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ABSTRACT. The aim of this paper is to introduce two new extensions of
the Jacobi and Laguerre polynomials as the eigenfunctions of two non-
classical Sturm-Liouville problems. We prove some important properties
of these operators such as: These sets of functions are orthogonal with
respect to a positive definite inner product defined over the compact inter-
vals [—1, 1] and [0, 00), respectively and also these sequences form two new
orthogonal bases for the corresponding Hilbert spaces. Finally, the spec-
tral and Rayleigh-Ritz methods are carry out using these basis functions
to solve some examples. Our numerical results are compared with other

existing results to confirm the efficiency and accuracy of our method.
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1. INTRODUCTION

Sturm-Liouville theory is a study of the linear differential equations under
appropriate boundary conditions whose solutions are complete orthogonal sets
of functions in L?. According to the Bochner’s theorem [4], it was believed that
among the sequences of orthogonal polynomials, only the classical orthogonal
polynomials are the solutions of second order differential equations, however in
2009 exceptional orthogonal polynomials (X; (;>1)) was presented by Gomez-
Ullate et al. [10] in the framework of Sturm-Liouville theory. Although these
sequences of orthogonal polynomials start with a polynomial of degree one in-
stead of degree zero, avoiding the restrictions of the Bochner’s theorem, they
satisfy a second order differential equations. They explicitly obtained the X;-
Jacobi and X;-Laguerre polynomials. In 2009 Odak and Sasaki [17] derived
two sets of infinitely exceptional (X;) Laguerre and Jacobi polynomials which
satisfy a second order differential equations in the framework of quantum me-
chanics and shape invariant potentials. Authors of [18], obtained another set
of X;-Laguerre polynomials. We refer the interested readers to [18] for detailed
information. In the present paper, we introduce orthogonal functions that are
solutions of a non-classical Sturm-Liouville problem. So, the paper shows that
not only there exist some sequences of orthogonal polynomials which satisfy the
Sturm-Liouville problems but also there are a lot of sequences of orthogonal
functions which satisfy such problems. Also we provide some applications of ex-
tended functions by solving some problems such as Lane-Emden type equation
[21], Thomas-Fermi equation [15], weakly singular integral equation, an ordi-
nary differential equation [30] and a fractional calculus of variation problem
[29].

This paper is organized as follows: Section 2 consists of a brief review of some
useful definitions and theorems. In Section 3 we introduce extended Jacobi and
Laguerre functions which depend on a function g(x). In Section 5 we briefly
discuss about the effect of the function g(x) on our numerical results. For this
purpose, we provide some ordinary and fractional examples.

2. PRELIMINARIES

In this section, we provide some important definitions and theorems which
will be used in the next sections.

2.1. Self-adjoint operators.

Definition 2.1. [11] Let X be a linear space with an inner product (.,.), then
X is called an inner product space.

Definition 2.2. [1] Let A be a linear operator on the inner product space X,
the operator A’, if it exists, is adjoint to A if

(Az,y) = (x,A'y), Va,ye X.
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Then A is a self-adjoint operator if A" = A.

Theorem 2.3. [1] Let L : £L? ((a,b),w) N C?(a,b) — L2 ((a,b),w) be a linear
differential operator defined by
Lu=p(z)y" +q(@)y’ +r(@)y, € (a,b),
where p € C%(a,b), g € C(a,b), and r € C(a,b). Then
o L is self-adjoint, if the coefficients p, q, and r are real functions and
q(z) = p'(x), for all x € (a,b), and
p(f'g = f3)le =0,
for all f,g € C*(a,b) N L2 ((a,b),w). The term f(z)|% is to be defined
as () — f(a).
o If L is a self-adjoint operator, then the eigenvalues of the equation
Ly + Ay = 0 are all real and any pair of eigenfunctions associated with
distinct eigenvalues are orthogonal in L£* ((a,b),w).

