the approximate Dirichlet
problem (4.1) in the sense

Uy, € WolLM(Q),a(x,un,Vun) IS (LM(Q))N and

a(m,un,Vun)Vvder/ D, (uy,)Vodz
Q Q

+/ In (T, Up, Vg )vde = (fp,v) —|—/ FVudz, for every v € Wy Ly (Q).
Q Q
(4.2)
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Step 2: Estimation in W{Ly(Q). Taking u, as function test in problem
(4.2), we obtain

/a(m,un,Vun)Vundx—i—/@n(un)Vundx

Q Q (4.3)
—|—/ In (T, Up, Vg )upde = (fn,un>—|—/ FYVu,dx.
Q Q

t
Define ®,, € (C1(R))V as ®,,(t) = / ®,,(7)dr. Then formally
0

div(D,, (tn)) = Py (thn) Vg, ty, = 0 on 9, ®,,(0) = 0 and by the Divergence
theorem

/Q By, (1) Vitnda = /Q div (B, (un))dz = /8 ()75 = 0

where 7 is the outward pointing unit normal field of the boundary 99 (ds
may be used as a shorthand for 7/ds). Thus, by virtue of (3.5) and Young’s
inequality, we get

/Qa(x,un, Vu,)Vupde < Cy + %/QMHVunDdJ;, (4.4)
which, together with (3.3) give
/QM(WunDdx < Cs. (4.5)
Moreover, we also have
/an(x, Uny Vup )updr < Cs. (4.6)

As a consequence of (4.5) there exist a subsequence of {uy,},, still indexed by
n, and a function u € Wi Lys(Q) such that

uy, — u weakly in W Ly (Q) for o(ILL (), IIE7(9Q)),

4.7
u, — u strongly in Ej () and a. e. in Q. (47)

Step 3: Boundedness of (a(z, un, Vu,)), in (Lg7(2))V. Let w € (Ep ()Y
with ||w|as < 1. Thanks to (3.2), we can write
(a(x,un, V) — (a(z, up, E)) (Vun - B) >0,
k4 k4
which implies

a(x, Uy, Vug)wdx < /a(a:,un,Vun)Vundx
Q

—l—/s)a(a:,un, k%) (k% — Vun)da:.

ks Jo

Thanks to (4.4) and (4.5), one has

/ a(x, U, Vg ) Vuyde < Cs.
Q
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Define A = 1+ k; + k3. By the growth condition (3.1) and Young’s inequality,
one can write

‘/ T, Up, — " ( Vun>d:l:
w

( dm+k1/MP M (ko|un|)dz

+3/ g |)d$>+/M|w|d:v+>\/M|Vun|)x
Q ks Jo Q

By virtue of [18] and Lemma 4.14 of [20], there exists an N-function @ such
that M < @Q and the space Wi Lys(9) is continuously embedded into Lg ().
Thus, by (4.5) there exists a constant ¢y > 0, not depending on n, satisfying
lunllo < co. Since M <« @, we can write M (kaot) < Q(é), for t > 0 large
enough. As P <« M, we can find a constant c;, not depending on n, such

that / Mﬁ_lM(kﬂunDd:ﬂ < / Q(| n|) + ¢1. Hence, we conclude that the
Q Q €o

is bounded from above for all w € (E(Q))Y

quantity ’/a(:z:,un,Vunwdx

Q
with ||w|/ar < 1. Using the Orlicz norm we deduce that

(a(a:, Ups Vun)> is bounded in (L37(0))". (4.8)

n

Step 4: Renormalization identity for the approximate solutions. For
any m > 1, define 0,,(r) = Tp41(r) — Tpn(r). Observe that by [19, Lemma?2]
one has 0, (u,) € Wa Ly (). The use of 0,,(u,) as test function in (4.2) yields

/ a(x, up, Vg ) Vupde < (fn,em(un»—i—/ FVu,dz,
{m<|uy | <m+1} {m<jup|<m+1}

By Holder’s inequality and 4.5 we have

/ a(x, U, Vg )Vunde < (fn, 0 (uy))
{m<|uy|<m+1}

+C / T(|F|)dz
{m<lunl<mt1}

It’s not hard to see that
VO (un)llar < [|Vn||ar-
So that by (4.5) and (4.7) one can deduce that
O () — O (u) weakly in Wi Las(Q) for o(ILLa (), IIE5(Q)).

