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Abstract. Let X be a topological space and R be a subring of RX .

By determining some special topologies on X associated with the subring

R, characterizations of maximal fixed and maximal g-ideals in R of the

form Mx(R) are given. Moreover, the classes of zR-ideals and z◦
R
-ideals

are introduced in R which are topological generalizations of z-ideals and

z◦-ideals of C(X), respectively. Various characterizations of these ideals

are established. Also, coincidence of zR-ideals with z-ideals and z◦
R
-ideals

with z◦-ideals in R are investigated. It turns out that some fundamental

statements in the context of C(X) are extended to the subrings of RX .
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1. Introduction

For a topological space X, RX denotes the algebra of all real-valued func-

tions and C(X) (resp., C∗(X)) denotes the subalgebra of RX consisting of

all continuous functions (resp., bounded continuous functions). Moreover, we

use R to denote a unital subring of RX . Note that topological spaces which

are considered in this paper are not necessarily Tychonoff. For each f ∈ RX ,

∗Corresponding Author

Received 12 May 2016; Accepted 14 January 2017

c©2019 Academic Center for Education, Culture and Research TMU

55

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.ir
 o

n 
20

25
-1

1-
04

 ]
 

                             1 / 13

http://ijmsi.ir/article-1-896-en.html


56 A. Rezaei Aliabad, M. Parsinia

Z(f) = {x ∈ X : f(x) = 0} denotes the zero-set of f and Coz(f) denotes

the complement of Z(f) with respect to X. We denote by Z(R) the collec-

tion of all the zero-sets of elements of R, we use Z(X) instead of Z(C(X)).

We denote by Mx(R) the set {f ∈ R : x ∈ Z(f)}, Mx(C(X)) is denoted by

Mx. The subring R is called invertible, if f ∈ R and Z(f) = ∅ implies that

f is invertible in R. Moreover, R is called a lattice-ordered subring if it is a

sublattice of RX (i.e., f ∧ g and f ∨ g are in R for each f, g ∈ R). It is clear

that C(X) is an invertible lattice-orderd subring of RX . However, the same

statement does not hold for C∗(X). A proper ideal I of R is called a growing

ideal, briefly, a g-ideal, if contains no invertible element of RX , i.e., Z(f) 6= ∅

for each f ∈ I. It is evident that a subring R is invertible if and only if every

ideal every ideal of R is a g-ideal. Clearly, M∗p, for each p ∈ βX \υX, is not a

g-ideal of C∗(X). An ideal I of R is called fixed if
⋂

f∈I Z(f) 6= ∅, otherwise,

it is called free. By a maximal fixed ideal of R, we mean a fixed ideal which is

maximal in the set of all fixed ideals of R. An ideal I in a commutative ring

S is called a z-ideal (resp., z◦-ideal) if Ma(S) ⊆ I (resp., Pa(S) ⊆ I), for each

a ∈ I, where Ma(S) (resp., Pa(S)) denotes the intersection of all the maximal

(resp., minimal prime) ideals of S containing a. It is well-known that in C(X)

an ideal I is a z-ideal (resp., z◦-ideal) if and only if whenever Z(f) ⊆ Z(g)

(resp., intXZ(f) ⊆ intXZ(g)), f ∈ I and g ∈ C(X), then g ∈ I.

This paper consists of 4 sections. Section 1, as we have already noticed,

is the introduction, in which we determine two special topologies on X which

the subring R generate, namely, Z(R)-topology and Coz(R)-topology. Com-

parison and coincidence of these topologies are studied. Section 2 deals with

maximal ideals in R, specially, maximal fixed and maximal g-ideals. Using the

Z(R)-topology, characterizations of maximal fixed ideals of R, which are of the

form Mx(R), are given. Moreover, relations between mapping “x −→ Mx(R)”

and the separation properties of the topological space (X, τZ(R)) will be found.

In section 3, we introduce the notion of zR-ideal in a subring R as a natural

topological generalization of the notion of z-ideal in C(X). Various charac-

terizations of these ideals via Z(R)-topology are given and relations between

zR-ideals and z-ideals in R (by their algebraic descriptions) are discussed. Sec-

tion 4 deals with z◦R-ideals of R which are natural topological generalizations

of z◦-ideals of C(X). Using Coz(R)-topology, coincidence of z◦R-ideals with

z◦-ideals of R (by their algebraic descriptions) are established.

