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ABSTRACT. In this paper, we define the almost uniform convergence and
the almost everywhere convergence for cone-valued functions with respect
to an operator valued measure. We prove the Egoroff theorem for P-
valued functions and operator valued measure 6 : R — L(P, Q), where R
is a o-ring of subsets of X # 0, (P,V) is a quasi-full locally convex cone
and (Q,W) is a locally convex complete lattice cone.
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1. INTRODUCTION

The theory of locally convex cones as developed in [7] and [9] uses an order
theoretical concept or convex quasi-uniform structure to introduce a topological
structure on a cone. For recent researches see [1, 2, 3, 4, §].

A cone is a set P endowed with an addition and a scalar multiplication for
nonnegative real numbers. The addition is assumed to be associative and com-
mutative, and there is a neutral element 0 € P. For the scalar multiplication
the usual associative and distributive properties hold, that is a(8a) = (af)a,
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(o + B)a = aa + Pa, a(a+b) = aa + ab, la = a and 0a = 0 for all a,b € P
and «, 8 > 0.

An ordered cone P carries a reflexive transitive relation < such that a < b
implies a + ¢ < b+ ¢ and aa < ab for all a,b,c € P and a > 0. The extended
real numbers R = RU {+o00} is a natural example of an ordered cone with the
usual order and algebraic operations in R, in particular 0 - (+o00) = 0.

A subset V of the ordered cone P is called an abstract neighborhood system,
if the following properties hold:

(1) 0< v forallveV;

(2) for all u,v € V there is a w € V with w < w and w < v;

(3) u+wv €V and av € V whenever u,v € V and o > 0.
For every a € P and v € V we define

v(a)={bePlb<a+v} resp. (a)v={be Pla<b+v},

to be a neighborhood of ¢ in the upper, resp. lower topologies on P. Their
common refinement is called the symmetric topology generated by the neigh-
borhoods v*(a) = v(a)N(a)v. If we suppose that all elements of P are bounded
below, that is for every a € P and v € V we have 0 < a + Av for some A > 0,
then the pair (P, V) is called a full locally convex cone. A locally convex cone
(P,V) is a subcone of a full locally convex cone, not necessarily containing
the abstract neighborhood system V. For example, the extended real number
system R = R U {+o0} endowed with the usual order and algebraic operations
and the neighborhood system V = {¢ € R|e > 0} is a full locally convex cone.

A subset B of the locally convex cone (P, V) is called bounded below whenever
for every v € V there is A > 0, such that 0 < b+ A\v for all b € B.

For cones P and Q a mapping T : P — Q is called a linear operator if
T(a+b) =T(a)+ T(b) and T(aa) = aT(a) hold for all a,b € P and o > 0.
If both P and Q are ordered, then T is called monotone, if a < b implies
T(a) <T(b). If both (P,V) and (Q, W) are locally convex cones, the operator
T is called (uniformly) continuous if for every w € W one can find v € V such
that T'(a) < T(b) + w whenever a < b+ v for a,b € P.

A linear functional on P is a linear operator y: P — R = RU {+o00}. The
dual cone P* of a locally convex cone (P, V) consists of all continuous linear
functionals on P and is the union of all polars v°® of neighborhoods v € V,
where p € v° means that pu(a) < p(b) + 1, whenever a < b+ v for a,b € P.
In addition to the given order < on the locally convex cone (P,V), the weak
pereorder <X is defined for a,b € P by

a<xb if a<~yb+ev

for all v € V and € > 0 with some 1 < <1+ ¢ (for details, see [9], I.3). It is
obviously coarser than the given order, that is a < b implies a < b for a,b € P.
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Given a neighborhood v € V and € > 0, the corresponding upper and lower
relative neighborhoods v.(a) and (a)v. for an element a € P are defined by

ve(a) ={bePlb<~va+ev forsome 1<~<1+e},

(a)ve ={bePla<~b+ev forsome 1<~<1+¢e}

Their intersection v (a) = v.(a)N(a)v, is the corresponding symmetric relative
neighborhood. Suppose v € V. If we consider the abstract neighborhood
system V, = {av : a@ > 0} on P, then the corresponding upper (lower or
symmetric) relative topology on P is called upper (lower or symmetric) relative
v-topology.

