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Abstract. In this paper, the system of Fredholm integral equations of

the second kind is investigated by using a modified degenerate kernel

method (MDKM). To construct a MDKM the source function is approxi-

mated by the same way of producing degenerate kernel. The interpolation

is used to make the needed approximations. Lagrange polynomials are

adopted for the interpolation. The equivalency of proposed method and

Lagrange-collocation method is shown. The error and convergence analy-

sis of the algorithm are given strictly. The efficiency of the approach will

be shown by applying the procedure on some prototype examples.
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1. Introduction

The solutions of integral equations have a major role in the fields of science

and engineering. A physical event can be modeled by the differential equa-

tion (ODE/PDE), an integral equation (IE) or an integro-differential equation
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44 A. Molabahrami

(IDE) or a system of these [10]. In this study, we consider the system of Fred-

holm integral equations of the second kind of the form [14]

ui(x) = fi(x) +

ri
∑

j=1

λij

∫ b

a

Kij(x, t, u(t))dt, i = 1, 2, ...,m, (1.1)

where x ∈ [a, b], λij is a parameter, fi(x) is the source (or data) function,

Kij is the kernel function, u(t) = (u1(t), ..., um(t)) and ui(x), i = 1, 2, ...,m,

are the unknown functions that will be determined. For the linear case, it is

assumed that Kij(x, t, u(t)) =
∑m

r=1 γijrkijr(x, t)ur(t). We rewrite Eq. (1.1)

in the matrix form as follows

u(x) = f(x) +

∫ b

a

K(x, t, u(t))dt, (1.2)

where

f(x) = (f1(x), ..., fm(x))T ,

K(x, t, u(t)) = (k1, ..., km)T ,

ki =
ri
∑

j=1

λijKij(x, t, u(t)), i = 1, 2, ...,m.

There are several analytical and numerical methods for solving integral equa-

tions, such as homotopy methods [4, 14, 6], an iterative method [3], a matrix

based method [5] and differential transform method [15].

In this paper, a review of degenerate kernel is given. Then we introduce a mod-

ified of degenerate kernel method by approximating source function using the

same way of producing degenerate kernel. We use the Lagrange interpolation

method to obtain the needed approximations and we show that for this case

the modified degenerate kernel method is equivalent to the Lagrange-collocation

method. The error and convergence analysis of the modified degenerate kernel

method are given strictly.

2. The Degenerate Kernel Method

The degenerate kernel method (DKM) is a well-known classical method for

solving Fredholm integral equations of the second kind, and it is one of the

easiest numerical methods to define and analyze [1, page 23]. This method for

a given degenerate kernel is called direct computation method (DCM) [11] and

[16, page 141].

We work in the space X = C[a, b] with ‖ · ‖∞. We define the the integral

operator K of (1.2) as follows

K[u(x)] =

∫ b

a

K(x, t, u(t))dt. (2.1)
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The modified degenerate kernel method for the system of FIE2s 45

For the linear case, the integral operator denoted by (2.1) reduces as follows

Ku(x) =
∫ b

a

K(x, t)u(t)dt. (2.2)

The integral operator K is assumed to be a compact operator on X into X.

The kernel function K is approximated as follows

Kn(x, t, u(t)) =
n
∑

i=1

φi(x)ψi(t, u(t)), (2.3)

such that the associated integral operators Kn satisfy

lim
n→+∞

‖K − Kn‖ = 0. (2.4)

Generally, we prefer this convergence to be rapid to obtain rapid convergence of

un, to u where un is the solution of the approximating equation un−Kn[un] = f .

For this purpose, for linear case, we first outline a theorem as already given in

[1, page 24, Theorem 2.1.1]. Then, we extend the mentioned theorem for the

nonlinear case.

Theorem 2.1. Assume 1 − K : X
1−1−−→
into

X, with X a Banach space and K
bounded. Further, assume Kn is a sequence of bounded linear operators with

(2.4). Then

1. Then the operators (1−Kn)
−1 exist from X onto X for all sufficiently

large n, say n ≥ N , and

∥

∥

∥(1−Kn)
−1

∥

∥

∥ 6

∥

∥

∥
(1−K)

−1
∥

∥

∥

1−
∥

∥

∥(1−K)
−1

∥

∥

∥ ‖K − Kn‖
, n > N.

2. For the equations u−K[u] = f and un −Kn[un] = f , n ≥ N , we have

‖u− un‖ ≤
∥

∥

∥(1−Kn)
−1

∥

∥

∥ ‖Ku−Knu‖ (2.5)

Proof. Refer to [1] by setting λ = 1. �

Remark 2.2. In using piecewise polynomial interpolation with polynomials of

degree P > 0, it is straightforward to show that the error ‖u−un‖∞ is O(hP+1)

provided K(x, t) and u(x) are sufficiently differentiable [1, page 41].

