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1. Introduction

Fractional calculus is a branch of mathematics that deals with the equations

concerning integrals and derivatives of fractional orders. The history of frac-

tional calculus is as old as the history of differential calculus. In fact, fractional

calculus is a natural extension of standard mathematics. In view of the fact

that the commencement of the hypothesis of differential and integral calculus,
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mathematicians such as Euler and Liouville developed their ideas on the calcu-

lation of derivatives and integral of non-integers. Possibly the topic would be

more suitably called ”integration and differentiation of arbitrary order” (see,

[4]).

Fractional calculus has lots of applications in the fields of science counting rhe-

ology, fluid flow, diffusive transport, electrical networks, electromagnetic theory

and probability (see, [3]).

In mathematical analysis inequalities have been fascinating for researchers of all

ages (see, [1, 2, 5, 11, 15] and references there in). Now a days fractional integral

inequalities especially diverse versions of Hadamard and Ostrowski fractional

inequalities have been established (see, [6, 7, 8, 12] and references there in).

We are interested to give generalizations of fractional Hadamard inequalities

via k-fractional integrals.

In [9] k-fractional Riemann-Liouville integrals are defined.

Let f ∈ L1[a, b]. Then k-fractional integrals of order α, k > 0 with a ≥ 0 are

defined as:

Iα,ka+ f(x) =
1

kΓk(α)

∫ x

a

(x− t)αk−1f(t)dt, x > a (1.1)

and

Iα,kb− f(x) =
1

kΓk(α)

∫ b

x

(t− x)
α
k−1f(t)dt, x < b, (1.2)

where Γk(α) is the k-Gamma function defined as:

Γk(α) =

∫ ∞
0

tα−1e−
tk

k dt,

also

Γk(α+ k) = αΓk(α)

and I0,1a+f(x) = I0,1b− f(x) = f(x).

For k = 1, k-fractional integrals give Riemann-Liouville integrals.

Following results for k-fractional integrals hold [7].

Theorem 1.1. Let f : [a, b] → R be a positive function with 0 ≤ a < b. If

f is a convex function on [a, b], then the following inequalities for k-fractional

integrals hold:

f

(
a+ b

2

)
≤ Γk(α+ k)

2(b− a)
α
k

[
Iα,ka+ f(b) + Iα,kb− f(a)

]
≤ f(a) + f(b)

2
(1.3)

with α, k > 0.
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Theorem 1.2. Let f : [a, b] → R be a differentiable mapping on (a, b) with

a < b. If |f ′| is convex on [a, b], then the following inequality for k-fractional

integral holds: ∣∣∣∣f(a) + f(b)

2
− Γk(α+ k)

2(b− a)
α
k

[
Iα,ka+ f(b) + Iα,kb− f(a)

]∣∣∣∣ (1.4)

≤ b− a
2(αk + 1)

(
1− 1

2
α
k

)
[|f ′(a)|+ |f ′(b)|]

with α, k > 0.

There in [7] we remark that for k = 1 in above theorems we get the results

of [12], and for α = 1 along with k = 1 we get the classical Hadamard inequal-

ity. In [8] the following results related to Fejér Hadamard-type inequalities for

fractional integrals are given.

Theorem 1.3. Let f : [a, b]→ R be a convex function with a < b. If g : [a, b]→
R is nonnegative, integrable and symmetric to a+b

2 , then following inequalities

for fractional integrals hold:

f

(
a+ b

2

)[
Iαa+g(b) + Iαb−g(a)

]
≤ [Iαa+(fg)(b) + Iαb−(fg)(a)]

≤ f(a) + f(b)

2

[
Iαa+g(b) + Iαb−g(a)

]
with α > 0.

Theorem 1.4. Let f : I → R be a differentiable mapping on Io and f ′ ∈ L[a, b]

with a < b. If |f ′| is convex on [a, b] and g : [a, b] → R is continuous and

symmetric to a+b
2 , then the following inequality for fractional integrals holds:∣∣∣∣(f(a) + f(b)

2

)
[Iαa+g(b) + Iαb−g(a)]− [Iαa+(fg)(b) + Iαb−(fg)(a)]

∣∣∣∣
≤ (b− a)α+1‖g‖∞

(α+ 1)Γ(α+ 1)

(
1− 1

2α

)
[|f ′(a)|+ |f ′(b)|]

with α > 0.