We shall say that a locally convex cone (P, V) is a locally convez V-semilattice
cone if its order is antisymmetric and if for any two elements a,b € P their
supremum a V b exists in P and if
(V1) (a+c)V (b+¢) =aV b+ cholds for all a,b,c € P,

(V2) a < c+wvand b < c+ w for a,b,c € P and v,w € V imply that
aVb<cH+ (v+w).

Likewise, (P,V) is a locally convex A-semilattice cone if its order is antisym-
metric and if for any two elements a, b € P their infimum a A b exists in P and
if

(A1) (a+c)A(b+¢) =aAb+ cholds for all a,b,c € P,

(A2) ¢ < a+wvand ¢ < b+ w for a,byc € P and v,w € V imply that
c<aNb+ (v+w).

If both sets of the above conditions hold, then (P, V) is called a locally convex
lattice cone (cf. [9]).

We shall say that a locally convex cone (P, V) is a locally convex V- semi-
lattice cone if P carries the weak preorder (that is the given order coincides
with the weak preorder for the elements and the neighborhoods in P), this
order is antisymmetric and if
(V§) every non-empty subset A C P has a supremum sup A € P and sup(A4 +
b) = sup A + b holds for all b € P,

(V§) let @ # A CP,bePandwv € V. Ifa <b+wfor all @ € A, then
supA < b+ wv.

Likewise, (P, V) is said to be a locally convex A®-semilattice cone if P carries
the weak preorder, this order is antisymmetric and if
(A]) every bounded below subset A C P has an infimum inf A € P and inf(A+
b) = inf A + b holds for all b € P,

(AS) let A C P be bounded below, be Pandv e V. If b<a-+wv forall a € A,
then b <infA +wv.

Combining both of the above notions, we shall say that a locally convex cone
(P,V) is a locally convex complete lattice cone if P is both a V¢-semilattice cone
and a A°-semilattice cone.
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As a simple, example the locally convex cone (R, V), where R = R U {co}
and V = {e € R: e > 0}, is a locally convex lattice cone and a locally convex
complete lattice cone.

Suppose (P,V) is a locally convex complete lattice cone. A net (a;)iez in
P is called bounded below if there is i9 € T such that the set {a; |7 > i} is
bounded below. We define the superior and the inferior limits of a bounded
below net (a;);ez in P by

1irir.1€i1nf a; = fg(}g ay) and lir?eszup a; = Zlél%(ilgl) ak).
If liminf;c7 a; and limsup;c7 a; coincide, then we denote their common value
by lim;e7 a; and say that the net (a;);ez is order convergent. A series Y .o, a;
in (P,V) is said to be order convergent to s € P if the sequence s, = > ., a;
is order convergent to s.

2. EGOROFF THEOREM FOR OPERATOR-VALUED MEASURES IN LOCALLY
CoNVEX CONES

The classical Egoroff theorem states that almost everywhere convergent se-
quences of measurable functions on a finite measure space converge almost
uniformly. In this paper, we prove the Egoroff theorem for operator-valued
measures in locally convex cones.

We shall say that a locally convex cone (P, V) is quasi-full if
(QF1) a <b+wvfora,be P and v eV if and only if a < b+ s for some s € P
such that s < wv, and
(QF2) a < u+wvfor a € Pand u,v € V if and only if a < s+ ¢ for some
s,t € P such that s <w and t < v.

The collection R of subsets of a set X is called a (weak) o-ring whenever:
(R1) 0 € R,

(R2) If Eq, E5 € R, then Fy U Ey € R and Eq1\Es € R,
(R3) If E,, € Rfor n € Nand E,, C E for some E € R, then {J,,.y En € R
(see [9]).

