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ABSTRACT. If M is a compact Riemannian manifold and C(M, R) is the
set of all real valued continuous functions defined on M, then we show
that for a typical element f € C(M,R), dimpg(graph(f)) is as big as
possible and for a typical f € C(M, R), dimg(graph(f)) is as small as

possible.
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1. INTRODUCTION

A subset A of a topological space X is called to be comeagre, if there is a
countable collection {W;} of open and dense subsets of X such that (), W; C A.
Complement of a comeagre subset is called a meagre subset. A meagre subset
can be considered as subset of a countable union of nowhere dense subsets and
they are negligible in some sense. So, we say that some property holds for typical
elements of X, if it holds on a comeagre subset. Study of properties of typical
elements in X is a classic and interesting problem. One can find many papers
dealing with typical elements when X is supposed to be the space C(W, R) of all
continuous functions defined on a compact topological space W, endowed with
the metric topology defined by the metric d(f, g) = supew|f(z)—g(x)|. A well
known theorem due to Banach [1], states that typical elements of C([0, 1], R) are
nowhere differentiable, so the image or graph of a typical f in C([0,1], R) is a
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fractal set. Calculating fractal dimensions (including box dimension, Hausdorff
dimension, packing dimension, etc) of the image of f or graph(f) is a well
known problem and one can find many results in the literature. It is proved
in [6] that for a typical g € C([0,1], R), dimg(graph(g)) = 1. It is proved
in [3] that if W C R is bounded with only finitely many isolated points and
X ={f € C(W,R) : f is uniformly countinuous }, then for a typical f €
X, dimp(graph(f)) is as big as possible and dim g (graph(f)) is as small as
possible. In the previous paper [7] we generalized Banach’s theorem to the set
C(M, R), where M is a compact Riemannian manifold. Now, we show in the
present paper that the main results of [3] about upper and lower box dimensions
are also true when W is replaced by a compact Riemannian manifold M.

2. PRELIMINARIES

In what follows, M is a compact Riemannian manifold with the Riemannian
metric d, and C(M, R) will denote the collection of all continuous functions
defined on M endowed with the metric d defined by d(f, g) = mazzenm|f(x) —

g(z)].

If (X,dy) and (Y, d2) are metric spaces then we will consider the usual prod-
uct metric d on X xY defined by d((z1,y1), (x2,y2)) = \/d3 (w1, 2) + d3(y1, y2)-

If E is a bounded subset of M then the upper box dimension of E is defined
by
dimp(E) = limsupgﬁojif(;(()is).
Where, Ns(FE) is the minimum number of balls of radius ¢ ( or minimum number
of sets of diameter at most §) covering E ( The lower box dimension dimz(E)
is defined in similar way). Another definition for dimension, which is widely

used in fractal geometry is Hausdorff dimension (see [4]).

Now, we mention some facts which we need in the proofs of theorems.

Remark 2.1. If E is a bounded subset of R™ then dimp(ExI") = dimp(E)+n.
The similar result is true if we replace dimpg by dim g or dimp.

Proof. We give the proof for dimp(E x I) = dimp(E) 4+ 1. The general case
comes by induction. If § > 0 then the smallest number of intervals of length §
covering I is equal to [$] or [] + 1. If Us (Is) is a bounded subset of R™ ( I)
with diameter §, then the diameter of Us x I is equal to v/26. So,

Nyss(B % 1) < (I5] + N5 (E)
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Then we have

log(N 55 (E x 1))
—log(v/26)

log([3] +1)N5(E))
—log(v/29)

dimp(E x I) = limsups_

< limsups—o

Ns(E —
=1+ limsups_so o(E) =1+dimp(E)
—logé

Also we know that dimp(E x I") > dimp(E) +n (see [4] ). So we get the
equality. a

Remark 2.2. If M is a compact metric space and f : M — R is a locally
lipschitz function, then f is globally lipschitz.

Proof. Since f is locally lischitz and M is compact, then there is a finite col-
lection of open cover of balls B;,1 < i < m, and constants L; such that

d(f(a:),f(y)) < Lid(xay)7 T,y € Bi

Since M is compact then the function F' : M x M — R, defined by F(x,y) =
d(f(z), f(y)) has a maximum which we denote it by N. Let 0 be the lebesgue’s
number related to the covering B; of M, and put L = maz{%,Li :4}. Then
for given z,y € M, either there is a B; such that z,y € B; or d(z,y) > ¢ . In
the first case we have d(f(z), f(y)) < Ld(x,y). In the second case we have

d(f(z), f(y)) <N <
]

If M and N are compact differentiable manifolds and f : M — N is con-
tinuously differentiable, then f is a lipschitz function. So, we get the following
remark easily.

