Iranian Journal of Mathematical Sciences and Informatics

Vol. 14, No. 1 (2019), pp 35-42 DOI: 10.7508/ijmsi.2019.01.004

Domination and Signed Domination Number of Cayley Graphs

Ebrahim Vatandoost, Fatemeh Ramezani*

Department of Basic Science, Imam Khomeini International University, Qazvin, Iran.

> E-mail: vatandoost@sci.ikiu.ac.ir E-mail: ramezani@ikiu.ac.ir

ABSTRACT. In this paper, we investigate domination number as well as signed domination numbers of Cay(G:S) for all cyclic group G of order n, where $n \in \{p^m, pq\}$ and $S = \{k < n : gcd(k, n) = 1\}$. We also introduce some families of connected regular graphs Γ such that $\gamma_S(\Gamma) \in \{2, 3, 4, 5\}$.

Keywords: Cayley graph, Cyclic group, Domination number, Signed domination number.

2000 Mathematics subject classification: 05C69, 05C25

1. Introduction

By a graph Γ we mean a simple graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$. A graph is said to be *connected* if each pair of vertices are joined by a walk. The number of edges of the shortest walk joining v_i and v_j is called the distance between v_i and v_j and denoted by $d(v_i, v_j)$. A graph Γ is said to be regular of degree k or, k-regular if every vertex has degree k. A subset P of vertices of Γ is a k-packing if d(x, y) > k for all pairs of distinct vertices x and y of P [9].

^{*}Corresponding Author

Received 20 April 2016; Accepted 14 January 2017 ©2019 Academic Center for Education, Culture and Research TMU

Downloaded from ijmsi.ir on 2025-09-03

Let G be a non-trivial group, S be an inverse closed subset of G which does not contain the identity element of G, i.e. $S = S^{-1} = \{s^{-1} : s \in S\}$. The Cayley graph of G denoted by Cay(G:S), is a graph with vertex set G and two vertices a and b are adjacent if and only if $ab^{-1} \in S$. The Cayley graph Cay(G:S) is connected if and only if S generates G.

A set $D \subseteq V$ of vertices in a graph Γ is a dominating set if every vertex $v \in V$ is an element of D or adjacent to an element of D. The domination number $\gamma(\Gamma)$ of a graph Γ is the minimum cardinality of a dominating set of Γ .

For a vertex $v \in V(\Gamma)$, the closed neighborhood N[v] of v is the set consisting v and all of its neighbors. For a function $f:V(\Gamma)\to\{-1,1\}$ and a

subset W of V we define $f(W) = \sum_{u \in W} f(u)$. A signed dominating function of Γ is a function $f: V(\Gamma) \to \{-1,1\}$ such that f(N[v]) > 0 for all $v \in V(\Gamma)$. The weight of a function f is $\omega(f) = \sum_{v \in V} f(v)$. The signed domination number

 $\gamma_{\rm s}(\Gamma)$ is the minimum weight of a signed dominating function of $\Gamma.$ A signed dominating function of weight $\gamma_s(\Gamma)$ is called a $\gamma_s(\Gamma)$ -function. We denote f(N[v]) by f[v]. Also for $A \subseteq V(\Gamma)$ and signed dominating function f, set $\{v \in A : f(v) = -1\}$ is denoted by A_f^- .

Finding some kinds of domination numbers of graphs is certainly one of the most important properties in any graph. (See for instance [2, 3, 5, 6, 11, 13])

These motivated us to consider on domination and signed domination number of Cayley graphs of cyclic group of orders p^n , pq, where p and q are prime numbers.

2. Cayley Graphs of Order p^n

In this section p is a prime number and $B(1,n) = \{k < n : gcd(k,n) = 1\}.$

Lemma 2.1. Let G be a group and H be a proper subgroup of G such that [G:H]=t. If $S=G\setminus H$, then Cay(G:S) is a complete t-partite graph.