Definition 1.1. For each subring R of RX , clearly, Z(R) and Coz(R) con-

stitute bases for some topologies on X. The induced topologies are called

Z(R)-topology and Coz(R)-topology, respectively, and are denoted by τZ(R)

and τCoz(R), respectively.

In the next three statements we compare these topologies. Note that two

subsets S1, S2 of RX are called zero-set equivalent, if Z(S1) = Z(S2).
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Proposition 1.2. Let R be a subring of RX , if S and C(R) are zero-set

equivalent subsets of RR and gof ∈ R for each f ∈ R and each g ∈ S, then

τCoz(R) ⊆ τZ(R) and the equality does not hold, in general.

Proof. We are to show that Coz(R) ⊆ τZ(R). If x 6∈ Z(f) where f ∈ R, then

there is a g in S such that f(x) ∈ Z(g) and f−1(Z(g)) ∩ Z(f) = ∅. Therefore,

gof ∈ R, x ∈ Z(gof) and Z(gof)∩Z(f) = ∅ which proves the inclusion. Now,

we show that the inclusion may be proper. Let (X, τX) be a Tychonoff space

which has at least one non-open zero-set Z. Set R = C(X), then τCoz(R) = τX ,

whereas Z 6∈ τX and hence, τCoz(R) ( τZ(R). �

Proof of the following proposition is standard.

Proposition 1.3. The following statements are equivalent.

(a) τCoz(R) ⊆ τZ(R).

(b) Every Z ∈ Z(R) is clopen under Z(R)-topology.

The annihilator of f ∈ R in R is defined to be the set {g ∈ R : fg = 0} and

is denoted by AnnR(f). A simple reasoning shows that if X is equipped with

the Coz(R)-topology, then AnnR(f) = {g ∈ R : Coz(g) ⊆ intXZ(f)} = {g ∈

R : clX(Coz(g)) ⊆ Z(f)}.

Proposition 1.4. The following statements are equivalent.

(a) τZ(R) ⊆ τCoz(R).

(b) Z(f) is clopen in (X, τCoz(R)) for every f ∈ R.

(c) For each f ∈ R, Z(f) =
⋃

g∈AnnR(f) Coz(g).

(d) For each f ∈ R, (AnnR(f), f) is a free ideal.

Proof. The implications (a)⇒(b)⇒(c) are clear.

(c)⇒(d). This clear by the hypothesis and the fact that whenever f ∈ R

and I is an ideal of R, then
⋂

h∈(I,f) Z(h) =
⋂

g∈I(Z(f) ∩ Z(g)).

(d)⇒(a). Let f ∈ R and x ∈ Z(f). By (d), there exists g ∈ AnnR(f)

such that x 6∈ Z(f) ∩ Z(g). Hence, x 6∈ Z(g) and x ∈ Coz(g) ⊆ Z(f) and so

Z(f) ∈ τCoz(R). �

An immediate consequence of Propositions 1.3 and 1.4 is that τCoz(R) =

τZ(R) if and only if Z(f) is clopen under both Z(R)-topology and Coz(R)-

topology, for each f ∈ R.

2. Characterization of Maximal Fixed Ideals in Subrings

We remind that maximal fixed ideals of C(X) coincide with its fixed max-

imal ideals and are of the form Mx = {f ∈ C(X) : f(x) = 0}, where x ∈ X.

This fact is generalized for some special subalgebras of C(X), such as interme-

diate subalgebras (subalgebras of C(X) containing C∗(X), see [7]), Cc(X) (the

subalgebra of C(X) consisting of all functions with countable image, see [9])

and the subalgebras of the form R + I where I is an ideal of C(X), see [13].
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We will show that the same statement does not hold for arbitrary subrings of

RX , in general.

Remark 2.1. (a) Every maximal fixed ideal and fixed maximal ideal of R is of

the form Mx(R) = {f ∈ R : f(x) = 0} for some x ∈ X. However, parts (1) and

(2) of Example 2.2 show that the ideals Mx(R) are not necessarily maximal

ideals or even maximal fixed ideals in R.

(b) Every fixed maximal ideal is both a maximal fixed ideal and a maximal

g-ideal. But the converse is not necessarily true, in general, see part (1) of

Example 2.2 and Example 2.3.

(c) A maximal fixed ideal need not be a maximal g-ideal, see Example 2.3.

(d) Every fixed maximal g-ideal is a maximal fixed ideal.

