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ABSTRACT. In this paper, a Bernoulli pseudo-spectral method for solving
nonlinear fractional Volterra integro-differential equations is considered.
First existence of a unique solution for the problem under study is proved.
Then the Caputo fractional derivative and Riemman-Liouville fractional
integral properties are employed to derive a new approximate formula for
unknown function of the problem. The suggested technique transforms
this type of equations to the solution of a system of algebraic equations.
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Finally, the technique is applied to some problems to show its validity and
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1. INTRODUCTION

Fractional differential equations (FDEs) are generalizations of ordinary dif-

ferential equations to an arbitrary order. A history of the development of
fractional differential operators can be found in [26].
In the last decades, many authors have demonstrated applications of fractional
calculus in the nonlinear oscillation of earthquakes [11], viscoelastic materials
[2], colored noise [22], solid mechanics [30], fluid-dynamic traffic [12], continuum
and statistical mechanics [21], economics [3], anomalous transport [25], bioengi-
neering [20] and dynamics of interfaces between nanoparticles and substrates
[5]. Owing to the increasing applications, a considerable attention has been
given to finding exact and numerical solutions of fractional differential equa-
tions. In general, most of the fractional differential equations do not have ex-
act solution. Therefore various methods for the approximate solutions of these
equations are extended. These methods include variational iteration method
[35], finite difference method [24], Adomian decomposition method [27], ho-
motopy analysis method [10], Legendre collocation method [31], second kind
Chebyshev wavelet method [37], CAS wavelet method [32], Bernoulli wavelet
method [28] and Fractional-order Bernoulli wavelets [29].

In this article, we consider the following equation
D"y(z) f)\/ k(x,t)F(y(t))dt = f(x), 0<z<l,n—1<v<n, (1.1)
0

yD(0) = 6, i=0,1,....n—1,neN, (1.2)
where () (z) stands for the ith-order derivative of y(x); 6;,4 = 0,1,...,n — 1,
are real constants; f € C([0,1],R),k € C(]0,1]%,R) are given functions; y(z)
is the unknown function; D¥(n — 1 < v < n) is the fractional derivative in the
Caputo sense and F(y(x)) is a polynomial of y(x) with constant coefficients.
The Bernoulli polynomials play an important role in various branches of math-
ematical analysis, namely the theory of modular forms [19], the theory of distri-
butions in p-adic analysis [17], the study of polynomial expansions of analytic
functions [4], etc. Recently, new applications of the Bernoulli polynomials
have also been found in mathematical physics, in connection with theory of
Korteweg-de Vries equation [8], Lame equation [9] and in the study of vertex
algebras [7].
In the pseudo-spectral methods ([1],[33]), there are basically two steps to ob-
tain a numerical approximation to a solution of differential equations. First,
an appropriate finite or discrete representation of the solution must be chosen.
The second step is to obtain a system of algebraic equations.
In the present paper, we use the Bernoulli pseudo-spectral method for solv-
ing the fractional integro-differential equation (1.1). For this purpose, we must
introduce an appropriate representation of the solution based on Bernoulli poly-
nomials. Then we can reduce fractional integro-differential equation to a system
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of algebraic equations which can be solved easily.

The structure of this paper is as follows. In section 2, we describe the basic
definitions of fractional calculated and Bernoulli polynomials. In section 3,
we investigate the existence and uniqueness of solution for the nonlinear frac-
tional integro-differential equation (1.1). Section 4, is devoted to the proposed
method for solving equation (1.1). In section 5, we introduce the error analysis
of the proposed method. In section 6, we report our numerical findings and
demonstrate the accuracy of the proposed method by considering six numerical
examples. The conclusion is given in section 7.

2. BASIC DEFINITIONS

In this section, first we give necessary definitions of the fractional calculus.
Then, we state some properties of Bernoulli polynomials which are used fur-
ther in this paper. Finally, function approximation via these conceptions is
introduced.