Proof. One can see $G = \langle S \rangle$ and $e \notin S = S^{-1}$. Let $a \in G$. If $x, y \in Ha$, then $x = h_1 a, y = h_2 a$. Since $xy^{-1} \in H$, $xy \notin E(Cay(G:S))$. So induced subgraph on every coset of H is empty. Let Ha and Hb two disjoint cosets of H and $x \in Ha, y \in Hb$. Hence, $xy^{-1} \in S$. So $xy \in E(Cay(G:S))$. Therefore, $Cay(G:S) = K_{|H|,|H|,\cdots,|H|}.$

Lemma 2.2. Let G be a group of order n and $G = \langle S \rangle$, where $S = S^{-1}$ and $0 \notin S$. Then $\gamma(Cay(G:S)) = 1$ if and only if $S = G \setminus \{0\}$.

Proof. The proof is straightforward.

Theorem 2.3. [13] Let $K_{a,b}$ be a complete bipartite graph with $b \leq a$. Then

$$\gamma_{\scriptscriptstyle S}(K_{a,b}) = \left\{ \begin{array}{ll} a+1 & \textit{if } b=1,\\ b & \textit{if } 2 \leq b \leq 3 \textit{ and } a \textit{ is even,}\\ b+1 & \textit{if } 2 \leq b \leq 3 \textit{ and } a \textit{ is odd },\\ 4 & \textit{if } b \geq 4 \textit{ and } a, b \textit{ are both even,}\\ 6 & \textit{if } b \geq 4 \textit{ and } a, b \textit{ are both odd,}\\ 5 & \textit{if } b \geq 4 \textit{ and } a, b \textit{ have different parity.} \end{array} \right.$$

Theorem 2.4. Let $\mathbb{Z}_{2^n} = \langle S \rangle$ and $S = B(1, 2^n)$. Then

- i. $Cay(\mathbb{Z}_{2^n}:S)=K_{2^{n-1},2^{n-1}}$
- ii. $\gamma(Cay(\mathbb{Z}_{2^n}:S))=2.$

iii.

$$\gamma_S(Cay(\mathbb{Z}_{2^n}:S)) = \begin{cases} 2 & \text{if } n = 1, 2, \\ 4 & \text{if } n \geq 3. \end{cases}$$

i. Let $H = \mathbb{Z}_{2^n} \setminus S$. Then $H = \{i : 2 \mid i\}$. It is not hard to see Proof. that H is a subgroup of \mathbb{Z}_{2^n} and $[\mathbb{Z}_{2^n}:H]=2$. Hence, by Lemma 2.1, $Cay(\mathbb{Z}_{2^n}:S)=K_{2^{n-1}\cdot 2^{n-1}}.$

ii. By part i. $Cay(\mathbb{Z}_{2^n}:S)$ is a complete bipartite graph. So

$$\gamma(Cay(\mathbb{Z}_{2^n}:S))=2.$$

iii. The proof is straightforward by Theorem 2.3.

Corollary 2.5. For any integer n > 2, there is a 2^{n-1} -regular graph Γ with 2^n vertices such that $\gamma_s(\Gamma) = 4$.

Theorem 2.6. Let $\mathbb{Z}_{p^n} = \langle S \rangle$ (p odd prime) and $S = B(1, p^n)$. Then following statments hold:

- i. $Cay(\mathbb{Z}_{p^n}:S)$ is a complete p-partite graph.
- ii. $\gamma(Cay(\mathbb{Z}_{p^n}:S))=2.$
- iii. $\gamma_S(Cay(\mathbb{Z}_{p^n}:S))=3.$

Proof. i. Let $H = \mathbb{Z}_{p^n} \setminus S$. Then $H = \{i : p \mid i\}$. H is a subgroup of \mathbb{Z}_{p^n} and $|H| = p^n - \Phi(p^n) = p^{n-1}$. So $[\mathbb{Z}_{p^n} : H] = p$. Hence, by Lemma 2.1, $Cay(\mathbb{Z}_{p^n}:S)$ is a complete p-partite graph of size p^{n-1} .

- ii. Since $Cay(\mathbb{Z}_{p^n}:S)$ is a complete p-partite graph, $D=\{a,b\}$ is a
- minimal dominating set where a,b are not in the same partition. iii. Let $\Gamma = Cay(\mathbb{Z}_{p^n}:S)$. Let $V(\Gamma) = \bigcup_{i=1}^p A_i$ where $A_i = \{v_{ij}: 1 \leq j \leq p^{n-1}\}$. Define $f:V(\Gamma) \to \{-1,1\}$

$$f(v_{ij}) = \begin{cases} -1 & \text{if } 1 \le i \le \lfloor \frac{p}{2} \rfloor - 1 \text{ and } 1 \le j \le \lceil \frac{p^{n-1}}{2} \rceil, \\ -1 & \text{if } \lfloor \frac{p}{2} \rfloor \le i \le p \text{ and } 1 \le j \le \lfloor \frac{p^{n-1}}{2} \rfloor, \\ 1 & \text{otherwise.} \end{cases}$$