Example 2.2. (1) Let X be a Tychonoff space, x ∈ X and R = Z+Mx. Then

Mx(R) = Mx is not a maximal ideal in R, since 2Z+Mx is a proper ideal of R

and Mx ( 2Z+Mx. Therefore, Mx(R) is a maximal fixed ideal and a maximal

g-ideal which is not a maximal ideal.

(2) Let X be a topological space with more than one point and a ∈ X. Also,

let t ∈ R be a transcendental number and define f : X −→ R by f(a) = 0 and

f(x) = t, for every x 6= a. Set R = {
∑n

i=0 mif
i : n ∈ N ∪ {0}, mi ∈ Z}.

Evidently, Ma(R) = (f) and Mx(R) = {0}, for every x 6= a. Therefore, Mx(R)

is not a maximal fixed ideal for any x 6= a.

In the next example we construct a subring R such that, for some x ∈ X,

Mx(R) is a maximal fixed ideal which is not a maximal g-ideal.

Example 2.3. Let X = R, a ∈ R \ Q, b ∈ R \ {0} and t be a transcendental

number. For every ǫ > 0, define fǫ : X −→ R by fǫ(x) = 0, if |x − a| < ǫ

and fǫ(x) = b, if |x − a| ≥ ǫ. Also, define f : X −→ R by f(x) = 0, if

x ∈ Q and f(x) = t, if x ∈ R \ Q. Let R be the algebra over Q generated by

{fǫ : ǫ > 0} ∪ {f, 1}. Evidently, R is a subring of RX , and Ma(R) equales to

(fa) which is not a maximal ideal. It is easy to see that Ma(R) is a maximal

fixed ideal and Ma(R) = I, where I is the ideal generated by {fǫ : ǫ > 0}.

Clearly, Z(f) ∩ Z(g) 6= ∅, for all g ∈ I. Hence J = (I, f) is a g-ideal which

strictly contains I. Therefore, I is not a maximal g-ideal.

Proposition 2.4. The following statements hold for a subring R of RX .

(a) Mx(R) is a maximal g-ideal if and only if whenever Z ∈ Z(R) and

x 6∈ Z, then x /∈ clτZ(R)
Z.

(b) For each x ∈ X, Mx(R) is a maximal g-ideal if and only if every

Z ∈ Z(R) is clopen under Z(R)-topology.

Proof. (a ⇒). Let f ∈ R and x 6∈ Z(f), thus, the ideal (Mx(R), f) contains

an invertible element of RX . Hence, there are g ∈ Mx(R) and h ∈ R such that

Z(g + fh) = ∅. Consequently, x ∈ Z(g) and Z(f) ∩ Z(g) = ∅.
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(a ⇐). Assume that f 6∈ Mx(R). Then there is some g ∈ R such that

x ∈ Z(g) and Z(f) ∩ Z(g) = Z(f2 + g2) = ∅. Hence, (Mx(R), f) contains an

invertible element of RX . Also, clearly, Mx(R) is a g-ideal. Thus, Mx(R) is a

maximal g-ideal.

(b). An easy consequence of (a). �

Corollary 2.5. If Mx(R) is a maximal ideal for each x ∈ X, then every

Z ∈ Z(R) is clopen under Z(R)-topology.

Corollary 2.6. Let R be an invertible subring. Then every Z ∈ Z(R) is clopen

under Z(R)-topology if and only if Mx(R) is a maximal ideal for each x ∈ X.

Proof. By our hypothesis and Proposition 2.4, this is clear. �

The following lemma is a restatement of the fact that the transcendental

degree of R over Q is unountable, see [14].

Lemma 2.7. Let S = Q[y1, ..., yn] be the ring of n-variable polynomials with

rational coefficients. Then there exists an uncountable set X of transcendental

numbers for which F (a1, · · · , an) 6= 0, for every distinct elements a1, · · · , an of

X and every F ∈ S.

The following example shows that the converse of Corollary 2.5 does not

hold, in general.

Example 2.8. Let S be the polynomial ring Q[y1, ..., yn], where n ∈ N and

n > 1. By Lemma 2.7, there exists an infinite set of transcendental numbers X

for which F (a1, · · · , an) 6= 0, for every a1, · · · , an ∈ X and every F ∈ S. For

each a ∈ X, define the function fa : X −→ R by fa(a) = 0 and fa(x) = x for

each x 6= a. Now, set

R = {F (fa1
, ..., fan

) : F ∈ S, n ∈ N, a1, ..., an ∈ X}.