2.1. The fractional integral and derivative.

Definition 2.1. The Riemann-Liouville fractional integral operator of order
v > 0 is defined as [16]

1 e f(s)
I fa) = { ) Jo (178)1_1,6178, v>0,z>0,

f(z) v =0. 21)

For the Riemann-Liouville fractional integral we have [16]

v _ B+l v

The Riemann-Liouville fractional integral is a linear operator, namely

I"(Mf(z) + pg(x)) = A" f(z) + pl”g(z),

where A and p are real constants.

Definition 2.2. Caputo’s fractional derivative of order v is defined as [16]

1 T f(s)
Dl/ = _ 1 < , , .
f(z) F(nfz/)/o (x—s)l’H*”dS’ n <v<n,neN, x>0
(2.2)

For the Caputo derivative we have the following two basic properties [16]

D'I'f(x) = fla),
1D f(z) = f(z) — S0y fO(0)%.


http://ijmsi.ir/article-1-868-en.html

[ Downloaded from ijmsi.ir on 2026-02-08 ]

114 P. Rahimkhani, Y. Ordokhani, E. Babolian

2.2. Bernoulli polynomials.

Definition 2.3. Bernoulli polynomials of order m can be defined with the
following formula [23]

By (z) = "\ B,, i, e [0, 1], 2.3
@=3 (7 )puat xcoy (2.3
where B; := B;(0), i = 0,1,...,m, are Bernoulli numbers. The first few
Bernoulli polynomials are

By(z) = —x + §,

Bs(z) = 2% — 327 + Ja.

These polynomials satisfy the following formula [23]
mln!

| Bu@B@ar = -yt

According to [18], Bernoulli polynomials are form a complete basis on the
interval [0, 1].

Botn, myn>=1. (2.4)

2.3. Function approximation. Let H = L?[0,1] and {By, By, ..., B;,_1} be
the set of Bernoulli polynomials and
Y = span{By, B1, ..., Bm—1}.

Let g be an arbitrary element in H. Since Y is a finite dimensional and closed
subspace, g has a unique best approximation out of Y such as gy € Y, that is
Yy eY, llg—goll <llg -yl

this implies that

VyeY, <g-—go,y>=0, (2.5)
where <, > denotes inner product. Since gy € Y, there exist unique coefficients
€0, C1y -y Cm—1, Such that

m—1
9(x) = go(z) = Y eiBi(x) = C" B(a), (2.6)
=0
where C' and B(z) are m vectors given by
C = [co,C1y ey Cm1]7, B(z) = [Bo(z), Bi(x), ..., Bm_1(2)]T.  (2.7)

Using Eq. (2.5) we get
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(g—CTB,B;) =0, i=0,1,...,m — 1.
For simplicity, we write
C*(B,B) = (9. B), (2.8)

where < B, B > is an m X m matrix. Let
1
D= (B,B) = / B(z)B” (z)dx. (2.9)
0

The matrix D in Eq. (2.9) can be calculated by using Eq. (2.4). Therefore,
from relations (2.8) and (2.9), we obtain
cT =(g,B)D™. (2.10)
The main approximate formula for y(x) is given in the following theorem.

Theorem 2.4. Let D"y(x) be approximated by the Bernoulli polynomials (D" y(x) ~
ZZ:OI ¢k Bi(x)), and also suppose n —1 < v < n. Then

m—1 k n—1 i
v) r+v T

y(x) ~ E Ckb;(c}m vy E (51-ﬁ (2.11)
k=0 r=0 i=0 ’

w [k I(r+1
where by = ( - ) %Bk—r.

m—1

Proof. Applying operator I", on both sides of D"y(x) ~ > ," " c¢xBi(x), we
have

<
=N
8
N—
|
cs/—\
=
(@)
S—
1
~
<
—~
o
e
o}
e
—
=
N
=
|
~
<
—~

Ch ZO ( :f ) Bi_,a")