Let
$$v \in \bigcup_{i=1}^{\lfloor \frac{p}{2} \rfloor - 1} A_i$$
. So $|N(v) \cap V_f^-| = \frac{1}{2} (p^n - p^{n-1} - 4)$. So $f[v] = f(v) + 4 \ge 3$. If $v \in \bigcup_{i=\lfloor \frac{p}{2} \rfloor}^p A_i$, then $|N(v) \cap V_f^-| = \frac{1}{2} (p^n - p^{n-1} - 2)$. So $f[v] = f(v) + 2 \ge 1$. Hence, f is a signed dominating function.

$$f(v) + 4 \ge 3$$
. If $v \in \bigcup_{i=|\frac{p}{2}|}^{p} A_i$, then $|N(v) \cap V_f^-| = \frac{1}{2}(p^n - p^{n-1} - 2)$.

So $f[v] = f(v) + 2 \ge 1$. Hence, f is a signed dominating function. Since $|V_f^-| = \frac{1}{2}(p^n - 3)$, $\omega(f) = 3$. So $\gamma_S(\Gamma) \leq 3$. On the contrary, suppose $\gamma_S(\Gamma) < 3$. So there is a γ_S -function g such that $\omega(g) < 3$. So $|V_g^-| > \frac{1}{2}(p^n - 3)$. Let $|V_g^-| = \frac{1}{2}(p^n - 1)$. If $A_i \cap V_g^- = \emptyset$ for some $1 \le i \le p$, then $g[v] = 1 - p^{n-1}$ for every $v \in A_i$. Hence, $A_i \cap V_g^- \ne \emptyset$ for every $1 \le i \le p$. If $|A_i \cap V_g^-| \ge \lceil \frac{p^{n-1}}{2} \rceil$ for every $1 \le i \le p$, then $|V_g^-| \ge \frac{1}{2}(p^n + p)$. This is impossible. So there is $j\in\{1,2,\ldots,p\}$ such that $|A_j\cap V_g^-|\leq \lfloor \frac{p^{n-1}}{2}\rfloor$. Let $u\in A_j\cap V_g^-$. So $g[u]=deg(u)+1-2|N(u)\cap V_g^-|<0$. This is contradiction. Therefore $\gamma_{\scriptscriptstyle S}(\Gamma) = 3.$

Corollary 2.7. For every integer n, there is a $(p^n - p^{n-1})$ -regular graph Γ with p^n vertices such that $\gamma_{\scriptscriptstyle S}(\Gamma)=3$.

3. Cayley Graphs of Order pq

In this section p and q are distinct prime numbers where p < q. Let B(1, pq)be a generator of \mathbb{Z}_{pq} . For $1 \leq i \leq p$ and $1 \leq j \leq q$, set

$$A_i = \{i + kp : 0 \le k \le q - 1\}$$

and

$$B_j = \{j + k'q : 0 \le k' \le p - 1\}.$$

With these notations in mind we will prove the following results.

Lemma 3.1. Let $\mathbb{Z}_{pq} = \langle S \rangle$ and S = B(1, pq). Then following statuents hold.

- i. $V(Cay(\mathbb{Z}_{pq}:S)) = \bigcup_{i=1}^{p} A_i \text{ and } Cay(\mathbb{Z}_{pq}:S) \text{ is a p-partite graph.}$ ii. $V(Cay(\mathbb{Z}_{pq}:S)) = \bigcup_{i=1}^{p} B_j \text{ and } Cay(\mathbb{Z}_{pq}:S) \text{ is a q-partite graph.}$
- iii. Let $1 \leq i \leq p$. For any $x \in A_i$ there is some $1 \leq j \leq q$ such that
- iv. $|A_i \cap B_j| = 1$ for every i, j.