Hence, Ma(R) = (fa), for each a ∈ X, which is not a maximal ideal. However,

every Z ∈ Z(R) is clopen under Z(R)-topology.

Proposition 2.9. If R is a subalgebra of RX , then Mx(R) is a maximal g-ideal

and a maximal fixed ideal for every x ∈ X.

Proof. It suffices to prove that every element of Z(R) is closed under Z(R)-

topology. To this aim, suppose that a ∈ X and a /∈ Z(f), for some f ∈ R. Put

g = f − f(a). Clearly, Z(g) ∈ Z(R), a ∈ Z(g) and Z(g) ∩ Z(f) = ∅. �

Corollary 2.10. If R is an invertible subalgebra of RX , then Mx(R) is a

maximal ideal for each x ∈ X.

The converse of Corollary 2.10 does not hold, in general. For example, let R

denote the collection of all single variable polynomials over R. Then, Mr(R) is

the maximal ideal (x− r) for each r ∈ R. However, f = x2 + 1 is invertible in
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RR which is not invertible in R. Note that the subalgebras Cc(X) and R+I, for

each ideal I in C(X), satisfy Corollary 2.10 and so Mx(Cc(X)) and Mx(R+ I)

are maximal ideals of Cc(X) and R+ I, respectively, for each x ∈ X. Remark

that in parts (b) and (e) of the following proposition we assume that “=” is a

partial order on X.

Proposition 2.11. For a subring R of RX , the following statements hold.

(a) The mapping x −→ Mx(R) is a one-one correspondence if and only if

(X, τZ(R)) is a T0-space.

(b) The mapping x −→ Mx(R) is an order isomorphism between X and the

set of all maximal fixed ideals of R if and only if (X, τZ(R)) is a T1-space.

(c) For every two distinct elements x, y ∈ X, Mx(R)+My(R) is not a g-ideal

if and only if (X, τZ(R)) is a T2-space.

(d) The mapping x −→ Mx(R) is an order embedding between X and the set

of all maximal g-ideals of R if and only if (X, τZ(R)) is a T0-space and every

element of Z(R) is clopen under Z(R)-topology.

Proof. (a). Let x, y be distinct points of X, so Mx(R) 6= My(R), say Mx(R) 6⊆

My(R). Hence, there exists f ∈ Mx(R)\My(R). Thus x ∈ Z(f) and y 6∈ Z(f).

It is clear that the above reasoning is reversible and hence we are done.

(b ⇒). Suppose that x and y are two distinct points of X. Since Mx(R) *
My(R), there exists f ∈ Mx(R)\My(R). Consequently, x ∈ Z(f) and y /∈ Z(f).

(b ⇐). Suppose that x ∈ X and I is a fixed ideal in R containing Mx(R).

Take y ∈ ∩f∈IZ(f). Clearly, Mx(R) ⊆ I ⊆ My(R). It suffices to show x = y.

Suppose that x 6= y and seek a contradiction. By our hypothesis, there exists

f ∈ R such that x ∈ Z(f) and y /∈ Z(f). Therefore, Mx(R) * My(R) and this

is a contradiction. Now, by part (a), the proof is complete.

(c). For any two distinct points x, y ∈ X, clearly, Mx(R) + My(R) is not

a g-ideal if and only if there exist f ∈ Mx(R) and g ∈ My(R) such that

Z(f) ∩ Z(g) = ∅.

(d ⇒). By part (a), clearly, (X, τZ(R)) is a T0-space. Now, Suppose that

f ∈ R and x 6∈ Z(f). Since Mx(R) is a maximal g-ideal, it follows that

(Mx(R), f) has an invertible element of RX and so there exists g ∈ Mx(R),

such that Z(g) ∩ Z(f) = ∅. Thus, Z(f) is closed and hence is clopen under

Z(R)-topology.

(d ⇐). Suppose that x ∈ X, it suffices to show that Mx(R) is a maximal

g-ideal. Assume that I is an ideal which properly contains Mx(R). Hence,

there exists f ∈ I such that x /∈ Z(f). By our hypothesis, there is g ∈ R such

that x ∈ Z(g) and Z(g)∩Z(f) = ∅. Therefore, Z(f2+g2) = ∅ and f2+g2 ∈ I,

hence, I is not a g-ideal. �

It is easy to see that Mx(R), for each x ∈ X, is a prime ideal of R and

thus the hull-kernel topology may be defined on the family {Mx(R) : x ∈ X}.
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By considering this space, the next statement gives a relation between Z(R)-

topology on X and points of X.