2.2. Spectral methods. Spectral methods belong to the class of weighted
residual methods [24]. Consider the following initial-boundary value problem:

{LU:ﬁ zel,

(2.1)
BU =0, z¢€ {a,b},

where L is a differential operator and B is a linear boundary operator and
f(z,t) is given function. Generally, in the weighted residual methods the ap-
proximate solution is considered as follows:

N
u(z) ~un(z) = ZuN,igbi(x), (2.2)
i=0

where the trial functions ¢;(z), 0 < i < N, are linearly independent. We define
the residual function Ry (x) as:

Ry (z) = Lun(z) — f(x) #0, z €I

Since the method attempts to minimize Ry (z), coefficients {ux ;}Y , must be
obtained by solving the following system:

(Rn,j), = /IRN(x)wj(x)w(w)dx =0, 0<j <N, (2.3)

where {9;} are the test functions, and w is a positive weight function.

Galerkin and collocation methods belong to the class of the spectral meth-
ods. The main difference between Galerkin and collocation methods is the
choice of the test functions. In the Galerkin method the test functions and
trial functions are the same as each other. In the collocation method the test
functions are defined by:

Yi(z) =90 —z;), 0<j<N,


http://ijmsi.ir/article-1-916-en.html

[ Downloaded from ijmsi.ir on 2026-02-08 ]

146 M. R. Eslahchi, M. Abedzadeh

where §(x) is Dirac delta function. The points {x;}}_, are called the collocation
points.

3. EXTENDED JACOBI AND LAGUERRE FUNCTIONS

This section is devoted to our main results. Two new classes of orthogonal
functions in both [—1, 1] and [0, c0) are introduced and some important prop-
erties of them are provided. To do so and for the reader’s convenience we split
this section into two subsections.

3.1. Extended Jacobi functions. Consider the functions

ug = g(x),u; = g(x)a*, i>1, (3.1)
where g(z) # 0 for all € [-1,1]. We define the following measure

diia,g = Wa,pdz, a,B > —1,

(-2 +a)
(9(x))?

Wa,g =
and observe that &, 5 > 0 for x € (—1,1) so the scalar product on £2 ([~1, 1], @4 5)

f, B - —/ f d;,ta@, (3.2)

is positive definite.

Definition 3.1. The new orthogonal functions which are obtained by Gram-
Schmidt orthogonalization from {w;}5°; in Eq. (3.1) is named the extended
Jacobi functions (EJFs) and to be denoted by {Pf’ﬁ ()},

Consider I = (—1,1) and the differential equation

Tus(y) = pla)y” + q(2)y +7(x)y, (3.3)
which
X - 2p(x)g’(x)
j(r) = (q ) )
) — (z ) —9"(z)g(z) )  q(z)g'(x)
flz) = <p ( 20 ) o(2) ) : (3.4)

Here, the functions p(z) and ¢(z) are defined as:
)

Pz

where p(z) € C?(I) does not vanish on the interval I, and we consider the
function g(x) # 0 such that g(z) € C1(I) and #(x) € C(I).

Taﬁ is not a self-adjoint operator however it can be transferred to a self-
adjoin operator. For this purpose, without loss of generality, suppose that

=221, gx)=(a+B+2)x+a—0,
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p(x) > 0 for all z € I. Multiplying both sides of (3.3) by p € C?(I) yields the
following equation

Tap = o = by + 90 + pf
w5 = PTap = pho—s + plo— + PP
According to Theorem 2.3, Taﬁg will be self-adjoint if

L pg = (pp)" = p'p+ pp',
2. pp(f'h— fI)|Ly =0, Vf,he C*(=1,1)N L* ((—1,1),p).

First item is a first-order differential equation in p, whose solution is

TGt 1—2)*(1 B
p(x):AC exp(/ ?()dt>_( z) (2+x) )
p(z) _1 D(t) g9(z)
where ¢ is a constant. Note that pp € C2[—1,1] is strictly positive on I. T, g
is satisfied in the second item due to the fact that:

(1 —z)>H (z +1)58+1

i G U (pane) - jo @) <0, 35)
— ) 1 T B+1
tim U2 OV (ante) - o) =0, (30)

Now, we can conclude that Taﬁ is a self-adjoint operator. So according to
Theorem 2.3 the eigenvalues of the eigenvalue problem

To,py + Apy =0, (3.7)

are all real and any pair of eigenfunctions associated with distinct eigenvalues
are orthogonal in £2 ((—1,1), p).