Now, we extend Theorem 2.1 for the nonlinear case.

Theorem 2.3. Assume K is bounded. Further, assume Kn is a sequence of

bounded operators with (2.4) and K satisfies uniform Lipschitz condition

‖K[u]−K[un]‖∞ ≤ LK ‖u− un‖∞ , (2.6)

where LK ≥ 0 and 1 − LK > 0. Thus, for the equations u − K[u] = f and

un −Kn[un] = f , we have

‖u− un‖∞ 6
K̃n

1− LK
, (2.7)
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where K̃n = ‖K[un]−Kn[un]‖∞.

Proof. We have

u− un = K[u]−K[un] +K[un]−Kn[un],

therefore

‖u− un‖∞ ≤ LK‖u− un‖∞ + K̃n,

this ends the proof. �

Remark 2.4. From (2.4) and (2.7), we find that if ‖K − Kn‖ converges rapidly

to zero, then the same is true of ‖u− un‖∞.

2.1. Solution of DKM. DKM transforms a Fredholm integral equation of

the second kind to a system of algebraic equations. To handle Eq. (1.2), by

using DKM, we can express the procedure as follows

1. Substituting (2.3) into (1.2) gives

un(x;α) = f(x) +

n
∑

i=1

αiφi(x), (2.8)

where

αi =

∫ b

a

ψi(t, u(t))dt, i = 1, ..., n, (2.9)

and α = (α1, ..., αn).

2. Replacing Eq. (2.8) into (2.9) leads to the following algebraic system

αi =

∫ b

a

ψi



t, f(t) +

n
∑

j=1

αjφj(t)



 dt, i = 1, ..., n. (2.10)

3. Solving Eq. (2.10) provides values of αi, i = 1, ..., n, for substituting

them into the Eq. (2.8) to obtain solution of Eq. (1.2).

Remark 2.5. In [1, page 26, Theorem 2.1.2], under some assumptions, it was

shown that the linear form of the algebraic system (2.10) is nonsingular.

3. The Modified Degenerate Kernel Method

The modified degenerate kernel method (MDKM) is obtained by approx-

imating source function using the same way of producing degenerate kernel

denoted by Eq. (2.3) [11]. Then we write

fn(x) =

n
∑

i=1

βiφi(x), (3.1)

where βi, i = 1, 2, ..., n, are known. Therefore Eqs. (2.8) and (2.10) become as

follows

un(x;α) =

n
∑

i=1

(αi + βi)φi(x), (3.2)
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and

αi =

∫ b

a

ψi



t,

n
∑

j=1

(αj + βj)φj(t)



 dt, i = 1, ..., n, (3.3)

respectively. In this case, we have the approximate equation un−Kn[un] = fn.

Remark 3.1. The nonlinear algebraic systems denoted by Eqs. (2.10) and (3.3)

are nontrivial systems to solve, and usually some variant of Newton’s method

is used to find an approximating of solution. A major difficulty is that the

integrals in them will need to be numerically evaluated. Also, the role of initial

guesses in Newton’s method is very important, for more details refer to [11].

Remark 3.2. In Lagrange interpolation, for collocation nodes xr, r = 1, 2, ...n,

we assume that φi(xr) = δir. On the other hand, from Eqs. (2.3) and (3.1) we

find ψi(t, u(t)) = K(xi, t, u(t)) and βi = f(xi) respectively.

Remark 3.3. In what follows, we show that when the Lagrange interpolation

method is used for the needed approximations, MKDM is equivalent to the

Lagrange-collocation method. In Lagrange interpolation method, we choose

φi(x) = li(x), i = 1, 2, ..., n, where li(x) are Lagrange polynomials at collocation

nodes xi, i = 1, 2, ..., n. From Eq. (3.2) we have u(xr) ≈ un(xr;α) = αr +

f(xr), r = 1, ..., n. Therefore, Eq. (3.3) is equivalent to the following algebraic

system

ui = fi +

∫ b

a

K



xi, t,

n
∑

j=1

uj lj(t)



 dt, i = 1, ..., n. (3.4)

where ui = u(xi) and fi = f(xi), i = 1, ..., n. By solving Eq. (3.4) the values

of ui, i = 1, ..., n, is provided approximately such as ũi, i = 1, ..., n. Thus, the

n-order Lagrange interpolation approximation of solution is fund as ũn(x) =
∑n

j=1 ũj lj(x). It is clear that Eq. (3.4) is equivalent to rn(xi) = 0, i = 1, ..., n,

where rn(x) is residual in the approximation when using u(x) ≈ ũn(x). For

more details on relationship of degenerate kernel and projection methods, on

Fredholm integral equations of the second kind, refer to [12]

Remark 3.4. According to the Remark 3.3, the presented algorithm can give

an exact solution of Eq. (1.2) when this equation has an exact solution in the

form of a polynomial.