Proposition 2.12. Let R be a subring of RX and X equipped with the Coz(R)-

topology. Then the mapping Φ : X → {Mx(R) : x ∈ X} defined by x 7→ Mx(R)

is a homeomorphism if and only if (X, τZ(R)) is a T0-space.

Proof. By part (a) of Theorem 2.12, Φ is a one-one correspondence if and only

if (X, τZ(R)) is a T0-space. Also, if f ∈ R and x ∈ Z(f), then f ∈ Mx(R)

which means that basic closed sets of X equipped with the Coz(R)-topology

are mapped to the basic closed sets in {Mx(R) : x ∈ X} equipped with the hull-

kernel topology by the mapping Φ and therefore, it is a homeomrohpism. �

3. zR-Ideals and z-Ideals in Subrings

In this section we introduce zR-ideals in a subring R and via the Z(R)-

topology and maximal g-ideals of R, various characterizations of these ideals

are given.

Definition 3.1. A subset F of Z(R) is called zR-filter on X, if

(a) ∅ 6∈ F .

(b) If Z1, Z2 ∈ F , then Z1 ∩ Z2 ∈ F .

(c) If Z1 ∈ F , Z2 ∈ Z(R) and Z1 ⊆ Z2, then Z2 ∈ F .

Moreover, F is called a prime zR-filter, if whenever Z1∪Z2 ∈ F , then Z1 ∈ F

or Z2 ∈ F for each Z1, Z2 ∈ Z(R). Also, F is called a zR-ultrafilter, if F is

maximal among zR-filters on X.

The following proposition immediately follows from Definition 3.1.

Proposition 3.2. For any subring R, the following statements hold.

(a) I ⊆ R is a g-ideal in R if and only if ZR(I) = {Z(f) : f ∈ I} is a

zR-filter on X.

(b) F is a zR-filter on X if and only if Z−1
R (F) = {f ∈ R : Z(f) ∈ F} is

a g-ideal.

(c) F is a prime zR-filter on X if and only if Z−1
R (F) is a prime g-ideal.

(d) A is a zR-ultrafilter on X if and only if Z−1
R (A) is a maximal g-ideal.

(e) If M is a maximal g-ideal in R, then ZR(M) is a zR-ultrafilter on X.

It is easy to see that for an ideal I of R we always have I ⊆ Z−1
R ZR(I) and the

inclusion may be proper. We call an ideal I in R a zR-ideal, if I = Z−1
R ZR(I).

It follows that every zR-ideal is semiprime and arbitrary intersections of zR-

ideals is a zR-ideal. Also, the zero ideal, the ideals of the form Mx(R), maximal

g-ideals and Z−1(F), for each zR-filter F , are all zR-ideals of R. For each

f ∈ R, the intersection of all the maximal ideals, maximal g-ideals and maximal

fixed ideals of R containing f are denoted by Mf (R), MGf (R) and MFf (R),

respectively. It is easy to observe that MGf (R) is a zR-ideal for each f ∈ R.
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Obviously, MGf ∩MGg = MGfg, MFf ∩MFg = MFfg, MGf2+g2 = MG(f,g)

and MFf2+g2 = MF(f,g) for all f, g ∈ R.

Proposition 3.3. Let (X, τZ(R)) be a T1-space. Then the following statemnets

hold.

(a) The following statements are equivalent.

(1) g ∈ MFf (R).

(2) MFg(R) ⊆ MFf (R).

(3) Z(f) ⊆ Z(g).

(b) MFf (R) = {g ∈ R : Z(f) ⊆ Z(g)}.

(c) An ideal I of R is a zR-ideal if and only if MFf (R) ⊆ I for every f ∈ I.

Proof. (a: 1 ⇒ 2). Evident.

(a: 2⇒ 3). Let x ∈ Z(f). Then f ∈ Mx(R) and thusMFg(R) ⊆ MFf (R) ⊆

Mx(R). This implies g ∈ Mx(R) and hence x ∈ Z(g).

(a: 3 ⇒ 1). If g /∈ MFf (R), then there exists x ∈ X such that f ∈ Mx(R)

and g /∈ Mx(R). Therefore, x ∈ Z(f) \ Z(g) and so Z(f) ( Z(g).