i. Let $s \in V(Cay(\mathbb{Z}_{pq} : S))$. If $p \mid s$, then $s \in A_p$. Otherwise, $s \in A_i$ where s = kp + i for some $1 \le k \le (p-1)$. Thus $V(Cay(\mathbb{Z}_{pq} : \mathbb{Z}_{pq} : \mathbb{Z}_{pq}))$

$$S(S) = \bigcup_{i=1}^{p} A_i$$
. Since $1 \le i \ne j \le p$, $A_i \cap A_j = \emptyset$. We show that the

Downloaded from ijmsi.ir on 2025-09-03

induced subgraph on A_i is empty. Let $l + t \in E(Cay(\mathbb{Z}_{pq} : S))$. If $l, t \in A_s$ for some $1 \le s \le p$, then l = s + kp, t = s + k'p. So $p \mid (l - t)$. This is impossible.

- ii. The proof is likewise part i.
- iii. Let $1 \leq i \leq p$ and let $x \in A_i$. If $x \leq q$, then $x \in B_x$. If not, x = i + kp > q such that $1 \le k \le q - 1$. Hence, $x \equiv t \pmod{q}$ where $1 \le t \le q$, and so $x \in B_t$.
- iv. By Case iii and since $|A_i| = q$ and also for every $j \neq j'$, $B_i \cap B_{i'} = \emptyset$, the result reaches.

Theorem 3.2. [6] For any graph Γ , $\left\lceil \frac{n}{1+\Delta(\Gamma)} \right\rceil \leq \gamma(\Gamma) \leq n-\Delta(\Gamma)$ where $\Delta(\Gamma)$ is the maximum degree of Γ .

Theorem 3.3. Let $\mathbb{Z}_{pq} = \langle S \rangle$ and S = B(1, pq). Then the following is hold.

$$\gamma(Cay(\mathbb{Z}_{pq}:S)) = \begin{cases} 2 & p=2; \\ 3 & p>2. \end{cases}$$

Proof. Let p=2. By Lemma 3.1, $D=\{i,i+q\}$ is a dominating set. Since $Cay(\mathbb{Z}_{pq}:S)$ is a (q-1)-regular graph, by Theorem 3.2, $\gamma(Cay(\mathbb{Z}_{pq}:S)) \geq 2$. Thus $\gamma(Cay(\mathbb{Z}_{pq}:S))=2$.

Let p > 2. We define $D = \{1, 2, s\}$ where $s \in A_1 \setminus N(2)$. Since 1, 2 are adjacent, $N(1) \cup N(2) = V(Cay(\mathbb{Z}_{pq} : S)) \setminus D$. Thus D is a dominating set. As a consequence, $\gamma(Cay(\mathbb{Z}_{pq}:S)) \leq 2$. It is enough to show that $\gamma(Cay(\mathbb{Z}_{pq}:S))\neq 2$. Let $D'=\{x,y\}$. We show that D' is not a dominating set. If $x, y \in A_i$ for some $1 \le i \le p$, then for every $z \in A_i \setminus D'$, $z \notin N(D')$. If not, $x \in A_i$ and $y \in A_j$ for some $1 \le i \ne j \le p$. If x, y are adjacent, then there is $x' \in A_i \setminus \{x\}$ such that $x' \notin N(y)$. Thus D' is not dominating set. If x and y are not adjacent, then there is $z \in A_l$, $l \neq i, j$, such that the induced subgraph on $\{x, y, z\}$ is empty. Hence, D' is not a dominating set and the proof is completed.

Theorem 3.4. Let $\mathbb{Z}_{pq} = \langle S \rangle$ where $p \in \{2, 3, 5\}$ and S = B(1, pq). Then

$$\gamma_{\scriptscriptstyle S}(Cay(\mathbb{Z}_{pq}:S)) = p.$$

Proof. Let $A = \{1, 1+p, \dots, 1+(\lfloor \frac{q}{2} \rfloor - 1)p\}$ and $B = \{i+tq: i \in A \text{ and } 1 \leq 1\}$ $t \leq p-1$. We define $f: V(Cay(\mathbb{Z}_{pq}:S)) \to \{-1,1\}$ such that

$$f(x) = \begin{cases} -1 & x \in A \cup B, \\ 1 & \text{otherwise.} \end{cases}$$

Let $v \in V(Cay(\mathbb{Z}_{pq}:S))$. If f(v) = -1, then

$$f[v] = -1 + (p-1)(q-1) - 2\left(\left(\lfloor \frac{q}{2} \rfloor - 1\right)(p-1)\right) = 2p - 3.$$