Remark 2.3. If M and N are compact Riemannian manifolds and ¢ : M — N
is a map such that ¢ and its inverse are continuously differentiable, then the
map ¢ : M x R — N X R defined by ¢ (z,y) = (¢(z),y) is bilipschitz.

Remark 2.4. If M is a compact Riemannian manifold, f : M — R is con-
tinuously differentiable, g : M — R is continuous and k = f + g, then
dimpg(graph(k)) = dimp(graph(g)). The same result is true for dimpg.

Proof. Consider the map v : graph(g) — graph(k), defined by ¥(z,g(x)) =
(z,k(x)). We show that ¢ and 1! are Lipschitz functions. We have

d(¥(z,9(2)), Uy, 9(9)) = d((z, k(2)), (4, k(y))) =v/d(z,y) + (k(z) — k(y))?
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Since f is continuously differentiable, it is locally Lischitz and by Remark
2.2, it must be Lischitz. Then, there exist a positive number N such that
|f(z) = f(y)| < Nd(z,y), v,y € M. Thus
(k(z) = k(y)* = (f(z) = f(y) + 9(z) — 9(y))* < (Nd(z,y) + |g(z) — 9(y)])*
= N?d*(z,y) + 2Nd(z,y)|g(z) — 9(y)| + l9(x) - g(y)I”
< N?d?(z,y) + N2d*(z,y) + |g(z) — 9(y)* + |g(z) — g(y)I?
= 2N?d*(z,y) + 2|g(x) — g(y)?
Then
d(¥(x, 9(x)), ¥ (y,9(9))) <VdP(x,y) + 2N2d?(x,y) + 2|g(z) — 9(y)[?

<V2(N2 + 1V (2, y) + (9(x) — g(y))? =V2(N? + 1)d((x,9(x)), (. 9(y)))-
Therefore, 1 is Lipschitz. In a similar way we can show that v ~! is Lipschitz.
O

Remark 2.5. (generalized StoneWeierstrass Theorem) . Suppose X is a com-
pact Hausdorff space and A is a subalgebra of C(X, R) which contains a non-
zero constant function. Then A is dense in C'(X, R) if and only if it separates
points.

3. RESULTS

Lemma 3.1. If f : M — R is continuously differentiable and ¢ > 0, then
there exists g € C(M, R) such that d(f,g) < € and dimg(graph(g)) = n + 1,
n =dimM .

Proof. Let N be a compact Riemannian manifold. Consider a function ¢g; €
C(I, R*) such that dimp(graph(gi)) = 2 and put
g : I" =T xI""" = RY, gy(ty,t2) = g1(t1).
Then
graph(gz) = {((t1,t2), g1(t1)), (1, ta) € I x "1} =~
{((t1,91(t1)), t2), (t1,t2) € I x 1"} = graph(gi) x I"~".
So, by Remark 2.1
dimp(graph(gz)) =2+n—1=n+1.
Consider a chart (U, ¢) on N such that I C ¢(U) and put W = ¢=(I"). Now,
put g3 = g200 : W — R. By Remark 2.3, the function ¢ : W x R — I™ X R,

defined by ¥ (z,y) = (¢(x),y) is bilipschitz. Since 9 (graph(gs)) = graph(gz),
then dimp(graph(gs)) = n+1. Extend the function g3 to a continuous function
ga : N — R. Since graph(gs) C graph(gs) then dimp(graph(gs)) = n+1. Now
put N = graph(f). We know that N is a submanifold of M x R, which with the
induced metric is a riemannian manifold. Given § > 0, the function g5 = dg4 :
N — R is a positive function such that dim(graph(gs)) = dim(graph(gs) =
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n + 1. By compactness condition we can choose § small enough such that for

all Y= (l’,f(l’)) € Na g5(y) <€
Now, consider the function gs : M — R, defined by gs(z) = gs(z, f(x)) and
put ¥ : M X R— N x R, ¥(x,y) = ((z, f(2)),y). We have

¥ : graph(gs) = graph(gs)
By Remark 2.3, ¢ is bilipshitze, so
dimp(graph(ge)) = dimp(graph(gs)) =n +1

Put g: M — R, g(x) = f(x)+ge(x). Since f is differentiable, then by Remark
2.4, dimp(graph(g)) = dimp(graph(gs) = n + 1. Also, we have d(f,g) =
mazzenm|g(@) — f(@)| = mazzen|gs(x)| = mazzenmgs(z, f(x)) <e. 0
Theorem 3.2. Let M be a compact Riemannian manifold, dim(M) = n, and

C(M,R) be the set of all continuous functions defined on M. Then for typical
members f in C(M,R), dimg(graph(f)) =n.