(b) and (c) obviously follow from part (a). �

Lemma 3.4. Assume that every Z ∈ Z(R) is clopen under Z(R)-topology.

Then MGf (R) = MFf (R), for every f ∈ R.

Proof. Suppose that f ∈ R. By part (b) of Proposition 2.4, Mx(R) is a maximal

g-ideal for each x ∈ X. Consequently, MGf (R) ⊆ MFf (R). Now, assume that

g /∈ MGf (R). Hence, there exists a maximal g-ideal M in R such that f ∈ M

and g /∈ M . Thus, there exists h ∈ M such that Z(g) ∩ Z(h) = ∅. Since

f2+h2 ∈ M and M is a g-ideal, there is a point x ∈ Z(f2+h2) = Z(f)∩Z(h).

Clearly, g /∈ Mx(R) and f ∈ Mx(R). Therefore, g /∈ MFf (R). �

Proposition 3.3 and Lemma 3.4 imply the next statement.

Proposition 3.5. Let (X, τZ(R)) be a T1-space and every Z ∈ Z(R) be a clopen

set under Z(R)-topology. Then the following statements hold.

(a) The following statements are equivalent.

(1) g ∈ MGf (R).

(2) MGg(R) ⊆ MGf (R).

(3) Z(f) ⊆ Z(g).

(b) MGf (R) = {g ∈ R : Z(f) ⊆ Z(g)}.

(c) An ideal I of R is zR-ideal if and only if MGf (R) ⊆ I for every f ∈ I.

The following corollary follows from Corollary 2.6 and Proposition 3.5.

Corollary 3.6. Let R be an invertible subalgebra of RX . Then the following

statements hold.
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(a) The following conditions are equivalent;

(1) g ∈ Mf (R).

(2) Mg(R) ⊆ Mf (R).

(3) Z(f) ⊆ Z(g).

(b) Mf (R) = {g ∈ R : Z(f) ⊆ Z(g)}.

(c) An ideal I of R is zR-ideal if and only if Mf (R) ⊆ I for every f ∈ I.

It follows from Corollary 3.6 that for an invertible subalgebra R, the notion

of zR-ideal coincides with the notion of z-ideal. The next statement extend

this fact and shows that this coincidence is equivalent to invertibility of R.

Theorem 3.7. Let R be a subring of RX . The following statements are equiv-

alent.

(a) Every maximal ideal in R is a g-ideal.

(b) Every maximal g-ideal of R is a maximal ideal and if J is a maximal

ideal of R, then every maximal element in the set of g-ideals contained in J is

a prime ideal.

(c) Every maximal ideal in R is a g-ideal.

(d) R is an invertible subring.

(e) Every z-ideal of R is a zR-ideal.

Moreover, if R is a subalgebra and one of (a)-(c) holds, then every zR-ideal is

a z-ideal.

Proof. (a) ⇒ (b). This is clear.

(b)⇒(c). Suppose that M is a maximal ideal and P is a maximal element

of GM , where GM is the set of all g-ideals contained in M . Assume that J is

a maximal ideal of R containing P . Then M ∩ J = P . As M ∩ J is prime and

both M and J are maximal ideal, we have M = J . Hence, M is a maximal

g-ideal.

(c)⇒(d). Suppose that Z(f) = ∅ for f ∈ R and, on the contrary, f is a non-

unit element of R. Clearly, there exists a maximal ideal M of R containing f .

By our hypothesis, M is a g-ideal which contradicts with Z(f) = ∅.

(d)⇒(e). Suppose that I is a z-ideal and Z(f) ⊆ Z(g) where f ∈ I and

g ∈ R. Since I is a z-ideal, it follows that Mf ⊆ I. It suffices to prove that

g ∈ Mf . To see this, suppose that M is a maximal ideal containing f . As R

is invertible, M is a g-ideal and so it is a maximal g-ideal. Obviously, M is a

zR-ideal and so g ∈ M .

(e)⇒(a). Suppose that M is a maximal ideal and, on the contrary, M is

not a g-ideal. Thus, there exists f ∈ M such that Z(f) = ∅. By (e), M is a

zR-ideal and since f ∈ M , it follows that M = R, which is a contradiction.

Now, suppose that one of (a)-(c) holds, R is a subalgebra and I is a zR-ideal

of R. By our hypothesis, MFf (R) = Mf (R) for every f ∈ R, and thus we are

done. �
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It is well-known that every minimal prime ideals over a z-ideal is also a z-

ideal, see [10, Theorem 14.7]. The same statement holds for zR-ideals as the

following proposition shows.