Otherwise,

$$f[v] = 1 + (p-1)(q-1) - 2\left\lfloor \frac{q}{2} \right\rfloor (p-1) = 1.$$

Hence, f is a dominating function. Also

$$\omega(f) = pq - 2\left(|A| + |B|\right) = pq - 2\left(\left\lfloor\frac{q}{2}\right\rfloor + (p-1)\left\lfloor\frac{q}{2}\right\rfloor\right) = p.$$

It is enough to show that f has the minimal wait. Let, to the contrary, g be a dominating function and $\omega(g) < \omega(f)$. So $|V_g^-| > |V_f^-|$. Without lose of generality, suppose that $|V_g^-| = p \lfloor \frac{q}{2} \rfloor + 1$. Let $A_i^- = A_i \cap V_g^-$, $A_i^+ = A_i \setminus A_i^-$ and $B_j^- = B_j \cap V_g^-$. We will reach the contradiction by three steps.

Step 1. For every $1 \le i \le p, A_i^- \ne \emptyset$.

On the contrary, let $A_s^- = \emptyset$ for some $1 \le s \le p$. Let $u \in A_s$. Then by Lemma 3.1, $u \in A_s \cap B_t$ for some $1 \le t \le q$. So

$$g[u] = (p-1)(q-1) + 1 - 2(|V_q^-| - |B_t^-|) \ge 1.$$

Thus $|B_t^-| \ge \lceil \frac{q}{2} \rceil$. Hence, $|V_g^-| \ge |A_s| \lceil \frac{q}{2} \rceil$. This imolies $q + (q-p) \lfloor \frac{q}{2} \rfloor < 1$. This is a contradiction. Hence, $A_s^- \ne \emptyset$.

Similar argument applies for B_j . Therefore, $B_j^- \neq \emptyset$ for every $1 \leq j \leq q$.

Step 2. For every $1 \le i \le p$, $|A_i^-| \ge \lfloor \frac{q}{2} \rfloor$.

On the contrary, Let $|A_l^-| < \lfloor \frac{q}{2} \rfloor$ for some $1 \le l \le p$. Without lose of generality suppose that $|A_l^-| = \lfloor \frac{q}{2} \rfloor - 1$. Let $v \in A_l$. By Lemma 3.1, $v \in A_l \cap B_k$ for some $1 \le k \le q$. If g(v) = -1, then $g[v] = (p-1)(q-1)-1-2(|V_g^-|-|A_l^-|-|B_k^-|+2) \ge 1$. Then $|B_k^- \setminus \{v\}| \ge 4$. If g(v) = 1, then $|B_k^- \setminus \{v\}| \ge 2$. Hence, $|V_g^-| \ge 4|A_l^-|+|A_l^-|+2|A_l^+|$. As a consequence p > 8. This is impossible.

Therefore, for every $1 \leq i \leq p$, $|A_i^-| \geq \lfloor \frac{q}{2} \rfloor$ and since $|V_g^-| = p \lfloor \frac{q}{2} \rfloor + 1$, we may suppose that $|A_1^-| = \lceil \frac{q}{2} \rceil$ and $|A_i^-| = \lfloor \frac{q}{2} \rfloor$ for $2 \leq i \leq p$.

Step 3. For every $1 \le j \le q$, $|B_j^-| \ge \lceil \frac{p}{2} \rceil$.

On the contrary, let $|B_h^-| < \lceil \frac{p}{2} \rceil$ for some $1 \le h \le q$. Suppose that $|B_h^-| = \lfloor \frac{p}{2} \rfloor$. By Lemma 3.1, $B_h \cap A_i \ne \emptyset$ for any $1 \le i \le p$. Let $z \in B_h^- \cap A_i$. Thus

$$\begin{split} g[z] &= -1 + (p-1)(q-1) - 2\left(|V_g^-| - |A_i^-| - |B_h^-| + 2\right) \\ &\leq -1 + (p-1)(q-1) - 2\left(p\left\lfloor\frac{q}{2}\right\rfloor + 1 - \left\lceil\frac{q}{2}\right\rceil - \lfloor\frac{p}{2}\rfloor + 2\right) \\ &\leq p - 6 \end{split}$$

Since $p \in \{2, 3, 5\}$, $g[z] \le -1$. This is a contradiction.