Any o-algebra is a o-ring and a o-ring fR is a o-algebra if and only if X € R.

However, we can associate with R in a canonical way the o-algebra

Upn ={ACX:ANE R forall £ € R}.

A subset A of X is said to be measurable whenever A € Ug.

We consider the symmetric relative topology on P. The function f: X — P
is measurable with respect to the o-ring R if for every v € V,
(My) f~1(O)N E € R for every open subset O of P and every E € R,
(M3) f(F) is separable in P for every E € .

The operator—valued measures in locally convex cones have been defined in
[9]. Let (P,V) be a quasi-full locally convex cone and let (Q, W) be a locally
convex complete lattice cone. Let £L(P, Q) denote the cone of all (uniformly)
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continuous linear operators from P to Q. Recall from Section 3 in Chapter
I from [9] that a continuous linear operator between locally convex cones is
monotone with respect to the respective weak preorders. Because Q carries
its weak preorder, this implies monotonicity with respect to the given orders
of P and Q as well. Let X be a set and R a o-ring of subsets of X. An
L(P, Q)-valued measure 6 on ‘R is a set function

E—>9E:9%—>£(P,Q)

such that 8y = 0 and
OU, e B) = D VB,
neN
holds whenever the sets E, € R are disjoint and (J,-, E, € R. Convergence
for the series on the right-hand side is meant in the following way: For every
a € P the series ) 0g, (a) is order convergent in Q. We note that the order
convergence is implied by convergence in the symmetric relative topology.

Let (P,V) be a quasi-full locally convex cone and let (Q,W) be a locally
convex complete lattice cone. Suppose 0 is a fixed £(P, Q)-valued measure on
R. For a neighborhood v € V and a set E € R, semivariation of 8 is defined as
follows:

|0|(E,v) = sup { ZGE(SZ) 15 € P,s; <w, E; € Rdisjoint subsets ofE}.
€N
It is proved in Lemma 3.3 chapter II from [9], that if v € P, then |0|(E,v) =
QE(U)

Proposition 2.1. Let (P,V) be a quasi-full locally convex cone, (Q, W) be a
locally convex complete lattice cone and 0 be a fized L(P, Q)-valued measure on
R.

(a) If for E € R, 0 = 0, then for every v € V, |0|(E,v) =0,

(b) If for everyv € V, |0|(E,v) = 0, then 0g(a) =0 for every bounded element
a of P.

Proof. For (a), let g = 0 and Fy,---,F,, n € N be a partition of E. Then

for 0<s; <w,i=1,---,n, we have 0 < O, (s;) < 0g(s;) = 0. Since the order
of Q is antisymmetric, for every i € {1,--- ,n}, we have 0p,(s;) = 0. Then
0|(E,v) = 0.

For (b), let a € P and for every v € V, |#|(E,v) = 0. Since a is bounded,
for v € V, there is A > 0 such that 0 < a + Av and a < Av. Now we have
0 < Og(a) + |0|(E, \v) and 0g(a) < |0|(E, \v) by Lemma 11,3.4 of [9]. This
shows that 0 < 0g(a) and fg(a) < 0. Since the order of Q is antisymmetric,
we have Og(a) = 0. O

Corollary 2.2. Let (P,V) be a quasi-full locally convex cone, (Q,W) be a
locally convex complete lattice cone and 6 be a fized L(P, Q)-valued measure on
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R. If all elements of P are bounded, then for E € R, 0 = 0 if and only if
|0|(E,v) =0 for allv e V.

Definition 2.3. Let PR be a o-ring of subsets of X. The set A € R is said
to be of positive v-semivariation of the measure 6 if |6|(A,v) > 0. Also, we
say that the set A has bounded v-semivariation of the measure 0, if |0|(A,v) is
bounded in (Q, W).