Definition 3.2. The extended Jacobi boundary value problem is a differential
equation of the following form

Ta,B (y) = Aya

where y = y(z) is a twice differentiable function on (—1,1) and also subject to
the boundary conditions (3.5) and (3.6).

According to the above discussion we can present the next theorem:

Theorem 3.3. Ta’g 18 a self-adjoint operator and the eigenvalues of the equa-
tion (3.7) are all real and also any pair of eigenfunctions associated with distinct
eigenvalues are orthogonal in L2 ((—1,1), p).

Proof. The proof is discussed in detail. O
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3.2. Extended Laguerre functions. Let £ > 0 be a real parameter. Con-
sider the functions

vo = g(z),v; = g(x)x’,i > 1, (3.8)
where g(z) # 0 for all x € (0,00). We define the following measure on the
interval (0, 00) :

dﬂk =widx, x € (0,00),
k,—x
re 5 k> -1,

g(x)
and observe that wy > 0 for all € (0,00) so the following scalar product is
positive definite

(f b = /0 " H@)h(@)din, Vg € £ (0, 00), ) (3.9)

W =

Definition 3.4. Extended Laguerre functions {L;}52, (ELFs) are obtained by
Gram-Schmidt orthogonalization from {v;} in Eq. (3.8) with the scalar product
(3.9).

Consider the following differential equation
Tiu(y) = )y + d(@)y +#(@)y,
whose coefficients §(x) and #(z) are defined in Eq. (3.4) and we define p(z)

and ¢(z) as
p(z) ==z, glz) = (a+1—x). (3.10)

Definition 3.5. Extended Laguerre boundary value problem is defined as the
differential equation

Tk(y) =y,
where y = y(z) is a twice-differentiable function on (0, 00) and subject to the
following boundary conditions:

zke—z , VW () —

Jim S (7 (@hia) = F@) @) =0, (3.11)
ke , , _

Jim S ( @)h(a) — F@ (@) = 0 (3.12)

where are satisfied for all f,h € C?%(0,00) N L2 ((0,00), ). Also g(z) have to
be chosen such that (3.11) and (3.12) are satisfied.

Theorem 3.6. Let

Ti(y) = pp(@)y" + pi()y’ + pi(x)y(z), p= Z(Z)z ,

where p, 4, and 7 are defined in Eqs. (3.4) and (3.10). Then
o T}, is self-adjoint operator.
e The eigenvalues of Ty are all real and any pair of eigenfunctions asso-
ciated with distinct eigenvalues are orthogonal in £ ((0,00), p).
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Proof. The proof of this theorem is similar to the proof of Theorem 3.3. (|

Remark. EJFs and ELFs are two sets of orthogonal functions because of the
fact that we have infinite choices for function g(x). For example one can see
the special cases of the EJFs with g(z) =1, e=, e~ %, 2%, and z%e™ in [24],
[24, 15, 2], [13], [13] and [9, 3, 16, 28], respectively, as well as the ELFs with
g(xz) =1 and z® in [24] and [7], respectively.

4. SOME PROPERTIES OF EJFs aAND ELFs

In this section, some of the important properties of EJFs and ELFs are
listed.

4.1. Properties of the EJFs.

e Completeness:
In this section we establish the completeness of the EJFs in their
corresponding Hilbert spaces.

Theorem 4.1. A EJF series forms a complete set in L2([—1,1],@q.5).

Proof. Let Py be the set of polynomials of degree less than or equal to
N € N. We need to show that for an arbitrary f € C[—1,1] and any
€ > 0, there exists a function p € Py where

N
By = {mﬁ S 0P g € R} |

i=0
such that
[f(x) = plx)| <€ Voel-1,1].
Consider the function

ha) = 19 e o-1,1),

9(x)
By the Weierstrass approximation theorem, there exists a polynomial
p € Pn such that

€
h(z) — - ~1,1], a= :
(@) —p(z)| < =, Vze[-11], a Jnax lg(z)]

Since the function p = g(z)p belong to P, we have
|f(z) = bl = lg(@)||h(z) — p(z)| <€, Vo e[-11].