Il
M- L
o
B
7 N
=R
~__
&
e
!
~
N
8
S
S—

k=0 r=0
m—1 k
k r 1
- Z Ck( )Bk T (T—f) and
k=0 r=0 " (r+1+v)
m—1 k
- b
k=0 r=0
Then, we obtain
m—1 k n—1 in
(@)= 3N eblat + 3 i (2.12)
k=0 r=0 im0 =
w _ [k T(r+1)
where b = ( - ) WB;C_T- ]
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3. EXISTENCE AND UNIQUENESS OF SOLUTION

In this section, we will investigate the existence and uniqueness of solution
for the nonlinear fractional integro-differential equation (1.1). Since any two
norms in R are equivalent, to be more concert, we will use the sup norm ||. ||,
which for any Y = [y1,va, - .., yn]? is given as

1Y loo = mazi<j<nly;l-

Definition 3.1. Let f € C([0,1],R) and H € C([0,1]? xR, R). These functions
satisfy the Lipschitz conditions if there exist real constants &, 7 > 0, such that
[14]

() = f(O)] < Elw -], IH (z,t,y) — H(z,t, 2)[ <nlly —=[l,  (3.1)
where z,t € [0,1] and y,z € R.

Let y € C([0,1],R), be the solution of nonlinear fractional integro-differential
equation (1.1). We can write Eqgs. (1.1) and (1.2) in the following form

DVy(z) +f0 (z,t,y(¢))dt, 0<z<l,n—-1<v<n
(3.2)
y(0) = 4, 1=0,1,....,n—1,neN.

Applying operator I” on both sides of (3.2) and by using relation (9) in [13]
for 8 = 0, we obtain an operator A : C([0, 1] x R) — C([0,1] x R) such that

Ay(z) = X100 6%+ s fo (=)L f (O dt+ ik fy (=) H (w, 1, y(2))dt.

The fact that the problem (1.1), (1.2) has a unique solution, is equivalent to
finding a fixed point y of the operator A, i.e. Ay = y.

In the similar manner, for A = [0,1] and any g € C(A,R) we consider the
norm

lgll = maz-callg(T)ll

It is an obvious fact that the space C'(A,R) with this norm is a Banach space.
It is also clear that for g € C([0,1],R) and = € [0, 1] we have

I1f g@®atll <1l fg lg(®)ldtl.

Theorem 3.2. Let f € C([0, 1] ) and H € C(]0,1]*> x R,R), satisfy the
Lipschitz conditions (3.1). If F(V+2) , then the problem (1.1) has a unique
solution.

Proof. Choose p > 2(32"7) \f,\ + r&(t%l) + F(yj%) and let |f(0)] = M; and

|H(z,t,0)|| = Ms. Then we can show that AZ, C Z, where Z, = {y €
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C([0,1),R) : |y| < p}. So let y € Z,,. Then we get

n—1

[yl < il [ @0 sl
g i=0 /
+ T n/ (= )/, (e |
< — 010 - SO+ 7O D]

1
+ mll/0 (z — )" ([H (2, t,y(t)) — H(z,t,0)] + [H(2,t,0)])dt]

nl(si 1 T
> pgler ) [ ot

IA

1 x
byl ) [ @ orar
0

| &4+ My um+ M,
T(v+1)  T(v+2)

'Fﬂ

|6 , £+M M, Ul

+ + M OET))

= i T T(w+1)  T(v+2)

<

NOWv let Y1, Y2

Ay (2) — A (@)l < F@iDHA%V%VW@JwﬁD—H@mm@mﬁﬂ
v+1

nllyr — lyr — vl

[ yllll <

I'(v+2) —F(+®
1

< 5”91 - y2|| = Qn,tul - y2||

Therefore, since €, , < 1, the result follows by the contraction mapping theo-
rem. (]

4. THE PROPOSED METHOD

Consider the nonlinear fractional-order Volterra integro-differential equation
(1.1) and (1.2). We approximate D"y(z) as

,_.