Note that as m goes to 00, 0,,(u) — 0 weakly in W Ly () for
o (L (Q), I1E57(9)), and since f,, converges strongly in L' (), by Lebesgue’s
theorem we have

lim lim M(|F))dz = lim lim (f,, 0, (u,)) = 0.
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By (3.3) we finally have

lim lim a(x, Up, V) Vuyde = 0. (4.9)

m—00 N—r00 {mg\un\gm-&-l}

Step 5: Almost everywhere convergence of the gradients. Define
2
o(s) = se*” with A = (%) . One can easily verify that for all s € R

b(k) 1
'(5) — == > —. 4.1
¢(s) = = ~le(s) = 5 (4.10)
For m > k, we define the function ,, by
Ym(s) =1 it |s] <m,
Um(s)=m+1—]s] if m<|s|<m+1,
Ym(s) =0 it |s|>m+1.

By virtue of [21, Theorem 4] there exists a sequence {v;}; C D(f2) such that
v; — u in WLy () for the modular convergence and a.e. in . Let us
define the following functions 6, = Ty (uy,) — Tk (v;), 07 = Ty (u) — Ty (v;) and
2 = 0(09)thm (un). Using 27, € WLy () as test function in (4.2) we get

/a(x,un,Vun)Vz%7mdx+/ Py, (tn ) VO (T (un) — Ti(v5)) o (ur ) d
Q Q

+ / By (11 Vi, (1) (T (1) — Th(v;)) e
{(m<un|<m+1}

—|—/gn(x,un,Vun)sz’mdx:/fnzihmdx—i—/ Fsz;ymdx.
Q Q Q

(4.11)
From now on we denote by ¢;(n,j), i = 0,1,2,..., various sequences of real
numbers which tend to zero, when n and j — 400, i. e.

li li ; j) = 0.
J—}I—Poo n~1>I4I~100 € (n, j)

In view of (4.7), we have 2}, ,,, — ¢(67)¢),,, (u) weakly in L>(Q) for o*(L*>°, L")
as n — +oo, which yields

tim [ funds = [ 1000y (u)da,

n—-+oo

and since ¢(#7) — 0 weakly in L>(Q) for o(L*>°, L) as j — +o00, we have

lim /Q F S0 b (u)d = 0.

Jj—+4o0
Thus, we write
/ fnZ% mdx = E()(nvj)'
0 ;
Thanks to (4.5) and (4.7), we have as n — +00,
2 = (67U () in W Lag(2) for o(ILLy (), ITE3(Q2)),
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which implies that

lim [ FVz) ,do= / FYN607 ¢ (67 )by, (w)da + / FVug(0?)y), (u)dx
Q Q

n—-+o0o Q

On the one hand, by Lebesgue’s theorem we get

lim / FYug(0?)l, (u)dx = 0,
Q

j—+oo

on the other hand, we write
| P06 @)intads = [ PYT) ) (0)da
- [ YT @ o
so that, by Lebesgue’s theorem one has

lim [ FVT,(w)¢ (07)m(u)de = / FVT(w)m (u)dz.
Q Q

j—+oo
Let A > 0 such that M(w) — 0 strongly in L*(Q) as j — +oo and
M (@) € LY(9), the convexity of the N-function M allows us to have

M( [V Tk (v,)¢" (07) o () =V The (1) o (w)|
4X¢’ (2k)

_ [Vv;—Vul 1 Yu
= iM(f) + 1(1+ ﬁ)M(‘ 4 ‘).