So Py is dense in C[—1,1] with respect to the supremum norm, there-
fore it is dense in £2([—1,1],Dq 5). O
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e Orthogonality relation:

1
| B @) B @) p(a)dn =
-1

Fln+a+f+1)I'(n+a+l(n+5+1)n! o(2n+atBt1)g
T2n+a+pB+)I2n+a+pf+2)

e Recurrence relations:

mn» m;n:07172a"' .

The EJFs are satisfied in the following recurrence relation

P,(Lif)(x) =(x— An)P,(L""ﬂ) (x) — Bnp,(ﬁlﬁ) (), n=1,2,3,---,

where
A - (a —pB)(a+p)
" 2n+a+B)2n+a+p+2)
B —_ dn(n+a)(n+ B)(n+a+p)
Y @nta+B-1)2n+a+8)’Cn+a+B+1)
and

Py (@) = g(a), P{"(x) = g() (”” . ﬁ}ig) |

¢ Rodrigues formula:
yr

Pl o D"
w7 ) 9(x)q,5(x)2mn! dzm

(9(2)*(1 = 2*)"@a,p(@)) ,

forn =0,1,2,---. In here (m), is the Pochhammer symbol, which is
defined by

() = 1 n =20,
" (m)m+1)---(m+n-—1) n=123....
e Hypergeometric representation:

2 —2n 1 — 1
PR (2) = g(a) (@+l), o ( nnta+pf+1 z+

>, n=123

(n+a+ﬂ+1)n2 ! a+1 T2
or
- 2)"(B+1) -n,n+a+pf+1 -1
n (LU) g(x)(n+o¢+,8—|—l)n2 1 5+1 ) 9 , N ) Sy 9y

4.2. Properties of the ELFs.

e Completeness:

It is worthwhile to note that the proof of the fact that the set
{IA/gk) 199, is an orthogonal basis of £2([0, 00), &%) is quite different from
that proved in Theorem 4.1. Because it can use only for the subsets of
the compact intervals. To this end, we state and prove the following
theorem:

Theorem 4.2. o ELF series {f)gk) 2, is an orthogonal basis of L*([0, 00), Wy).
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Proof. A series of ELFs is orthogonal by construction because of it is
defined by Gram-Schmidt orthogonalization from {v;(z)}32,. Now, we
aim to prove that E = span {v;};-, is dense in £?([0,00),&y). Thus,
it suffices to show that for all function f € £2([0,00),&%) and € > 0
there exists a function such p € E such that

|f(z) —p| <€ forall x € [0,00).
Notic that
i N
En = span {g(z)z'} _ = g(z)Pn.
We define f as:

~

(z

x)

~

f=

)1‘207

e}
—~

clear that f € £2([0,00),&y). Since the associated Laguerre polynomial
series is dense in £2(]0, 00), z¥e~%) [27], there exists a polynomial p €
Pn such that

| 1@ - pla)Pate e < e,
0
therefore
(oo}
|15~ glalpta) Par(e)d <
0
Since g(x)p(z) € E, the proof is completed. |

¢ Orthogonality relation:

L(n+k+ 1)e?*n!

[A/;k)(w)ﬁg,’f)cbk(x)dx = Omn, m,n=0,1,2,---
/O (_26)2n+k‘+1

e Recurrence relation:

mArltk—z\ - g\ .
nﬂu»=(7”'+m)Mme—C”‘)Lwﬂw,nsz&~w

n+1 n+1
where
B9 1, P 1k
e Rodrigues formula:
1 dar

L) = g(z)o(z)n! dzn

(g(CC)2InLZ)k(I)) y = 07 1a 27 Tt
e Hypergeometric representation:

~ —1)" —
Lglk)(x):()n{g(x)lFl( k+n1 ax)a n:O71a27 .
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5. NUMERICAL EXAMPLES

This section is devoted to test the EJFs and ELFs with some examples
numerically. To doing so, we first would like to note that the good choice of the
unknown function g(z) is crucial from the numerical point of view. Generally,
the selection of g(x) is closely dependent on the structure of problem. This
means, in fact, that we may select the unknown function g(x) in such a way
that either the initial ( or boundary) conditions of the prescribed problem are
satisfied automatically or the singularity (or singularities) of the solution is (or
are) removed. Now, we are ready to state some examples. To make a good
comparison, we denote:

E(N) = max|y(z) —yn(z)|, NeN,

and

E(N,z) =y(z) —yn(z), z €1,
where y(z) and yy(x) are the exact solution and the numerical solution of the
considered problem on interval I, respectively.