m—
¢k Bi(x (4.1)
k=0
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From Egs. (1.1), (1.2), (4.1) and Theorem 2.4, we have

m—1 m—1 k
S erBy(n) — A / PSS e + Z 5.5 Uyt = f@). (42)
k=0 0 k=0 r=0

Now, we collocate (4.2) at the zeros z,,p =0, 1,...,m — 1, of shifted Legendre
polynomial L,,(z)

m—1 Ty m—1 k n—1 ti
I;J cxBr(x,) — )\/O k() FOS" S enbil e+ + ; =5 )dt = f ().

k=0 r=0
(4.3)
Then, we transfer the t—interval [0, z,] into 7 —interval [—1,1] by change of
variable 7 = %t -1,

m—1 1
> cbilay) - 33 [ b 2+ 1) (1.4)
— A9 2
m—1 k - T i
. v S0 (B D)
Z Kb Ep T+ 1) 4 Zéi%)aﬁ = f(xp).
k: r=0 i=0 ’
By using the Gauss —Legendre integration formula [34], for p=0,1,...,m — 1,
we have:
m—1
cxBr(xp) qu zp, L(ry+1))
k=0
m—1 k n—1 ;
v v (F(rq +1))°
FOY chb,gz(??(rq +1) 36 R = (), (4.5)
k=0 r=0 =0 ’

where 7,, ¢ = 1,2,...,m, are zeros of Legendre polynomial P, (z) and w, =

P P 4 1,2,...,m. Eq. (4.5), gives a system of m nonlinear
algebraic equations which can be solved, for the unknowns ¢, k£ =0,1,...,m—
1, using Newton’s iterative method. Finally, y(x) can be approximated by
(2.11).

5. ERROR ANALYSIS

In this section, to check the accuracy of the proposed method, some error
analysis of the method will be presented for the fractional Volterra integro-
differential equations.

Theorem 5.1. Assume that y € L?*[0,1] be an arbitrary function approxi-
mated by the truncated Bernoulli serie Z;f:ol cpBi(x), then the coefficients
¢k, k=0,1,...,m — 1, can be calculated from the following relation [36]

1
Cp = % fo y ) (z)dz.
Also, we have
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Y
|Ck'| < AR
where Yy, is the mazimum of |y™®)| in the interval [0, 1].

Theorem 5.1, implies that Bernoulli coefficients decay rapidly with increas-
ing of k.
Since, in real problems, we have to solve equations with unknown exact solu-
tions, therefore, when we obtain an approximate solution we can not say that
this solution is good or bad unless we are able to calculate the error function
Epn(x) = ym(z) — y(z). We introduce a method similar to [13], let y,,(z) be an
approximate solution of (1.1).
We can write Eqgs. (1.1) and (1.2) in the following form

D y(z) = f(z) + [y H(z,t,y(t))dt, 0<z<l,n—-1<v<n,
. 1
y(0) = 4, i=0,1,..,n—1,neN. (5-1)

Applying operator I” on both sides of (5.1), yields
Y(@) = S0 82+ s [ — ) F () + ke [ — )7 H o, (),

Thus y,,, (z) satisfies the following equation

n—1 ,:Ei 1 T -
Ym(z) = lz_;éll'_FF(V)/o(x—t) f)de
1 r 5
+ o @ o)
+ Rn(z).

Where R,,(x) is the residual function that depends only on y,,(z) and can be
obtained from the following relation

n—1

Rule) = ()~ Lo = o [ - tar

1 z ,
m/o (z—t)"H(z,t,ym(t))dt. (5.2)

Now, we define the error function

Em(x) = ym('r) - y(I)a

where

E,(z)= ﬁ /Oz(zt)”(H(x,t, ym (t)) — H(z, t,y(t)))dt + Ry (x). (5.3)

By using Taylor’s Theorem [13], we can write
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H(.’L’,t7ym(t)) - H(l‘,t,y(t)) = H(x7t7ym(t)) - H(x7t,ym(t) - Em(t))

8; H(z,t,ym(t))En(t)

1 92

— 5@H(Qs,t,ym(zﬁ))Efn(t).