Proof. Put

A={f € C(M,R) : dimg(graph(f)) = n}.
Let f € A and consider a positive number € > 0 and g € C(M, R) such that
d(f,g) < e. If a collection of balls of radius § in M x R covers graph(f) and
€ < 0, then the same number of balls with radius 2§ covers graph(g). Since
each ball of radius 26 can be covered by 4! balls of radius d, then

Ns(graph(g)) < 4"+t Ns(graph(f))
If § <1 then
logNs(graph(g)) <(n+1) lo4 n logNs(graph(f))
—log(é) -

—logd —logé
Since dim g (graph(f)) = n and lims_ _l(z)gja = 0, then for each k € N there
exists 0 = §(f, k) > 0 such that

logN;(graph(g)) logd  logNs(graph(f)) 1

< .

—log(9) < (n+1) —logé * —logé <nt k
Put

Urr =1{9 € C(M,R) : d(f,g) <o(f,k)}
and
Wi= |J Usx
(feA)

Wy is an open set in C'(M, R) such that for each g € Wy,
1
dimg(graph(g) <n+ T

Clearly A € N, Wi. If g € N, Wi then dimg(graph(g)) < n, and since
for all g € C(M,R), n < dimg(graph(g)) then dimg(graph(g)) = n. Thus
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N Wi = A. Now, we show that W, is dense for all k, then the proof will
be complete. Given g € C(M,R) and ¢ > 0. By Remark 2.5, collection
of differentiable functions is dense, so there exists a differentiable function
f + M — R such that d(f,g) < e. But for a differentiable function f,
dimg(graph(f)) = dimp(graph(f)) =n. So f € A C Wy. O

Lemma 3.3. If g € C(M,R) and € > 0, then there exists k € C(M, R) such
that d(g,k) < € and dimp(graph(k)) =n + 1.

Proof. By Remark 2.5, for a given § > 0 there exists a differentiable function
f € C(M,R) such that d(f,g) < . Consider a function f; € C(M, R) such
that dimpg(graph(fi1)) = n+ 1. Since M is compact, for a given number d5 > 0
there is a positive number 0; such that |01 f1(z)| < o for all z € M. Now, put
k= f+61f1. By Remark 2.4, we have
dimp(graph(k) = dimpg(graph(d1 f1)) = dimp(graph(f1)) =n + 1.

If we choose 0 and 62 smaller than 5, then

([l
Theorem 3.4. Let M be a compact Riemannian manifold, dim(M) = n, and

C(M,R) be the set of all continuous functions defined on M. Then for typical
members f in C(M,R), dimg(graph(f)) =n+ 1.

Proof. Clearly for all f € C(M, R), dimg(graph(f)) <n+ 1. Put
A= {f €C(M,R) : dimp(graph(f)) =n+ 1}.

Consider f € A, apositive number e > 0 and g € C'(M, R) such that d(f, g) < e.
If a collection of balls of radius ¢ in M x R covers graph(g) and € < §, then the
same number of balls with radius 2§ covers graph(f). Since each ball of radius
28 can be covered by 4! balls of radius d, then

Ns(graph(f)) < 4"*' Ns(graph(g))
So, if § < 1 then

logN5(graph(f)) lod  logNs(graph(g))
log(0) <(n+1) +

—logé —logé
Since dimp(graph(f)) = n+1, then for each k € N there is §(k) = §(f, k) >
0 such that

1 logNs)(graph(f))
S T g (k)

log4 < logNs (k) (graph(g))
—logd (k) —logd (k)

—(n+1)

Put
Upe ={9 € C(M,R) : d(f,9) <d(f,k)}
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and

Wi= |J Usx
(feA)

Wi is an open set in C(M, R) such that for each g € Wy,

N 1
dimp(graph(g) >n+1— z

Clearly

ﬂszA
k

Now it remains to show that Wy, is dense for all k. Let h € C(M,R) and € > 0
we show that there exists g € Wy such that d(h,g) < e. Since by Remark
2.5, the collection of all differentiable functions is dense in C(M, R) then there
exists a differentiable function g1 € C(M, R) such that d(h,g1) < §. Consider

a

function f € A C Wj. Since f is continuous and M is compact then there

exists § > 0 such that [0 f(z)| < § forallz € M. Now, put g = g1 +6f. Since g

is

differentiable then dimpg(graph(g) = dimp(graphdf) = dimp(graph(f)) =

n+1. So, g € A C W, and we have

10.
11.

d(h,9) < d(h,g1) + d(g1.9) < 5+ mazeen|§f| < 5+ 5 =
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