ExAMPLE 5.1. For the first example we consider the following non-linear dif-
ferential equation:

2
v+ Sy 4y’ =0, 0<a <5, y(0) = 1,y'(0) = 0. (5.1)

It is worthy to note that equation (5.1) is so-called as the Lane-Emden differ-
ential equation which is one of the most interesting problems in mathematical
physics. It is easy to check that the exact solution of this problem is as follows

o) 2

y(a) = (1+5)7F z>0.

To solve this problem we first set Y (z) = y(x) — 1. Clearly Y (z) satisfy the
following differential equation

2
Y”+5Y’+(Y+1)5:0, 0<z<b5, (5.2)

subject to the homogeneous initial conditions Y (0) = Y/(0) = 0. Now we use
the collocation method to solve the problem for the following cases of function
g(x). To do so, we can consider the following functions as test functions

(1) ¢ = Pf’ﬁ(%x— 1), 0<i<N, o,8=0, g(x) =1,
(2) ¢i = g(a)PP(2x—1), 0<i<N a,=0, g(z) =212,
(3) ¢; =g(x)Li(x), 0<i< N, g(z) =22,
We also note that for the cases 2 and 3, the approximate solutions satisfy the
zero initial conditions. Collocation method based on the roots of the N-th
Legendre polynomials is carried out. Maximum absolute error of the methods

presented in [8, 21] are compared with the new method and Then the results
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are shown in Table 1. Moreover, we also plot E(N,z) for some values of N
using the basis function presented in case 2 at Fig. 1.

TABLE 1. Maximum absolute error of methods of [8, 21] and
the presented method for Example 5.1.

ELF with g(x) = 2> EJF with g(z) = 2> Jacobi polynomial Method of [8] Method of [21]

N E(N) E(N) E(N) E(N) E(N)

4 8.79 x 1073 8.79 x 1073 3.26 x 107! 3.12x 1072 4.49 x 1072
6 1.05 x 1073 1.05 x 1073 4.44 x 1071 5.00 x 1073 3.14 x 1073
8 1.33 x 107* 1.33 x 1074 5.04 x 1072 4.86 x 107* 5.36 x 107*
10 1.81 x 107° 1.81 x 1077 2.87 x 1072 6.23 x 107° 4.93 x 107°

FIGURE 1. Error between the exact- and numerical solutions
of our method for g(z) = 22 and various of N, in Example 5.1.

ExXAMPLE 5.2. For the second example consider the following linear differential
equation [19]

y'(z) + 1y (x) —ecos(z) =0; 0<xz<10, y(0)=1, y'(0)=0. (5.3)

It is easy to verify that the exact solution of this problem is: y(x) = cos(x) +

Lexsin(z).

First we transform this problem into the following problem with homoge-
neous initial conditions:

Y'(z) +Y'(z) —ecos(z) =0; 0<z<10, Y(0)=0, Y'(0)=0. (5.4)
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where Y (z) = y(z) — 1. Spectral Gakerkin method is performed to solve the
above problem (5.4). To employ the method we consider the approximate
solution in the following form:

N
Yn(z) = Z Yn,i¢i(x),
i=0

where the trial functions ¢;, ¢ = 0,1,--- , N must satisfy the boundary condi-
tions. To do so, we consider the following test functions:

(1) For the first case we set:

¢i(x) = PP(0.20—1) 45 P37 (0.20—1) 450 P (0.22-1), 0<a <10, 0<i<N,
(5.5)
where Pf’ﬁ (z) is the i-th Jacobi polynomials with parameter «, 3. The
constant coefficients s;, so should be determined in such a way that
¢i(x) satisfy the initial conditions [24].
(2) For the second case we consider:

pi(z) = g(x) PP (022 —1), 0<z <10, 0<i<N. (5.6)

We are interested to note that if we set g(z) = x2, the function ¢;(z)
satisfy the initial conditions.