1

Therefore, from the above equation and (5.3), we get

Enle) = gy [ 0 0 G et 0) En)
;;’yng(x, g (D) E2, (0))dt + R (2).

Thus, we obtain a nonlinear Volterra integro-differential equation in which
the error function E,,(x) is unknown. Obviously, we can apply the proposed
method for this equation to find an approximation of the error function F,,(z).

6. NUMERICAL RESULTS

In this section, we present six numerical examples to illustrative our method
and to demonstrate its efficiency. We have performed all numerical computa-
tions using a computer program written in Mathematica.

ExXAMPLE 6.1. Counsider the following equation [32]

Dy(x) —/ e y(t)2dt =1, 0<z<1, 3<v<4, (6.1)
0
subject to the initial conditions y(0) = ¢/(0) = y”(0) = y"’(0) = 1. The exact
solution of this problem, when v =4, is y(x) = €*.

First, we investigate the conditions of existence and uniqueness of solution for
this problem. We have

f(z) =1, H(x,t,y(t)) = e "y?(t).
It’s clear that
fec(o,1],R), H e C([0,1)> x R, R).

We have
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[H(z,t,y1(t) — H(z, t,y2)[| = e "yi(t) — e y3(t)]
< (I + w2 Dy () — y2(2)|]
< 5.80[y1(t) — y2(0)],

using ||y1(t)]] < 2.90 and |ly2(t)|| < 2.90. Therefore, f(z) (constant function)
and H(zx,t,y(t)) satisfy the Lipschitz conditions (3.1).

Also, we have
< _5.80 5.80

F(VZ—?) = T(3+2) 24

=

This means that Theorem 3.2, can be applied to this example with = 5.80.
Therefore, this problem has a unique solution. We have solved this equation
with proposed method of section 4. Fig. 1 displays the absolute error between
the exact and approximate solutions for m = 4,6, 8. From these results we can
conclude that our numerical results are in perfect agreement with the exact
solution for v = 4. From the Comparison between the CAS wavelet method
[32] and the presented method, we find that our method has higher degree of
accuracy. Also, the numerical results for v = 3.25,3.50,3.75,4 and the exact
solution are given in Fig. 2. From this figure we see as v approaches 4, the
corresponding solutions of the fractional order integro-differential equation ap-
proaches to the exact solution of integer order integro-differential equation.

2.x10°" .

1.x10M

5.x10718
51

o
- —1.x 107t
2107
15
0z o o 0z 0 06 0s 10
0] (8 ]

FIGURE 1. The absolute error between the exact and approx-
imate solutions for v =4 : (a) m =4, (b) m =6, (¢c) m =8
for Example 6.1.

EXAMPLE 6.2. Consider the following equation [37]

D"y(x) —/ [y(t)]?dt = —1, 0<r<l, 0<v<l, (6.2)
0

subject to the initial condition y(0) = 0.
Table 1 shows the numerical solutions for v = 0.9,1 and m = 8 by using
the present method and the second kind Chebyshev wavelet method [37] for
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FIGURE 2. Comparison of y(z) for m = 3, with v =
3.25,3.50,3.75,4 and the exact solution for Example 6.1.

k=6, M = 2. From Table 1, we can see that the numerical results obtained by
our method are in high agreement with the exact solution for v = 1. Therefore,
we state that the solutions for v = 0.9 are also credible. The numerical results
for v =0.7,0.8,0.9,1 are displayed in Fig. 3. This figure shows that as v — 1,
the corresponding solutions of fractional order differential equation approach
to the solutions of integer order differential equation.

We know that the exact solutions for the values v # 1 are not known. There-
fore, to show efficiency of our method, we use estimated error of section 5. Let

Hm(xatvym(t)) = yg@(t)’ %%Hm(x’tvym(t)) = Qym(t>7
o (ot (1) = 2.