3.1. Error and convergence analysis of MDKM. There are two major

approaches to the error analysis of equation u − K[u] = f : (1) Linearize the

problem and apply the Banach fixed point theorem, (2) Apply the theory asso-

ciated with the rotation of a completely continuous vector field [2, page 542].

Here, we modify the second part of the Theorem 2.1.
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Theorem 3.5. Under the assumptions of Theorem 2.3, for the equations u−
K[u] = f and un −Kn[un] = fn, we have

‖u− un‖∞ 6
en(f) + K̃n

1− LK
, (3.5)

where en(f) = ‖f − fn‖∞, K̃n = ‖K[un]−Kn[un]‖∞.

Proof. We have

u− un = f − fn +K[u]−K[un] +K[un]−Kn[un],

therefore

‖u− un‖∞ ≤ en(f) + LK‖u− un‖∞ + K̃n,

this completes the proof. �

Remark 3.6. From (2.4) and (3.5), we find that if ‖K − Kn‖ and en(f) converge

rapidly to zero, then the same is true of ‖u− un‖∞.

Remark 3.7. As shown in Remark 3.3, MDKM is equivalent to the Lagrange-

collocation method, therefore, for the linear case, we can use the following

theorem as already given in [1, page 55, Theorem 3.1.1] and [2, page 479,

Theorem 12.1.2].

Theorem 3.8. Let X be a Banach space, and let {Xn|n ≥ 1} be a sequence

of finite dimensional subspaces, say of dimension dn. Let Pn : X → X, be

a bounded projection operator. Assume K : X → X is bounded and 1 − K :

X
1−1−−→
into

X. Further, assume

‖K − PnK‖ → 0 as n→ ∞,

Then for all sufficiently large n, say n ≥ N , the operator (1 − PnK)−1 exists

as a bounded operator from X to X. Moreover, it is uniformly bounded

sup
n≥N

∥

∥

∥(1− PnK)
−1

∥

∥

∥ <∞.

For the solutions of equations (1−K)u = f and (1−PnK)un = Pnf , we have

u− un = (1− PnK)
−1

(u− Pnu),

and the two-sided error estimate

‖u− Pnu‖
‖1− PnK‖ ≤ ‖u− un‖ ≤

∥

∥

∥
(1− PnK)

−1
∥

∥

∥
‖u− Pnu‖ .

This leads to a conclusion that ‖u− un‖ converges to zero at exactly the same

speed as ‖u− Pnu‖.

Proof. Refer to [1, 2] by setting λ = 1. �
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4. Test Examples

To show the efficiency of the present procedures described in the previous

part, we present some examples. For comparison the solution given by MDKM

with the exact solution, we report the maximum error which is defined by

‖Eui
[a, b]‖ = max

a≤x≤b
|ui(x)− ui,n(x)| , (4.1)

where ui,n(x) is the n-order approximation of ui(x) corresponding to the n-

order solution given by MDKM.

Example 4.1. Consider the following system of the Fredholm integral equa-

tions of the second kind with some non-degenerate kernels










u1(x) =
3
4x− ex(x−1)+1

x2 +
∫ 1

0
extu1(t)dt+

∫ 1

0
xtu2(t)dt,

u2(x) =
2
3x

2 − 2−e−x(x2+2x+2)
x3 +

∫ 1

0
x2tu1(t)dt+

∫ 1

0
e−xtu2(t)dt.

(4.2)

The exact solution is (u1(x), u2(x)) = (x, x2). By choosing three equally-spaced

collocation nodes, to make a degenerate approximation of the kernel as well as

an approximation of same order to the source functions, and using the MDKM,

we find










α1,1,1 = 1
2 , α1,2,1 = 4− 2

√
e, α1,3,1 = 1, α1,1,2 = 1

4 ,

α2,1,1 = α2,1,2 = 1
3 , α2,2,2 = 16− 26√

e
, α2,3,2 = 2− 5

e
,

(4.3)

and






































u1(x;α) = −4x2α1,2,1 + (2x2 − 1)α1,3,1 +
(

2x2 − 3x+ 1
)

α1,1,1

+xα1,1,2 + 4xα1,2,1 − 8
√
ex2 + 13x2 + 8

√
ex− 51

4 x− 1
2 ,

u2(x;α) = x2α2,1,1 − 4(x− 1)xα2,2,2 + (2x− 1)xα2,3,2 + x− 1
3

− 2x2

3 + (x− 1)(2x− 1)α2,1,2 + 2
(

5
e
− 4

3

) (

x− 1
2

)

x

+
2(95

√
e−156)(x−1)x

3
√
e

.