Then, by using the modular convergence of {Vv;} in (L ()™ and Vitali’s

theorem, we obtain
VTk(vj)qu’(Gj)iﬁm(u) — VT () (u) in (L (Q)Y, as j tends to + oo,

for the modular convergence, and then

lim FVTy(w)¢ (67 (u)de = /FVTk(u)d}m(u)d:r.
Q Q

Jj—4o0
We have proved that
/ Fsz;’mdx =e1(n,j).
Q

It’s easy to see that by the modular convergence of the sequence {v;};, one has

lim  lim D, () Vunthn, (un) ¢ (Th (ur) — Ti(v;))dz = 0,

J7Heon= A0 Jim < u, | <m+1}

while for the third term in the left-hand side of (4.11) we can write

/Q(I)n(un)vqb(Tk(un) - Tk(”j))wm(un)dx
N /sz‘Dn(un)VTk(un)cﬁ/(@%)%n(un)df‘ - / @y, () VT (v5)¢' (607,) i (un ) d.

Q
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Firstly, we have

lim  lim [ @ (un) VT (tn) @ (0900 (uy )dx = 0.

j—otoon—=+oo [

In view of (4.7), one has
Dp (un )@’ (09)0m (un) — () (67)pm (u),
almost everywhere in 2 as n tends to +o00. Furthermore, we can check that
191 ()¢ (07)90m (un) 57 < M (e’ (2K))19] + 1,

where ¢, = maxs<,,+1 ®(). Applying [27, Theorem 14.6] we get

i [ @) VT (0;) (61 o (11 ) = / () VT (0;)8 (69 Yo ()

n—-+oo Q Q

Using the modular convergence of the sequence {v;};, we obtain

i lim [ () VT (0)6 (63 )b (1 )dar = / B (u)V T () () dv.

j—toon—+o0 Jo Q

Then, using again the Divergence theorem we get
/Q B () VT (1) oy (w)dz: = 0.
Therefore, we write
/Qq)n(un)qu(Tk(un) — Ti(05)) b (ttn )z = ex(n, 7).

Since gn (2, un, Vn) 7, ,,, > 0 on the set {| u, |> k} and ¢, (u,) = 1 on the
set {| u, |< k}, from (4.11) we obtain

/ (@, tn, Vi )V2h dat / (st Tt )$(03) i < ca(n, §). (4.12)
Q {Jun|<k}

We now evaluate the first term of the left-hand side of (4.12) by writing

/a(x,un,Vun)sz;)mdm
Q
= [ 0ot D) (V) = TTL03)6 (03}
+/ a(, Up, Vg ) Vg ¢(09)a! (uy,)da
Q
= [ 0o Tufua). VT (00)) (V) = Vi) ()
—/ a(x7un,Vun)VTk(vj)qbl(ﬂfl)l/}m(un)dx

lun|>k}
+/ a(x7unaVun)vu7b¢(91]';,)¢’:7z(u7b)dx’
Q
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and then
/ a(x, Uy, Vun)Vzi,mdx
Q
= /Q (a(w,Tk(un)7VTk(un)) —a(x,Tk(un),VTk(vj)xj))
(VTk(un) — VTk(vj)Xj)dﬂ(G{l) dx
+ [l Tin). VT3 (V) = VTil0)6) o (03) d
f/ a(x, Ty (un), VTk(un))VTk(vj)gb'(@fl)da:
o\

— a(z, n, Vun ) VT (0;) @ (02) b (uy ) dx

[un|>k}
+/ a(x, U, Vi ) Vun (090! (un)dz,
Q
(4.13)
where by x3, s > 0, we denote the characteristic function of the subset

Q) ={reQ: |VTi(v;)| < s}

For fixed m and s, we will pass to the limit in n and then in j in the second,
third, fourth and fifth terms in the right side of (4.13). Starting with the second
term, we have

| i), T T o)) (V) = Tl (@)

= [ e T, VL)) (VTiw) = TTulo)n;) o' (9,
as n — +00. Since by lemma (2.4) one has

a(x, Ti(un), Vi (0;)x5)8' (03) — alz, T (u), VTk(v;)x5) 8 (67),
strongly in (E37(2))Y as n — oo, while by (4.5)

VTi(up) = VI (u),
weakly in (L (). Let x® denote the characteristic function of the subset
VP ={zeQ: |VTi(u)| < s}.