Now, our aim is to obtain the unknown coefficients Yy o, Yn1, -, YN~ by
solving the following linear system of equation:

N N N
Z (Z YNﬁiqf);/(l‘j) + ZYN,i(b;(l'j) — CCOS(.Z’]‘)> gbk(asj)wj = 0, 0 S k S N,

j=0 \i=0 i=0

where {z;,w; };VZO be the set of Legendre-Gauss-Lobatto quadrature nodes and
weights, respectively. E(N, 10) for various values of N for these two cases of the
trial functions (5.5) and (5.6) with parameters o = 3 = 0, ¢ = 0.1 together with
the three stages generalized variable coefficient Runge-Kutt method (VCRK)
[19] are listed in Table 2.

TABLE 2. FE(N,10) for some values of N obtained by the pre-
sented method with parameters a = 8 = 0, e = 0.1 for the trial
functions (5.5) and (5.6) and VCRK method [19] for Example

5.2.
N Using trial functions (5.5) Using trial functions (5.6) h VCRK method [19]
5 3.61 x 102 8.01 x 1072 23 741 x 1077
10 4.31 x 1077 4.32 x 1077 2-4 4.63 x 1078
12 1.89 x 1077 8.25 x 10710 27° 2.90 x 10~
14 2.56 x 1076 2.62 x 10712 276 1.81 x 10710
16 4.16 x 1076 2.03 x 10712 27 113 x 1071
18 5.27 x 1073 7.16 x 10713 2-8 7.82 x 10713
20 2.24 x 107! 2.42 x 10712 2-9 252 x 10713
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ExampPLE 5.3. Consider the following weakly singular Volterra integral equa-
tion as the third example:

Tentoq
y(z) = /0 ?my(s)ds +g(z), 0<z<m p>0, (5.7)
with )
.2
g(t) =sin“z — —.
(t) .

The exact solution of equation (5.7) is y(x) = sin” z.

This problem is solved via the collocation method using the basis EJFs
with g(z) = 1, sin?z. We also note that we choose g(z) = sin?(z) to remove
the singularity of the equation (5.7). It is also interesting to note that, the
Legendre-Gauss nodes are used as the collocation points. The maximum ab-
solute errors, F(INV), obtained by the collocation method for some values of N
are reported in Table 3.

TABLE 3. Maximum absolute error of the presented method
for the cases cases g(z) = 1,sin?z with 4 = 1.1 and some
values of N for Example 5.3.

EJF with g(z) = 2? EJF with g(z) = sin® ¢

N E(N) E(N)

5 7.80 x 1071 8.10 x 10~16
10 7.09 x 107° 2.74 x 10716
15 1.30 x 1078 3.24 x 10716
20 6.92 x 10712 1.03 x 10712
25 5.34 x 10712 2.20 x 10716
30 5.57 x 10712 1.73 x 10712

EXAMPLE 5.4. As the fourth example, consider one of the most popular differ-
ential equation [15]:

Vay'(z) - y?(z) =0, 0 <z <o,
subject to the y(0) =1 and lim,_,o y(z) = 0.

This differential equation is so-called as Thomas-Fermi equation and was
solved by many researchers (For instance, Liao [14], Khan and Xu [12], Zhu et
al. [31], Parand et al. [20] and etc). In order to make a comprehensive compar-
ison, we briefly review how solve the Thomas-Fermi equation by the method of
Liu and Zhu [15]. At first, we represent the solution of the problem (5.4) as sum
of two parts because of its singularity at the origin (e.g., lim,_,~ " (z) = 00).
Then we split y as y = § + ¢ such that the function ¢ : [0,00) — R satisfies the
boundary conditions:

q(0) =1, lim g(z)=0. (5.8)

T—r00
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Then the problem (5.4) is transformed to
1

\/>

subject to §(0) = 0 and g(oo) = 0. In this problem y has the series expansion
at the origin [5]

~11

(y+q) +4", 0<z< oo, (5.9)

4 2 1
y=1+)\x+§x%+g)\x%+§x3~-~, (5.10)

where A is the value of the first derivative of y(z) at the origin. We obtain

/!