Proposition 3.8. Let I be a zR-ideal of R and P a prime ideal in R minimal

over I. Then P is a zR-ideal.

Proof. Assume that Z(f) = Z(g) and f ∈ P . Thus, there exists h 6∈ P ,

such that fh ∈ I. Since Z(fh) = Z(gh) and I is a zR-ideal, it follows that

gh ∈ I ⊆ P . As h 6∈ P , clearly, this implies that g ∈ P . �

An immediate consequence of Proposition 3.8 is that every minimal prime

ideal in a subring R is a zR-ideal. By the following statement, we extend some

fundamental statements about z-ideals in the literature of C(X) to the subrings

of RX , namely, [10, 2.9, 5.3 and 5.5]. The proofs are left to the reader.

Proposition 3.9. Let R be a lattice-ordered subring of RX and I be a zR-ideal

in R. Then the following statements hold.

(a) The following statements are equivalent

(1) I is a prime ideal;

(2) I contains a prime ideal;

(3) if fg = 0, then f ∈ I or g ∈ I;

(4) for each f ∈ R, there is a Z ∈ ZR(I) on which f does not change sign.

(b) Every prime g-ideal of R is contained in a unique maximal g-ideal.

(c) If P is a prime ideal of R, then ZR(P ) is a prime zR-filter on X.

(d) If P is a prime zR-filter on X, then Z−1
R (P) is a prime ideal in R.

(e) Every zR-ideal of R is absolutely convex.

Thus, if I is an absolutely convex ideal of R, then R/I is a lattice ring.

(f) I(f) ≥ 0 if and only if f ≥ 0 on some Z ∈ ZR(I).

(g) Suppose that there exists Z ∈ ZR(I) such that f(x) > 0, for every x ∈ Z,

then I(f) > 0. The converse is true whenever I is a maximal g-ideal.

4. z◦R-Ideals and z◦-Ideals in Subrings

In this section we generalize the concept of z◦-ideals of C(X) to the subrings

of RX and introduce z◦R-ideal. Coincidence of z◦R-ideals with z◦-ideals of R is

discussed. Note that, for each element f of a commutative rings S, we use Pf (S)

to denote the intersection of all the minimal prime ideals in S containing f .

Definition 4.1. An ideal I of a subring R of RX is called a z◦R-ideal, if

intXZ(f) ⊆ intXZ(g), where f ∈ I and g ∈ R, implies g ∈ I.

The following statement investigates some characterizations of z◦R-ideals in

subrings.

Theorem 4.2. Let R be a subing of RX and I be an ideal in R. The following

statements are equivalent.
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(a) I is a z◦R-ideal.

(b) Whenever AnnC(f) ⊆ AnnC(g) where f ∈ I and g ∈ R, then g ∈ I.

(c) R ∩ Pf (C) ⊆ I for each f ∈ I.

(d) Whenever Pg(C) ∩R ⊆ Pf (C) ∩R, where f ∈ I and g ∈ R, then g ∈ I.

Proof. (a⇒b). First note that by [3, Lemma 2.1] we have AnnC(f) ⊆ AnnC(g)

if and only if intXZ(f) ⊆ intXZ(g) for each f, g ∈ C(X). Now, let I be a z◦R-

ideal in R and AnnC(f) ⊆ AnnC(g) where f ∈ I and g ∈ R. Thus, by our

hypothesis, we have intXZ(f) ⊆ intXZ(g) which implies that g ∈ I.

(b⇒c). By [3, Proposition 2.3], we have Pf (C) = {g ∈ C(X) : AnnC(f) ⊆

AnnC(g)}. Thus the proof is evident.

(c⇒d). Let Pg(C) ∩ R ⊆ Pf (C) ∩ R, where f ∈ I and g ∈ R. As f ∈ I,

by our hypothesis, Pf (C) ∩R ⊆ I and thus Pg(C) ∩R ⊆ I which implies that

g ∈ I.

(d⇒a). Let intXZ(f) ⊆ intXZ(g) where f ∈ I and g ∈ R. Therefore, by [3,

Lemma 2.1], we have Pf (C) ⊆ Pg(C) and hence Pf (C)∩R ⊆ Pg(C)∩R. Thus

we are done by our hypothesis. �

Lemma 4.3. Let R be a subring of RX , then for each f ∈ R we have Pf (C) ⊆

Pf (R).