As VT (vj)x; = VTi(u)x® strongly in (Eam(2))N as j — +oo, one has

/Qa(x,Tk(u)» VT (v)x3) - (VTi(u) = VTi(v;)x5) &' (67)dx — 0,
as j — oo. Then
/Qa(x,Tk(un), VTk(vj)Xj) (VTk(un)fVTk(vj)Xj)cb'(F){L)dx =e4(n,j). (4.14)

We now estimate the third term of (4.13). It’s easy to see that by (3.3),
a(x,s,0) = 0 for almost everywhere x € Q and for all s € R. Thus, from (4.8)
we have that (a(z, Ty(un), VTi(up))), is bounded in (Lyz(€2))™ for all k > 0.
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Therefore, there exist a subsequence still indexed by n and a function [; in
(L77(2))Y such that

a(@, Ti(un), VI (up)) = I, weakly in (Lg7())Y for o(I1Lz7, TEy). (4.15)

Then, since VTk;('Uj)XQ\Q;’ € (E57(2))", we obtain

/ a2, T (), VT () VT (0,)6 (63 ) e — LV T (0,)6 (67)da,
o\Qs o\es

as n — +00. The modular convergence of {v;} allows us to get

- / L.V Ty (v;)¢ (67)dw — — 1L,V (uw)dz,
Q\Q3 Q\Qs

as j — 4o00. This, proves

—/ a(@, Ty (un), Vi (un)) VT3 (0;)¢' (65,)da = —/ VT (u)dz + e5(n, j).
\Q: Q\Qs

(4.16)
As regards the fourth term, observe that 1, (u,) = 0 on the subset
{|un] > m + 1}, so we have

- / A, 4, Vit )V T (07))8 (03 (11l =
{lun|>k}

_ S CL(JZ, T’rn-‘rl(un), VTm+1(u7l))VTk(U])¢/(9%)¢m(un)dx
Un |>

Since
/{ ‘ k} (x’ m (un)7 m+1(un)) (’Uj)qs/(ej’lll)wNL(un) X =
Up | > : jk d

- l7n+1ka (U)¢m(u)d$ + €5 (?’L, .])7
{lu|>k}

observing that VT (u) = 0 on the subset {|u| > k}, one has
—/ a(z, U, Vun ) VTk(0;)8 (020 (uy)dz = eg(n, §). (4.17)
{lun|>k}
For the last term of (4.13), we have
'/ a(, U, Vi ) Vun¢(09)) (u,)dz
Q

_ \ / a(, Un, Vi)V ¢(02)00, (uy, ) dz
{m<|up|<m+1}

< ¢(2k) a(x, Un, Vi) Vupde.
{m<|un|<m+1}
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To estimate the last term of the previous inequality, we use
(T1 (up — T (un)) € Wi La(Q)) as test function in (4.2), to get
/ a(z, Up, Vg, ) Vu,dz +/ D, (un)Vupdx
{m<jun|<m+1} {m<|un|<m+1}
+ gn(xv Un, V’U/n)tz—‘l (un - Tm(un))d'r = <fn7 Tl (un - Tm(un))>

{lun|>m}

+ FVu,dzx.
{m<Jun|<m+1}

By Divergence theorem, we have

/ D, (un)Vuydr = 0.
{m<|un|<m+1}

Using the fact that g, (z, un, V)T (w, — Ti(uy)) > 0 on the subset
{Jun| > m} and Young’s inequality, we get

/ a(z, U, Vg, ) Vu,dz
{m<|un|<m+1}

< (f Tt — Ton(u))) + / (| F|)da.