131
Yy =x z+§$2+2x+’

which means that only the third term in (5.10) creates a singularity in the
solution. We truncate the series (5.10) to the third term and denote

w\w

4
pi=l+dw+ b, (5.11)

We take q(z,\) = e 2p(z,)), which satisfies (5.8). The following smooth
problem is obtained from g¢(x, ) and (5.10)

(o

2 z
)2 2(311 p—p +p")=0, 0<z< o0, (5.12)

We also note that more accurate solution for (5.12) can be obtained by using a
proper scaling factor b [15]. Let £ = bz and u(§) = ¢(x). Then problem (5.12)
reduces to the following problem:

3 _E
u’ — %}35 (u—i—e’%p (%,A)) “ 4 e (ip—p +p") (%J\) =0,
w(0) =0, u(o0) =0, w(0)=5, 0<E<oo,

(5.13)
Now, the obtained problem can be soled by the well-known Laguerre pseu-
dospectral method. Let {&}Y (N € N) be the Laguerre-Gauss interpolation
points (i.e., zeros of Ly(z)) together with , = 0. Therefore, the numerical
solution can be expanded as the following nodal expansion:

N
&) = un(&)F(©)
j=0

» N -~ e,
e = o5 1 §=bm _ 8 ¢Ln(E) L 0<j<N.

f] gm (gLN (g))/(gj)(g - g])
(5.14)
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The Laguerre pseudospectral method for (5.13) is to find ux such that

3 &;
ufe = b= (uw e B ($.0)) 7+ 52 oo/ 40 (§.4) =0,
un(0) =0, un(o0)=0, uy(0)= ﬁ,

(5.15)

We solve the Thomas-Fermi equation using the mentioned method and the

obtained results are reported in Tables 4 (for the detailed information see [15]).

Moreover, without loss of the generality, we can assume ¢ = e~*% (k > 0) and

use the ELFs with g(x) = e~** to solve the nonlinear system (5.13). We obtain

the numerical solution by performing the presented method but unfortunately,

for large values of N, the condition number of the Jacobian matrix in the

Newton’s method may decrease very fast and therefore the numerical solution

can not be obtained accurately. So, we report our numerical results with NV =8

and g(z) = e ** with k = 0.3,0.4,0.5,0.6,0.7 in Table 5. Table 5 indicates

that the numerical solution with & = 0.5 is more accurate than other values of
k.

TABLE 4. Numerical solution of Thomas-Fermi by the method
[15] (with N = 64, b = 3), and the methods of [14], [31] and
[12] for Example 5.4.

Method of [14] Method of [15] Method of [31] Method of [12]
z y(@) y(@) y(@) y(@)
1 0.424008000 0.424008068 0.424304901 0.423772000
2 0.243009000 0.243008476 0.243264008 0.242718000
4 0.108404000 0.108404284 0.108556966 0.109632000
6 0.059423000 0.059423000 0.059513053 0.063816200
8 0.036587300 0.036587209 0.036601372 0.043285900
10 0.024314300 0.024314333 0.024285183 0.032208100
50 0.000632255 0.000616135 0.000431660 0.000473089

ExXaMPLE 5.5. For the last example, we consider the following fractional cal-

culus of variation problem [23]

1t
minimize J[y] = 5/0 (ng'E’y(x) — f(2))*dz,

subject to

where f(z) is given

f()

T TG

In this case the exact solution is y(z) = 162° — 2023 + 5z.