Proof. Let g ∈ Pf (C). By [3, Proposition 2.3.], we have AnnC(f) ⊆ AnnC(g).

Therefore, AnnR(f) = AnnC(f)∩R ⊆ AnnC(g)∩R = AnnR(g). Thus, by [2,

Proposition 1.5] we are done. �

Theorem 4.4. Let R be a subring of RX . Then every z◦R-ideal in R is a

z◦-ideal if and only if Pf (R) = Pf (C) for each f ∈ R.

Proof. (⇒). Asumme on the contrary that there exists some f ∈ R such that

Pf (R) 6= Pf (C). Thus, using Theorem 4.2 we have Pf (C) ⊆ Pf (R). Again by

Theorem 4.2, Pf (C) ∩ R is a z◦R-ideal in R. Also, it is clear that this ideal is

not a z◦-ideal, since, Pf (R) 6⊆ Pf (C) ∩R.

(⇐). Let I be a z◦R-ideal in R and f ∈ I. By Theorem 4.2, Pf (C) ∩R ⊆ I.

Thus, by our hypothesis, Pf (R) ⊆ I which means that I is a z◦-ideal in R. �

From Theorem 4.2 it follows that every z◦-ideal in a subring R is a z◦R-ideal.

However, the converse of this fact does not hold, in general. The following

example gives an example of a subring R which has a z◦R-ideal that is not a

z◦-ideal.

Example 4.5. Let f : R −→ R be defined by f(x) =

{

x x > 0

0 x ≤ 0
. It is clear

that f ∈ C(R). Now, let R = {
∑n

i=0 rif
i : ri ∈ R, n = 0, 1, ...}. It is easy to see

that Pf (R) = R, however, Pf (C) ∩ R 6= R. Also, by Theorem 4.2, Pf (C) ∩ R

is z◦R-ideal and it is clear that this ideal is not a z◦-ideal.
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The next theorem gives a sufficent conditions on X in order that z◦R-ideals

in a subring R coincide with z◦-ideals of R.

Theorem 4.6. Let R be a subring of RX and X be equipped with the Coz(R)-

topology. Then an ideal I in R is a z◦-ideal if and only if it is a z◦R-ideal.

Proof. Let I be a z◦R-ideal in R and f ∈ I. As X is equipped with the Coz(R)-

topology, we have g ∈ AnnR(f) if and only if Coz(g) ⊆ intXZ(f) for each

f, g ∈ R. Therefore, Pf (R) = AnnRAnnR(f) = {g ∈ R : Coz(g)∩ intXZ(f) =

∅} = {g ∈ R : AnnR(f) ⊆ AnnR(g)}. Hence, Pf (R) ⊆ I which means that

I is a z◦-ideal in R. This completes the proof, since, as former stated, every

z◦-ideal in R is a z◦R-ideal. �

Note that the condition that X is equipped with the Coz(R)-topology is a

sufficient condition for coincidence of z◦R-ideals with z◦-ideals in a given subring

R. The next example shows that this condition is not necessary.

Example 4.7. Let X = R \ {0} with the topology inherits from the usual

topology on R. Also, let f : X −→ R be defined by f(x) =

{

1 x > 0

0 x < 0
. It

is clear that f ∈ C(X) and f2 = f . Now, set R = {r + sf : r, s ∈ R}. It is

clear that R is a subring of C(X). Also, by a routine reasoning, one can proves

that the only ideals of R are the ideals (0), (f), (1− f) and R. Moreover, the

minimal prime ideals of R are only the ideals (f) and (1−f). These imply that

every z◦R-ideal is a z◦-ideal in R. However, clearly, X is not equipped with the

Coz(R)-topology.

It follows from Theorem 4.6 that for an intermediate subalgebra A(X) of

C(X), z◦A-ideals coincide with z◦-ideals of A(X). However, the same statement

does not true for zA-ideals and z-ideals in A(X), in general, see [6, Theorem

2.2]. Moreover, Theorem 3,7 together with Theorem 4.6 imply that in the

subalgebras of C(X) which are of the form R + I, where I is a free ideal

in C(X), zR+I -ideals concide with z-ideals of R + I and z◦
R+I -ideals coincide

with z◦-ideals, too. Note that whenever I is a free ideal in C(X), then R + I

determines the topology of X.
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