{m<|uy | <m+1}
It follows that

‘/Qa(zv,un,Vun)Vun¢(9£L)z/;;n(un)d$‘

L (4.18)
202k nld M(|F|)dx).
=20l )(/{M<un|}|f | I+/{m<un<m+1} (1D I)
From (4.14), (4.16), (4.17) and (4.18) we obtain
/a(w,un,Vun)Vz%’mdx
Q
2/Q(a(x7Tk(un),VTk(un))—a(x,Tk(un),VTk(vj)Xj))
(VT (un) — VTi(v)x5) ' (6))d
—ad(2k Foldz + M(|F|)d
coi)( [ ipldes [ ()
—/ Ik - VT (uw)dz + e7(n, j).
Q\Qs
(4.19)

Now, we turn to second term in the left-hand side of (4.12). We have
{lupl<k}

~| (2, Ti(n), VT (1)) (05 )
{lun|<k}

< b(k) A M (VT (un)|)|p(07,)dz + b(k) /Q d(x)|6(07,)|dx
< b(a—k) ; an (2, T (), Vg (00))VTk(un)|0(607)|dx + eg(n, 7).
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Then

9n (2, tn, Vun)¢(9%)d‘”‘

@S

L)I k}

| (0l Ti(un), VTk(un)) = a(e, Tilwn), VIk(07)x3)
(VbT — VTi(vi)x;) (65, dx

(a) A a(x, Ty (un), VTk(UJ)XJ)(VTk(un) VTk(Uj)X§)|¢(9%)|dx
+b(ak)/Qan(x,Tk(un),VTk(un))VTk(vj)XﬂgZ)(aﬁdx+€9(n’j).

(4.20)
We proceed as above to get

b(k)

2 [ ol Tl V(03 (Vi) = TT0)35) 0060 = ea(rn. )

and

b(k)

(0%

/Q (2, T (1tn), VT (1)) VT (0 )X 1600 | d = €xp(m, ).

Hence, we have

’/ gn(x,un,Vun)cb(H%)dx‘
by f
< T/Q (a(z, Tr(un), VTk(un)) — a(z, Ti(un), Vi (v5)X3))
(VTi(un) — VT (v;)x3) 10(03)]dz + e (n, ).

(4.21)

Combining (4.12), (4.19) and (4.21), we get

/Q (a(z,Tk(un), VT (uy)) — alx, Ti(un), VTk(vj)xj)) (VTk(un) — VTk(Uj)Xj)
(#/(62) — “L16(61)] ) da
< /Q\QS ZkVTk(t) d:c)+ a¢(2k)(/{m<|un|} fn|dm+/{m<|un|<m+1} M (|F|)de
+e12(n, j).

By (4.10), we have

/Q (a(z, Tk (un), VTk(un)) — a(@, Ti(un), VIk(0;)x5)) (VIk(un) — VTk(v5)x5) d

<2 / 1V Ty (w)d +4a¢>(2k)< / | folda + / M(|F|)dx)
oo {m<lunl} {m<|un|<m+1}

+612(n, )
! (4.22)
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On the other hand we can write
| (06 Tulu). VT (00)) = . Ti,). VT 0)3)) (V1) = VL))
= A (alz, Ti(un), VT (uy)) — a(x7Tk(un),VTk(vj)X;)) (VT (un) — VTk(vj)Xj)dx
“f
- /; a(x, Ty (un), VTk(u)xS)(VTk(un) - VTk(u)xs)dx

+/Qa(x,Tk(un),VTk(vj)X‘;)(VTk(un) _ VTk(Uj)X‘;)dm

a(x, Ty, (upn), VI (un)) (VTk(vj)Xj- — VT (u)x®)dx

We shall pass to the limit in n and then in j in the last three terms of the right
hand side of the above equality. In a similar way as done in (4.13) and (4.20),
we obtain

/Qa(x,Tk(un), VTk(un))(VTk(vj)X; — VTk(u)XS)dac = e13(n, j),
/ ale, T (), VT (w)x*) (VT () — VT (w)x")d = e14(n, ),

/za(m, Ty (), Vi (0;)x3) (VT (un) — Vi (v;)x;) dz

- 615(n7j)'

(4.23)

So that

/Q (a(z, Tr(un), VT (uy)) — alz, Tr(un), VTk(u)XS)) (VTk(un) — VTk(u)xS)dx
= /{; (a(a;, Tk(un)’ VT (un)) - a(x, Tk(un)’ ka(U])X;)) (VTk(un) - VTk(U])X;)dx