_ I6T(6) 45 200(4) o5 5

r3.5) "

T(15)"

(5.16)
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TABLE 5. Numerical solution of Thomas-Fermi and y'(0) by
presented method with N = 8, b = 1 and g(z) = e~ **, with
k =0.3,0.4,0.5,0.6,0.7 for Example 5.4.

k=03 k=04 k=05 k=06 =07

z y(z) y(2) y(z) y(z) y(x)

1 0.4238955910 0.4238485308 0.4238817746 0.4239055735 0.4223208979
2 0.2431121234 0.2428464683 0.2426141529 0.2423483510 0.2400348781
4 0.1082333044 0.1085142007 0.1087684640 0.1090038390 0.1116903257
6 0.0594062477 0.0587492235 0.0586546125 0.0583863783 0.0526742642
8 0.0361676051 0.0371093606 0.0371957723 0.0372725644 0.0405964467
10 0.0235398204 0.0243205340 0.0248064919 0.0249378871 0.0283913379
50 —0.0277919185  —0.0014940678  —0.0000082724  0.0000004078  0.0000000602

' (0) —1.584032 —1.586677 —1.589387 ~1.592191 —1.595777

We apply the Rayleigh-Ritz method to solve the problem (5.16) [7]. To
do so, we expand the approximate solution yx(z) by a linear combination of
certain linearly independent functions as follow:

N
y(@) ~yn (@) = ¢o(z) + D crdi(®), (5.17)
k=1
where
d0(@) = o+ (v1 = 90)9(@), 6u(2) = (P (22— 1) = P*(1)) g(a).
(5.18)

For this example we set g(x) = 2°° and x, for these choices yy(z) satisfies the

boundary conditions of equation (5.16). Now, it remains evaluate § D9-yy ()
05, The following theorem states an interesting formula for
the Caputo fractional derivatives of yy(z). For more detailed information
about the definition of the Caputo fractional derivative and a proof of the next
theorem see [7].

with g(z) =

Theorem 5.6. [7] Let a > 0 be a real number and = € [0,1]. Then

af ap0a F(k‘ + o+ 1) 0,a
¢ po (:c PO (24— 1)) = PRz -1).

Substituting § D%y x (x) and (5.17) into (5.16) we obtain

Tw) =5 | (DY (o) - fle)da,

With the help of the Gauss-Legendre quadrature rule we get

N-1

Tlow] = 5 3 r(§ DYPun () — F(an))* (519)
k=0
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Our next aim is to determine the unknown coefficients ¢y, ca, - - - , ¢y such that
the functional J is minimized. So, we use the following well-known procedure:

o o0
661 o 7aCN -
The unknown coefficients ¢y, ca,- -+ ,cy can be determined by solving the pre-

vious nonlinear system of equations. To compare our numerical results with
g(z) = 2°° 2 by the methods of [22, 23]. Moreover, these results are reported
in Table 6. Furthermore, we plot E(N,z) for some values of N using the basis
function (5.18) in Fig. 2.

TABLE 6. Maximum absolute error of methods of [22, 23] and
the method of [7] for g(z) = z, 2% for Example 5.5.

EJF with g(z) = 20 EJF with g(z) = Method of [23] Method of [22]
N E(N) E(N) E(V) E(N)
4 3.98 x 1072 8.56 x 1073 1.21 1.55
8 9.48 x 1073 1.54 x 1072 5.38 x 1071 7.38 x 1071
12 5.11 x 1073 1.48 x 1072 3.39 x 107! 4.82 x 107!
16 3.50 x 1073 1.15 x 1072 2.45 x 107! 3.58 x 10!
20 4.40 x 1073 7.98 x 1073 1.91 x 1071 8.97 x 1072
10°
7_5\///,7;;:7?17*:”"
10°
10-107
N=4
N=g
N=12
————— N=16
——N=20
10'15 L L L L L L L L L
0 0.1 02 03 04 05 06 07 08 09 1

FIGURE 2. Error between the exact- and numerical- solutions
of our method with g(x) = %5 for Example 5.5.
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6. CONCLUSION

This article presents two new extended- Jacobi and Laguerre basis functions
which are the solution of two non-classical Sturm-Liouville eigenvalue problems.
Some theoretical results concerning the new basis functions are proved in detail.
Finally several examples are provided to verify these basis functions. The
numerical results show that the new basis functions work well for various linear
and nonlinear differential equation, integral equation and calculus of variation
problem. The authors believe that the proposed method can be developed for
other problems in engineering and science (see for instance [25, 26, 24, 3, 6]
and references therein).
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