From Egs. (5.2) and (5.3) we obtain

Ro(e) = n(e) + 5 [ a0t — s [C@—oridan, 63)
and
E _ 1 ’ )Y ((2ym (1) B (t E2 (1))dt+ R 6.4
m(x)—m/o (= 0)"(2ym () Em(t)) — (E;(1)))dt + Rin(z). (6.4)

Also, we approximate E,,(z) as

k=0
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where the coefficients ar, k = 0,1,...,m — 1 are unknown.
By substituting Eq. (6.5) in Eq. (6.4), we get

kz__o axBi(z) — 11(V1+1)/0I(5U—7f (2ym (t Z arBi(t
— (i apBi(1))?)dt — Ry, (z) = 0. (6.6)
k=0

Now, we collocate (6.6) at the zeros x,,p = 0,1,...,m — 1 of shifted Legendre
polynomial L,,(x)

1 @ ,
> abie) ~ roh /0 (2 =1 (Com(t) 3 (1)
= (3 @Bt — Run(y) = 0
k=0

Then, we transfer the t—interval [0, z,] into 7 —interval [—1,1] by change of
variable 7 = f—pt -1

ZakBk (@) = gy | (o = B+ 1) (2 (P + )

m—1 m—1

> aBu(F(r+ Z arBi(“2(1 +1)))2)) = Ryn(z,) = 0.
k=0

By using the Gauss —Legendre integration formula [34], for p =0,1,...,m — 1,
we have:

— axBi(zp) — Wp—l—l) qz:;wq((xp - ?p(Tq + 1))D((2ym(5p(7q +1))
" B2y 4 1)~ (X B2y + 1)) — Runlay) =0,
k=0 k=0

where 7,, ¢ = 1,2,...,m are zeros of Legendre polynomial P, (x) and w, =

— , ¢g=1,2 ...,m. This relation gives a system of m nonlinear
(m"‘l)Py{L(Tq)Per_l (7q) N
algebraic equations which can be solved for the unknowns ay, k=0,1,...,m—1
using Newton’s iterative method. Finally, E,,(z) given in (6.5) can be calcu-

lated. Table 2 displays the estimated error for various values of v with m = 10.

EXAMPLE 6.3. Consider the following equation [37, 32]
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TABLE 1. Comparison of the numerical solutions with the Ref.

[37] for m = 8 and various values of v for Example 6.2.

x Exact solution Present method Ref. [37]
v=1 v=1 vr=09 v=1 v=09

0 0 0 0 0 —0.00017
0.0625 —0.06250 —0.06250 — 0.08576 | —0.06250 — 0.08588
0.1250 —0.12498 —0.12498 —0.15997 | —0.12498 — 0.16003
0.1875 —0.18740 —0.18740 — 0.23025 | —0.18740 — 0.23029
0.2500 —0.24968 —0.24968 —0.29791 | —0.24968 — 0.29794
0.3125 —0.31171 —0.31171 —0.36344 | —0.31171 — 0.36345
0.3750 —0.37336 —0.37336 — 0.42702 | —0.37336 — 0.42702
0.4375 —0.43446 —0.43446 — 0.48866 | —0.43447 — 0.48865
0.5000 —0.49482 —0.49482 — 0.54829 | —0.49483 — 0.54828
0.5625 —0.55423 —0.55423 — 0.60576 | —0.55424 — 0.60575
0.6250 —0.61243 —0.61243 —0.66089 | —0.61245 — 0.66090
0.6875 —0.66917 —0.66917 —0.71347 | —0.66918 — 0.71349
0.7500 —0.72415 —0.72415 —0.76327 | —0.72418 — 0.76332
0.8125 —0.77710 —0.77709 —0.81007 | —0.77712 — 0.81012
0.8750 —0.82767 —0.82767 — 0.85360 | —0.82770 — 0.85365
0.9375 —0.87557 —0.87557 —0.89363 | —0.87561 — 0.89366

¢ 1
D”y(:c)—|—/ [y(t)]?dt = sinh(a:)+§ cosh(z) sinh(:c)—g, 0<z<l1, 1<v<2,

’ (6.7)
subject to the initial conditions y(0) = 0,y’(0) = 1. The exact solution of this
problem, when v = 2 is y(z) = sinh(z).