Definition 2.4. Let 8 be an operator-valued measure on X. We shall say that
0 is generalized strongly v-continuous (GS,-continuous, for short) if for every
set of bounded v-semivariation E € R and every monotone sequence of sets
(En)nen € R, E, C E, n € N the following holds

li E = lim F
n1g§1|9|( s V) |9|(n1érﬁ11 V) U EV,

where the limit in the left hand side of the equality means convergence with
respect to the symmetric relative topology of (Q, W).

EXAMPLE 2.5. Let X = NU {+o00} and P = Q@ = R. We consider on R the
abstract neighborhood system V = {¢ € R : e > 0}. Then L(P, Q) contains all
nonnegative reals and the linear functional 0 acting as

5@) = {+oo w=-+00

0 else.

Weset R={F C X : F is finite}. Then R is a o-ring on X. We define the
set function 6 on N as following: for x € X, 0y = 0, O,y (v) = nw for n € N
and O(; o0y (7) = 0(z). For E = {a1,--- ,a,} € R, n € N, we define Og(z) =
i1 0a;y () for £ € X. Then 6 is clearly an operator-valued measure on 9R.
For n € N and ¢ > 0, we have |0|({n},e) = 0,1 () = ne and [0|({+o0},€) =
011 (€) = 0(¢) = 0. Therefore each £/ € R has finite e-semivariation for all
e >0. Let £ € R. If (E,,)nen C R is a monotone sequence of subsets of E such
that lim,cn F,, = F' , then there is ng € N such that E,, = F for all n > ng.
Then 6 is clearly GSc-continuous for each € > 0.

Definition 2.6. A sequence (f,)nen of measurable functions is said to be 6-
almost uniformly convergent to a measurable function f on E € fR if for every
e>0, weW and v €V there exists a subset F' = F(¢,v,w) of F and ng € N
such that for every n > ng,

fa(@) € v2(f(2)) and [6](F,v) € wz(0),
for all x € E\F.

Theorem 2.7 (Egoroff Theorem). Let R be a o-ring of subsets of X, (P, V)
be a full locally convex cone and (Q, W) be a locally convexr complete lattice
cone. For v € V, suppose § : R — L(P,Q) is a GS,-continuous operator
valued measure, and E € R has bounded v-semivariation. If f : X — P
is a measurable function, and (f, : X — P)nen i a sequence of measurable
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functions, such that for everyt € E, f,(t) — f(t) with respect to the symmetric
relative v-topology of (P, V), then (fn)nen is 6-almost uniformly convergent to
f on E, with respect to the symmetric relative v-topology of (P, V).

Proof. We identify v € V with the constant function x — v from X into P.
For m,n € N, we set

= e € B+ filw) %0 (@) + —vand f(@) <0 file) + v},

For every n,m € N we have B € R by Theorem II.1.6 from [9]. Clearly,
B c B, for all n,m € N. We claim that E = J;_, BI". Let € E and
m € N. Then (f,(2))nen is convergent to f(z) with respect to the symmetric
relative v-topology. This shows that for each € > 0 there is ng € N such that

1 1
fu(x) € (—v)i(f(x)) for all n > ng. Therefore f,(x) < vf(z) + e(—wv) and
m m
falz) < ~vf(x)+ 5(iv) for all n > ng and some 1 < v < 14 ¢. This yields
m

that fn(z) < vf(z)+ (1 + 5)(%1}) and fn(x) < vf(z)+ (1 + 5)(%1}) for all
n > ng and some 1 < v < 1+ ¢e. Now Lemma 1.3.1 from [9] shows that
fulx) = fl2) + %v and f(z) =y fu(z) + %v for all n > ng. Thus = € B)!.

Then (E \ B7)nen is a decreasing sequence of subsets of F, such that
lim, oo £\ B = 0. Therefore for every m € N, |f|(E \ B™,v) is con-
vergent to |0|(0,v) = 0 with respect to the symmetric relative topology of
(Q,W) by the assumption. For ¢ > 0 and m € N we choose n,, such that
OI(E\ B! ,v) < 2%10. We set

F= U E\BM .