(4.4)

Substituting (4.3) in (4.4) gives the exact solution of Eq. (4.2)

u1(x) = x, u2(x) = x2.

It is important to notice that, in Eq. (4.2), we have f1(0) = − 1
2 and f2(0) = − 1

3 .

Also, by choosing three Chebyshev collocation nodes, for needed approxima-

tions and using Newton method to obtain numerical solution of the correspond-

ing algebraic system, by increasing the significant digits to 50, MDKM gives

the exact solution of Eq. (4.2).
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0 1 2 3 4
0
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x

u 1
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0 1 2 3 4
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1.0
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u 2
Hx
L

Figure 1. Comparison of the exact solution with approximation

solutions given by MDKM for Example 4.2. Solid line: exact solu-

tion, dashed line: 9th-order and dotted line: 5th-order approxima-

tions.

Example 4.2. Consider the following system of the Fredholm integral equa-

tions of the second kind with some non-degenerate kernels [13, 7]











u1(x) = 2ex + ex+1−1
x+1 −

∫ 1

0
ex−tu1(t)dt−

∫ 1

0
e(x+2)tu2(t)dt,

u2(x) = ex + e−x + ex+1−1
x+1 −

∫ 1

0
extu1(t)dt−

∫ 1

0
ex+tu2(t)dt.

(4.5)

The exact solution is (u1(x), u2(x)) = (ex, e−x). Fig. 1 and Table 1 show the

results of applying the interpolation with equally-spaced collocation nodes to

make the degenerate approximations for the non-degenerate kernels as well as

source functions in Eq. (4.5). In this case, the obtained results are related to

the numerical solutions of the corresponding algebraic system. This numerical

results are obtained by using the Newton method by increasing the significant

digits to 50.

Table 1. Results for Example 4.2.

nodes ‖Eu1
[0, 1]‖ ‖Eu2

[0, 1]‖

3 3.15572× 10−02 9.19461× 10−03

5 1.03176× 10−04 2.67876× 10−05

7 2.31895× 10−07 6.15433× 10−08

9 3.42516× 10−10 9.31577× 10−11

11 3.51587× 10−13 1.00920× 10−13

13 2.63874× 10−16 7.71218× 10−17

15 1.50739× 10−19 4.46165× 10−20
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x

u 1
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Figure 2. Comparison of the exact solution with approximation

solutions given by MDKM for Example 4.3. Solid line: exact solu-

tion, dashed line: 9th-order and dotted line: 5th-order approxima-

tions.

Example 4.3. Consider the following system of the Fredholm integral equa-

tions of the second kind with some non-degenerate kernels [13, 8, 9]











u1(x) = x+ 1
3 cos(x) +

1
2x sin

2(1)−
∫ 1

0
t cos(x)u1(t)dt−

∫ 1

0
x sin(t)u2(t)dt,

u2(x) = f2(x)−
∫ 1

0
ext

2

u1(t)dt−
∫ 1

0
(x+ t)u2(t)dt.

(4.6)

where f2(x) = cos(x) + ex−1
2x + (x+ 1) sin(1) + cos(1) − 1. The exact solution

is (u1(x), u2(x)) = (x, cos(x)). Fig. 2 and Table 2 show the results of applying

the interpolation with equally-spaced collocation nodes to make the degenerate

approximations for the non-degenerate kernels as well as source functions in

Eq. (4.6). Similar to the Example 4.2, the obtained results are related to

the numerical solutions of the corresponding algebraic system. This numerical

results are obtained by using the Newton method by increasing the significant

digits to 50. It is important to notice that, in Eq. (4.6), we have f2(0) =
1
2 + sin(1) + cos(1).

Table 2. Results for Example 3.

nodes ‖Eu1
[0, 1]‖ ‖Eu2

[0, 1]‖

3 1.28593× 10−03 3.86950× 10−03

5 4.33040× 10−06 1.49202× 10−05

7 9.99420× 10−09 3.43136× 10−09

9 1.50465× 10−11 5.08941× 10−11

11 1.60610× 10−14 5.22394× 10−14

13 1.21916× 10−17 3.91615× 10−17

15 7.01952× 10−21 2.23399× 10−20
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5. Conclusion

In this paper, a modified degenerate kernel method (MDKM) was applied

to the system of Fredholm integral equations of the second kind. The results

show that the MDKM is a promising tool to handle this type of equations.

We used the Lagrange polynomials as base functions for needed approxima-

tions, and in this case, the MDKM becomes as a collocation method, namely

Lagrange-collocation method. The alternative of using Bernstein and Cheby-

shev polynomials as well as sinc functions are also possible. Finally, extension

of the method to higher dimensional can be accommodated. We pointed out

that the corresponding analytical and numerical results are obtained using

Mathematica.
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