Fig. 4 shows the absolute error between the exact and approximate solutions
for various values of m. From the comparison between our results and results
in Refs. [37] and [32], we find that Bernoulli pseudo-spectral method can reach
higher degree of accuracy when solving this problem. Also, the numerical re-
sults for v = 1.25,1.50,1.75, 2 and the exact solution with m = 4 are presented
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0.0

04

06 08

FIGURE 3. Comparison of y(z) for m =
0.7,0.8,0.9,1 for Example 6.2.

TABLE 2. The estimated errors for m = 10 and various values

of v for Example 6.2.

T v=20.6 v=0.7 v=0.8 vr=20.9

0 [1.14x1076 | 7.14x 1077 | 2.76 x 1077 | 6.61 x 1078
0.11.15x107% | 2.85x 1072 | 529 x 107° | 2.36 x 107°
0.2]7.75x 1078 [ 5.25 x 1078 | 2.08 x 10~% | 4.94 x 10~°
0.3]1.26x 1077 | 7.85x 1078 | 3.16 x 10~% | 8.06 x 10~
0.4 1.10x 1078 | 1.74 x 1078 | 1.43 x 1078 | 4.98 x 1077
0.5 831 x107% 229 x 1078 | 7.06 x 10710 | 1.28 x 107°
0.6 [ 2.88x 1077 [ 1.51 x 107 | 5.12x 1078 | 1.12 x 1078
0.72.96 x 1077 | 1.36 x 10~7 | 3.68 x 108 | 5.70 x 107°
0.8]4.32x1077{213x1077 | 6.36 x 10~° | 1.15 x 108
0.9 6.89x1077|3.77x1077 | 1.29 x 10~7 | 2.74 x 1078
1 [1.11x107%{6.52%x 1077 | 2.39 x 1077 | 5.50 x 1078

125

in Fig. 5. This figure shows that as v — 2, the approximate solutions tend to
the exact solution.

EXAMPLE 6.4. Consider the following equation [32]
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FIGURE 4. The absolute errors between the exact and approx-
imate solutions for v =2: (a) m =5, (b) m =6, (c) m=7
for Example 6.3.

0.0 02 04 06 08 1.0

FIGURE 5. Comparison of y(z) for m = 4, with v =
1.25,1.50,1.75,2 and the exact solution for Example 6.3.

5 4 1
o 0<az<1, (68
or(h)” 232" v (68)

Déyla) - | “(@ — 0Ply()dt =

subject to the initial conditions y(0) = y’(0) = 0. The exact solution of this
problem is y(z) = 22

The absolute errors for some values of m are shown in Fig. 6. Also, the
comparisons between the exact and approximate solutions for various choices
of m are given in Fig. 7. From Figs. 6 and 7, we can see that the obtained
results using our method are in good agreement with the exact solution and
with the approximate solutions for v = £ in [32].

EXAMPLE 6.5. Counsider the following equation [37]
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FIGURE 6. The absolute errors between the exact and approx-
imate solutions for v = g with : (a) m = 8, (b) m = 10, (c)
m = 12 for Example 6.4.
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FIGURE 7. The comparison between the exact and approxi-
mate solutions for : (a) m = 4, (b) m = 6, (¢) m = 8 for
Example 6.4.

subject to the initial condition y(0) = 1. The exact solution of this problem,
when v =1, is y(x) = €*.

Table 3 denotes the approximate solutions obtained for different values of x
by using the present method for m = 4,6,8 and the second kind Chebyshev
wavelet method [37] for k = 5, M = 2 with v = 1, together with the exact
solution. From Table 3, we can conclude that our numerical solutions are in
a good agreement with the exact solution when v = 1. Also, the numerical
results for y(z) with m = 12 and v = 0.7,0.8,0.9, 1 and the exact solution are
plotted in Fig. 8. From the graphical results, it is clear that the approximate
solutions converge to the exact solution.