+616(naj)'
(4.24)
Let r < s. Using (3.2), (4.22) and (4.24) we can write

0< / (@, Ti(atn), VTeum) — e, Tamn), V() (VT () = Vi ()

IN

(a(x, Ti(un), VI (uy)) — a(z, T (un), VTk(u))) (VTk(un) — VTk(u))dx

s

(alz, T (un), Vi (un)) — a(@, Ti(un ), VI (w)x®)) (VT (un) — VTi(u)x®)da

IA

(a(x, Ti(un), VI (un)) — a(z, Tr(un), VTk(u)Xs)) (VTk(un) - VTk(u)Xs)dac

I

(a(x, Ti(un), VI (uy)) — a(z, T (uy), VTk(vj)Xj)) (VTk(un) — VTk(vj)X;f)dz
+e15(n, j)

< 2/ LV T (u)dz + 2a¢>(2k)(/ || d +/ M(|F|)dx)
Q\00 {m<|un|} {m<|un|<m+1}

—|—617(7’L, J)
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By passing to the superior limit over n and then over j

0 < lim sup/T (a(z, Ti(un), Vg (un)) — a(@, Ty (un), V() (Vi (un) — VT (u))d

n—-+oo

< 2/ lkVTk(u)dx+4a¢(2k)(/ |f|dx—|—/ M(\F\)dx).
Q\Qs {m<|unl} {m<|uy|<m+1}

Letting s — +oo and then m — +oo, taking into account that [, VT (u) €
LY(Q), f € LYQ), |F| € (Bz(Q)N, |Q\Q°| — 0, and |[{m < |u| < m+1}| — 0,
one has

/ , (a(w,Tk(un), VTi(un)) — a(x, T (uy), VTk(u))) (VTk(un) — VTk(u))dx,

(4.25)
tends to 0 as n — +00. As in [20], we deduce that there exists a subsequence
of {u,} still indexed by n such that

Vu, = Vu a. e. in Q. (4.26)

Therefore, having in mind (4.8) and (4.7), we can apply [27, Theorem 14.6] to
get
a(z,u, Vu) € (Lyp(2)™

and

a(z, up, Vu,)) — a(z,u, Vu) weakly in (Lz7(Q))" for o(IlL57, TEy).
(4.27)

Step 6: Modular convergence of the truncations. Going back to equa-
tion (4.22), we can write

/Qa(m,Tk(unLVTk(un))VTk(un)d:v
S/Qa(x,Tk(un),VTk(un))VTk(vj)dex
+/Qa('r7Tk(un)’ka(Uj)X;)(VTk(un) - ka(UJ)X;)dm
2000 (2k nldx M(|F|)dx
e )(/{mﬁlun} i +/{m§|unlém+1} (1) )
+2 / a(, Th(w), VT(w))V Ty (w)dz + e1a(n, ).
Q\Q¢
By (4.23) we get
a(x, T (un), VI (un)) VT (uy)de

Q
< [ a(z, Ti(un), VI (un)) VT (vj)x;dx

Q
va020)( [ ipldot [ N(|Fde)
{m<|un|} {m<|un|<m+1}

+2/ a(x, Ty (u), VT (u)) VI (u)dx + €15(n, 7).
o\Qs
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We now pass to the superior limit over n in both sides of this inequality using
(4.27), to obtain

lim sup / a2, To(un), V(1)) VT (1)
Q

n—-+o0o

< | a(z, Ti(u), VI (w)) VT (vj) X dx

—Ja
+2a0(2k fldx + M(|F|)d
g )(/{mgu}' da /{mgugmm (1F)dz)

+2 a(x, T (u), VT (u)) VT (u)dz.
2\Qs

We then pass to the limit in j to get
limsup/ a(x, Ty (un), VI (uy)) VT (uy,)dx
Q

n—-+oo

< / a(z, T (u), VI (uw)) VT (u)x*dz
Q

+206(2k) ( /{mgu} |f|da + /{mgugmm M(|F|)dx)

12 / o, Ty (), VT (1)) V T (1) da
o\Q¢

Letting s and then m — 400, one has

limsup/ﬂa(m,Tk(un),VTk(un))VTk(un)dxS/a(x,Tk(u),VTk(u))VTk(u)dx.