Then we have

o0

0/(F,0) < 3 J6l(B Z%

m=1

Also, we have 0 < |0|(F,v) + ew. Then |0|(F,v) € w(0).
Now, we show that the convergence on E \ F' is uniform. Let § > 0. There

2 1
is k € N such that %4—? < . We have

E\F:E\(G E\BI')= ﬁ B C Bl

m=1
1
Now for each n > ny and every x € E\ F we have f,(x) <, f(z) + 7Y and

1
f(z) =y fnlz)+ Ev. The definition of <, shows that for e = % thereis 1 <~ <
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14 £ such that fu(r) < 7(f(2) + 10) + 1o and f(z) < 9(fal@) + 10) + 0.
2 2

Therefore fu(r) < 17(x) + (5 + 7)o < 7 (x) +6v and f(z) < 2fule) + ( +

1 1 2 1

ﬁ)v < Afn(z)+dov. Since 1 < < 1+% < 1+%+ﬁ < 149, we realize that
(fn)nen is uniformly convergent to f on E \ F', with respect to the symmetric
relative topology. (I

Remark 2.8. If in the assumptions of Theorem 2.7, (P, V) is a quasi-full locally
convex cone, then the theorem holds again. In fact every quasi-full locally
convex cone can be embedded in a full locally convex cone as elaborated in
(9], 1. 6.2).

Definition 2.9. W say that a sequence (f,, : X — P)nen of measurable
functions is #-almost everywhere convergent (with respect to the symmetric
topology of (P,V)) to f, if the set {x € X : fn(z) - f(x)} is contained in a
subset E of X with g = 0.

Definition 2.10. Let v € V. We say that the sequence (f, : X — P)nen
of measurable functions is |0|,-almost everywhere convergent (with respect to
symmetric topology of (P,V)) to f, if the set {z € X : f,(z) » f(z)} is
contained in a subset E of X with |0|(E,v) = 0.

Lemma 2.11. Let R be a o-ring of subsets of X, (P, V) be a full locally convex
cone and (Q, W) be a locally convex complete lattice cone. Then

(a) 6-almost everywhere convergence implies |0|,-almost everywhere conver-
gence for each v € V.

(b) If all elements of (P,V) are bounded and a sequence (fn, : X — P)nen s
|0].,-almost everywhere convergent to f for each v € V, then (fn : X = P)nen
is 0-almost everywhere convergent to f.

Proof. The assertions are proved by the help of Proposition 2.1. O

Theorem 2.12. If in the Egoroff theorem (2.7), fn — f, 6-almost everywhere
or |0|,-almost everywhere, then the assertion of theorem holds.

Proof. Suppose f, — f, f-almost everywhere, then there is a subset A of FE,
which is contained in some B € R with §p = 0. Now E\B € R and it has
bounded v-semivariation. We apply the theorem 2.7 for E\B and obtain a
subset F' satisfying in definition 2.6. Now clearly f,, is 6-almost uniformly
convergent to f on E\(F N B). A similar argument yields our claim for |0],-
almost everywhere convergence. ]

Theorem 2.13. Let the symmetric relative w-topology of (Q, W) be Hausdorff
for each w € W and let (f, : X — P)nen be a sequence of measurable functions
which converges to f, 8-almost uniformly on E € R. Then {fn}tnen, s |0]0-
almost every where convergent to f for each v € V.
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Proof. For each n € N, v € V and w € W there is F,, = F,,(v,w) € R such that
F, C E and |0|(F),,v) € w5 (0) and (f,) is convergent to f on E\F,. Now, we
set F =, F,. Since (b,W) is separated, we have |6|(F,v) = 0. Clearly,
(fn(z))nen is convergent to f(z) for each z € E\F = J,—, E\F,. O

10.
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