EXAMPLE 6.6. Consider the following equation [15]

D”y(x)—|—/ 23 costeV Bt = x3(—1+esmm)—sinx, 0<z<l1, 1<v<2,
0

(6.10)
subject to the initial conditions y(0) = 0,4'(0) = 1. The exact solution of this
problem, when v = 2 is y(z) = sin .
Table 4 shows the numerical solutions for v = 1.75,2 by using the present
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TABLE 3. Comparison of the numerical solutions with the Ref.
[37] for v =1 for Example 6.5.

x | Exact solution Present method Ref. [37]
v=1 m=4 m =206 m=3_8 k=5M=2

0 1 1 1 1 1.000122
0.1 1.105171 1.104782 1.105174 1.105171 1.105345
0.2 1.221403 1.220677 1.221408 1.221403 1.221645
0.3 1.349859 1.348907 1.349864 1.349859 1.350196
0.4 1.491825 1.490795 1.491828 1.491825 1.492295
0.5 1.648721 1.647767 1.648722 1.648721 1.649382
0.6 1.822119 1.821352 1.822117 1.822119 1.823061
0.7 2.013753 2.013182 2.013751 2.013753 2.015118
0.8 2.225541 2.224992 2.225543 2.225541 2.227565
0.9 2.459603 2.458620 2.459611 2.459603 2.462682

00 02 04

06 08 10

FIGURE 8. Comparison of y(x) for m
0.7,0.8,0.9,1 and the exact solution for Example 6.5.

12, with v

method, when m = 7, the Tau method [15] and the exact solution. From
Table 4, we can see that the numerical results obtained by our method are in
high agreement with the exact solution for v = 2. Therefore, we state that
the solutions for v = 1.75 are also credible. Also, the numerical results for
m = 3 with v = 1.25,1.50,1.75, 2 and the exact solution are displayed in Fig.
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9. This figure shows that as v — 2, the approximate solutions tend to the exact

solution.

TABLE 4. Comparison of our numerical solutions with the Ref.

[15] for various values of v for Example 6.6.

z | Exact solution Present method Ref. [15]
v=2 v=17 v=2 v=17 v=2
0 0.000000 0.000000 0.000000 | 0.000000 0.000000
0.1 0.099833 0.099598 0.099833 | 0.099419 0.099833
0.2 0.198669 0.197301 0.198669 | 0.196812 0.198669
0.3 0.295520 0.291793 0.295520 | 0.290975 0.295520
0.4 0.389418 0.381968 0.389418 | 0.380815 0.347526
0.5 0.479425 466862 0.479425 | 0.465333 0.479427
0.6 0.564642 0.545634 0.564642 | 0.543605 0.564648
0.7 0.644218 0.617561 0.644218 | 0.614770 0.644233
0.8 0.717356 0.682046 0.717356 | 0.678009 0.717397
0.9 0.783327 0.738628 0.783327 | 0.732528 0.783420
1 0.841471 0.787000 0.841471 | 0.777544 0.841666

Ficure 9. Comparison

of y(x) for m = 3, with v =
1.25,1.50,1.75,2 and the exact solution for Example 6.6.
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7. CONCLUSION

In this paper, the Bernoulli spectral method is implemented for solving
nonlinear fractional Volterra integro-differential equations. The properties of
Bernoulli polynomials together with the Gaussian integration method are uti-
lized to reduce the proposed problem to the solution a system of algebraic
equations which is solved by using Newton’s iteration method. Special atten-
tion is given to the study of existence and uniqueness of solution for problem
(1.1) and the error analysis for presented method. From the obtained numer-
ical results we can see that the obtained solutions using the suggested scheme
are in excellent agreement with the exact solution when v is integer and with
more accuracy compared with CAS wavelet method, second kind Chebyshev
wavelet method and Tau method. Moreover, only a small number of Bernoulli
polynomials are needed to obtain a satisfactory result.
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