n—4+oo O

On the other hand, by (3.3), (4.5), (4.26) and Fatou’s lemma, we have

/a(a:,Tk(u),VTk(u))VTk(u)dxSliminf/ a(x, T (un), VT (un)) VT (uyn)dx.
Q Q

n— oo

It follows that

ngrfoo a(m,Tk(un),VTk(un))VTk(un)dx:/a(x,Tk(u),VTk(u))VTk(u)dx.
Q Q

By Lemma 2.5 we conclude that for every k > 0
a(@, Ty (un), VI (un)) VT (un) — a(z, Ti(u), VI (u)) VI (), (4.28)

strongly in L(£2). The convexity of the N-function M and (3.3) allow us to
have
0 (L) VT )

< ia(x’Tk(u”)’ VTk(un))VTk(un) + ia(x,Tk(U,), VTk(u))VTk(u).

From Vitali’s theorem we deduce

T n) Ty
lim sup/ M(‘V k(un) =V k(u”)dx:O.
|E|=0 n JE 2

Thus, for every & > 0
Ti(un) = Ti(u) in W Lar (),
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for the modular convergence.

Step 7: Compactness of the nonlinearities. We need to prove that
Gn (T, Un, Vuy,) — g(z,u, Vu) strongly in L(Q). (4.29)
By virtue of (4.7) and (4.26) one has
gn (T, Up, V) = g(z,u, Vu) a. e in . (4.30)

Let E be measurable subset of © and let m > 0. Using (3.3) and (3.4) we can
write

/ (g0 (2 1y V) |z
E

- / (g (2 1y V)| + / 90 (2, 0y V)|
En{|un|<m} En{|un|>m}

< b(m) / d(z)dz + b(m) / (2, Ty (), VT (1)) V To (11 )l
E E
—|—i/ In(Ty U, Vg )y, dz.
mJjo
From (3.5) and (4.6), we deduce that

0< / In (T, U, Vg ) upde < Cs.
Q

So
1 C
m Jo m

Then

1
lim — [ gn(z,upn, Vuy)u,dz = 0.
m—+o0 M, Q

Thanks to (4.28) the sequence {a(x, T (un), VI (un))VTn(un)}n is equi-
integrable. This fact allows us to get

lim sup / (2, T (1), VT (1)) - V' (11 )l = 0.
|[E|=0 n JE

This shows that g, (z,u,, Vu,) is equi-integrable. Thus, Vitali’s theorem im-
plies that g(z,u, Vu) € L' (2) and

Gn (X, Up, Vu,) = g(z,u, Vu) strongly in Ll(Q).
Step 8: Renormalization identity for the solutions. In this step we prove
that
lim a(x,u, Vu)Vudz = 0. (4.31)

m=o0 Jim<ul<m+1}
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Indeed, for any m > 0 we can write

/ a(x, Uy, Vi, ) Vu,de
{m<|un|<m+1}

= / a(x, Un, Vi ) (VT 1 (un) — VT (uy))de

= /Q a(, Trt1 (), Va1 (un)) Va1 (uy)de
Q

—/Q a(x, T (un), VT (un)) Vi (u,)de.

In view of (4.28), we can pass to the limit as n tends to oo for fixed m > 0
lim a(x, Up, Vi, ) Vu,de
n—+o0 {m<|up|<m+1}

= / CL(I, TnH—l (u)a VT’H’L-‘rl (u))VTm—i-l (u)dx
Q

— /Q a(z, Trn(u), VT (w)) VT (u)dz

= /Qa(x,u,Vu)(VTm+1(U) = VT (u))dz

= a(x,u, Vu)Vudz.
{m<lul<m+1}

Having in mind (4.9), we can pass to the limit as m tends to +oo to obtain
(4.31).