By Step 3, $|V_g^-| \ge q\lceil \frac{p}{2}\rceil$. Hence, $p\lfloor \frac{q}{2}\rfloor + 1 \ge q\lceil \frac{p}{2}\rceil$. So $p+q \le 2$. This is impossible. Therefore $\gamma_S(Cay(G:S)) = \omega(f) = p$.

Theorem 3.5. Let $\mathbb{Z}_{pq} = \langle S \rangle$ where $p \geq 7$ and S = B(1, pq). Then

$$\gamma_{s}(Cay(\mathbb{Z}_{pq}:S))=5.$$

Downloaded from ijmsi.ir on 2025-09-03

Proof. We define $f:V(Cay(\mathbb{Z}_{pq}:S)) \to \{-1,1\}$ such that f(i)=-1 if and only if $i\in\{1,2,\ldots,\frac{pq-5}{2}\}$. It is easily seen that $\lfloor\frac{q}{2}\rfloor\leq |A_i^-|\leq \lceil\frac{q}{2}\rceil$ for every $1\leq i\leq p$. Also $\lfloor\frac{p}{2}\rfloor\leq |B_j^-|\leq \lceil\frac{p}{2}\rceil$ for any $1\leq j\leq q$. Let $v\in A_t\cap B_s$ such that $1\leq t\leq p$ and $1\leq s\leq q$. In the worst situation, $|A_t^-|=\lfloor\frac{q}{2}\rfloor$ and $|B_s^-|=\lfloor\frac{p}{2}\rfloor$. In this case $1\leq f[v]\leq 5$. Hence, f is a signed dominating function. Also $\omega(f)=pq-2|V_f^-|=5$. Thus $\gamma_S(Cay(\mathbb{Z}_{pq}:S))\leq 5$. What is left is to show that if g is a γ_S -function, then $\omega(g)\geq 5$. On the contrary, suppose that g be a γ_S -function and $\omega(g)<\omega(f)$. Hence, $|V_g^-|<|V_f^-|$. There is no loss of generality in assuming $|V_g^-|=\frac{pq-3}{2}$. Let $A_i^-=A_i\cap V_g^-$ and $B_j^-=B_j\cap V_g^-$. In order to reach the contradiction we use two following steps:

Step 1. $A_i^- \neq \emptyset$ for every $1 \leq i \leq p$.

On the contrary, suppose that for some $1 \leq m \leq p$, $A_m^- = \emptyset$. Let $w \in A_m$. So there is $1 \leq \ell \leq q$ such that $w \in A_m \cap B_\ell$. Hence, $g[w] = (p-1)(q-1)+1-2(|V_g^-|-|B_\ell^-|) \geq 1$. Thus $|B_\ell^-| \geq \frac{p+q-4}{2}$. So $|V_g^-| \geq q(\frac{p+q-4}{2})$. Hence, $pq-3 \geq q(pq-4)$. This makes a contradiction. By similar argument we have $B_j^- \neq \emptyset$ for every $1 \leq j \leq q$.

Step 2. For every $1 \le i \le p$, $|A_i^-| \ge \lfloor \frac{q}{2} \rfloor$. On the contrary, let $|A_l^-| = \lfloor \frac{q}{2} \rfloor - 1$. Let $v \in A_l$. There is $1 \le l' \le q$ such that $v \in A_l \cap B_{l'}$. If g(v) = -1, then $g[v] = (p-1)(q-1) + 1 - 2(|V_g^-| - |A_l^-| - |B_{l'}^-| + 2) \ge 1$. Hence, $|B_{l'}^- \setminus \{v\}| \ge \lceil \frac{p}{2} \rceil$. If g(v) = 1, then $|B_{l'}^-| \ge \lfloor \frac{p}{2} \rfloor$. Therefore, $|V_g^-| \ge |A_l^-| (\lceil \frac{p}{2} \rceil + 1) + |A_l^+| \lfloor \frac{p}{2} \rfloor$. This implies that $q \le 3$. This is a contradiction.

Likewise Step 2, $|B_j^-| \ge \lfloor \frac{p}{2} \rfloor$ for every $1 \le j \le q$. Since $|V_g^-| = \frac{pq-3}{2}$, there is $1 \le k \le p$ such that $|A_k^-| = \lfloor \frac{q}{2} \rfloor$. On the other hand, suppose that for $1 \le t \le q$, $|B_{l_r}^-| = \lfloor \frac{p}{2} \rfloor$. Let $u \in A_k^- \cap B_s^-$. If $s \in \{l_1, \dots, l_t\}$, then

$$g[u] = -1 + (p-1)(q-1) - 2\left(|V_g^-| - |A_k^-| - |B_s^-| + 2\right)$$

$$= -1 + (p-1)(q-1) - 2\left(\frac{pq-3}{2} - \left\lfloor \frac{q}{2} \right\rfloor - \left\lfloor \frac{p}{2} \right\rfloor + 2\right)$$

$$= -3$$

This is a contradiction by g is a signed dominating function. Hence, s is not in $\{l_1, \dots, l_t\}$. Since $|A_k^-| = \lfloor \frac{q}{2} \rfloor$, $q - t \geq \lfloor \frac{q}{2} \rfloor$ and so $t \leq \lceil \frac{q}{2} \rceil$. As a consequence,

$$|V_g^-| \geq t \lfloor \frac{p}{2} \rfloor + (q-t) \lceil \frac{p}{2} \rceil \geq \lceil \frac{q}{2} \rceil \lfloor \frac{p}{2} \rfloor + \lfloor \frac{q}{2} \rfloor \lceil \frac{p}{2} \rceil.$$

Since $|V_q^-| = \frac{pq-3}{2}$, this makes a contradiction. Therefore,

$$\gamma_s(Cay(\mathbb{Z}_{pq}:S))=5.$$

Corollary 3.6. For any k-regular graph Γ on n vertices $\gamma_S(\Gamma) \geq \frac{n}{k+1}$. Hence, $\gamma_S(\Gamma) \geq 1$. It is easy to check that $\gamma_S(\Gamma) = 1$ if and only if Γ is a complete

graph and n is odd. Furthermore, for any prime numbers p < q, there is a (p-1)(q-1)-regular graph Γ with pq vertices such that $\gamma_s(\Gamma) \in \{2,3,5\}$.

ACKNOWLEDGMENTS

The author is thankful of referees for their valuable comments.

References

- S. Alikhani, On the Domination Polynomials of non P₄-Free Graphs, Iranian Journal of Mathematical Sciences and Informatics, 8(2), (2013), 49–55.
- J. E. Dunbar, S. T. Hedetniemi, M. A. Henning, P. J. Slater, Signed Domination in Graphs, Graph Theory, Combinatorics, and Applications, 1, (1995), 311-322.
- O. Favaron, Signed Domination in Regular Graphs. Discrete Mathematics, 158(1), (1996), 287-293.
- R. Haas, T. B. Wexler, Bounds on the Signed Domination Number of a Graph, Electron. Notes Discrete Math., 11, (2002), 742–750.
- R. Haas, T. B. Wexler, Signed Domination Numbers of a Graph and its Complement, Discrete mathematics, 283(1), (2004), 87–92.
- T. W. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Domination in Graphs, CRC Press; 1998 Jan 5.
- M. A. Henning, P. J. Slater, Inequalities Relating Domination Parameters in Cubic Graphs, Discrete Mathematics. 158(1), (1996), 87–98.
- S. Klavžar, G. Košmrlj, S. Schmidt, On the Computational Complexity of the Domination Game, Iranian Journal of Mathematical Sciences and Informatics, 10(2), (2015), 115–122.
- 9. A. Meir, J. Moon, Relations Between Packing and Covering Numbers of a Tree, *Pacific Journal of Mathematics.* **61**(1), (1975), 225–233.
- P. Pavlič, J. Žerovnik, A Note on the Domination Number of the Cartesian Products of Paths and Cycles, Kragujevac Journal of Mathematics, 37(2), (2013), 275–285.
- L. Volkmann, B. Zelinka, Signed Domatic Number of a Graph, Discrete applied mathematics, 150(1), (2005), 261–267.
- B. Zelinka, Some Remarks on Domination in Cubic Graphs, Discrete Mathematics, 158(1), (1996), 249–255.
- B. Zelinka, Signed and Minus Domination in Bipartite Graphs, Czechoslovak Mathematical Journal, 56(2), (2006), 587-590.