Step 9: Passing to the limit. Thanks to (4.28) and Lemma (2.5), we obtain
a(, tp, Vun )V, — a(x,u, Vu)Vu strongly in L'(Q). (4.32)

Let h € CL(R) and ¢ € D(2). Inserting h(u,)p as test function in (4.2), we
get

/a(m,un,Vun)Vunh’(un)godx+/a(m,un,Vun)Vgoh(un)dm
Q

Q
"’/Q‘I’n(“n)v(h(un)@)dm‘F/ Gn (@, Up, Vg h(uy)pde (4.33)
= (fn, M(un)p) + QFV(h(un)ga)d:z:.

We shall pass to the limit as n — +o0 in each term of the equality (4.33).
Since h and h’ have compact support on R, there exists a real number v > 0,
such that supp h C [—v,v] and supp b’ C [-v,v]. For n > v, we can write

@, (t)h(t) = ®(T,(t))h(t) and @, (t)h'(t) = (T, (t))h' (t).

Moreover, the functions ®h and ®h’ belong to (C°(R) N LOO(R))N. Observe
first that the sequence {h(uy)p}, is bounded in WLy (). Indeed, let p > 0
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be a positive constant such that ||h(u,)Velleo < p and |[A (un)¢lle < p. Using
the convexity of the N—function M and taking into account (4.5) we have
/
Q 2p Q 2p
~M1)[Q| + 7/ M(|Vun|)da
2 2 Jq

IN

1 1
< -M(1)|Q| + zCs.
< sMD)IQ+ 50
This, together with (4.7), imply that
h(un)e — h(u)p weakly in W La(€2) for o(IIL s, LE;). (4.34)
This enables us to get

(frs B(un)p) = (f, h(u)p).

Let E be a measurable subset of Q. Define ¢, = max; <, ®(t). Let us denote by
lv]|(ary the Orlicz norm of a function v € Lj/(Q2). Using strengthened Holder
inequality with both Orlicz and Luxemburg norms, we get

18T (wn)xellr = s | /E (T, ()

llvllar <1

<c sup |xsllagnlviiv
[lvllar <1

1
< cy|E\M*1(—).
|E|

Thus, we get
li (T, (u, — = 0.
Jim sup [ 9(T, (1)) e | 7, = 0
Therefore, thanks to (4.7) by applying [27, Lemma 11.2] we obtain
(T, (un)) — (T, (u)) strongly in (Fy;)",

which jointly with (4.34) allow us to pass to the limit in the third term of (4.33)
to have

[ T )Vt )ohde — [ ST, )V
We remark that
la(z, un, V) Vuph' (un)e| < palx, un, Vg )V,
Consequently, using (4.32) and Vitali’s theorem, we obtain
/ a(z, up, Vg, ) Vuph' (uy,)pdz — / a(z,u, Vu)Vuh'(u)pdz.

and " "

/ FVunh' (up)pdr — / FVuh!(u)pdz.
For the second termﬂof (4.33), as above We%ave

h(un) Vi — h(u)Ve strongly in (Ep(Q)Y,
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which together with (4.27) give

/a(m,un,Vun)Vgoh(un)dx—)/a(a:,u,Vu)chh(u)dx
Q Q

and
/FVgoh(un)dxﬁ/FVgoh(u)dx.
Q Q

The fact that h(u,)e — h(u)e weakly in L>(Q) for o*(L>°, L) and (4.29)
enable us to pass to the limit in the fourth term of (4.33) to get

/gn(x,umVun)h(un)gadxH/g(x,u,Vu)h(u)g@dx.
Q Q

At this point we can pass to the limit in each term of (4.33) to get

/ a(z,u, Vu)(Vh(u) + b (u)eVu)de +/ D (u)h' (u)pVudz
Q Q

—|—/ CIJ(u)h(u)Vgodx—i—/g(x,u,Vu)h(u)godac
Q Q
= (£, h(u)p) + Jo F(Voh(u) + B (u)pVu)da,
for all h € CL(R) and for all » € D(Q). Moreover, as we have (3.5), (4.6)
and (4.30) we can use Fatou’s lemma to get g(x,u, Vu)u € L' (£2). By virtue of

(4.7), (4.27), (4.29), (4.31), the function u is a renormalized solution of problem
(1.1).
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