Theorem 1.5. Let f : I → R be a differentiable mapping on Io with a < b. If

|f ′|q, q > 1 is convex on [a, b] and g : [a, b] → R is continuous and symmetric

to a+b
2 , then the following inequality for fractional integrals holds:∣∣∣∣(f(a) + f(b)

2

)[
Iαa+g(b) + Iαb−g(a)

]
− [Iαa+(fg)(b) + Iαb−(fg)(a)]

∣∣∣∣
≤ 2(b− a)α+1‖g‖∞

(α+ 1)Γ(α+ 1)(b− a)
1
q

(
1− 1

2α

)(
|f ′(a)|q + |f ′(b)|q

2

) 1
q

with α > 0 and 1
p + 1

q = 1.
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Theorem 1.6. Let f : I → R be a differentiable mapping on Io with a < b. If

|f ′|q, q > 1 is convex on [a, b] and g : [a, b] → R is continuous and symmetric

to a+b
2 , then the following inequalities for fractional integrals hold:

(i)

∣∣∣∣(f(a) + f(b)

2

)[
Iαa+g(b) + Iαb−g(a)

]
− [Iαa+(fg)(b) + Iαb−(fg)(a)]

∣∣∣∣
≤ 2

1
p (b− a)α+1‖g‖∞

(αp+ 1)
1
pΓ(α+ 1)

(
1− 1

2αp

) 1
p
(
|f ′(a)|q + |f ′(b)|q

2

) 1
q

with α > 0.

(ii)

∣∣∣∣(f(a) + f(b)

2

)[
Iαa+g(b) + Iαb−g(a)

]
− [Iαa+(fg)(b) + Iαb−(fg)(a)]

∣∣∣∣
≤ (b− a)α+1‖g‖∞

(αp+ 1)
1
pΓ(α+ 1)

(
|f ′(a)|q + |f ′(b)|q

2

) 1
q

with 0 < α ≤ 1, where 1
p + 1

q = 1.

In this paper we give Fejér Hadamard inequality for k-fractional integrals

and note that the results in [8] are special cases of these results. Also we present

new results as generalizations of Hadamard inequalities for fractional integrals

and deduce some results of [12, 7].

2. Main Results

The following lemma is given in [14].

Lemma 2.1. For 0 < λ ≤ 1 and 0 ≤ a < b, we have

|aλ − bλ| ≤ (b− a)λ.

Here first we prove the following result.

Lemma 2.2. If g : [a, b] → R is integrable and symmetric to a+b
2 with a < b,

then

Iα,ka+ g(b) = Iα,kb− g(a) =
1

2
[Iα,ka+ g(b) + Iα,kb− g(a)]

with α, k > 0.

Proof. By symmetricity of g we have g(a + b − x) = g(x), where x ∈ [a, b].

Setting x = a+ b− x in the following integral we have

Iα,ka+ g(b) =
1

kΓk(α)

∫ b

a

(b− x)
α
k−1g(x)dx

=
1

kΓk(α)

∫ b

a

(x− a)
α
k−1g(a+ b− x)dx

=
1

kΓk(α)

∫ b

a

(x− a)
α
k−1g(x)dx

= Iα,kb− g(a).
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�

Using the above lemma we prove the following results.

Theorem 2.3. Let f : [a, b]→ R be a convex function with a < b. If g : [a, b]→
R is nonnegative, integrable and symmetric to a+b

2 , then following inequalities

for k-fractional integrals hold:

f

(
a+ b

2

)[
Iα,ka+ g(b) + Iα,kb− g(a)

]
(2.1)

≤ [Iα,ka+ (fg)(b) + Iα,kb− (fg)(a)]

≤ f(a) + f(b)

2

[
Iα,ka+ g(b) + Iα,kb− g(a)

]
with α, k > 0.

Proof. By convexity of f we have

f

(
a+ b

2

)
= f

(
ta+ (1− t)b+ tb+ (1− t)a

2

)
(2.2)

≤ f(ta+ (1− t)b) + f(tb+ (1− t)a)

2
,

where t ∈ [0, 1]. Multiplying both sides of the above inequality with 2t
α
k−1g(tb+

(1− t)a) and integrating the resulting inequality over [0, 1] we have,

2f

(
a+ b

2

)∫ 1

0

t
α
k−1g(tb+ (1− t)a)dt

≤
∫ 1

0

t
α
k−1f(ta+ (1− t)b)g(tb+ (1− t)a)dt

+

∫ 1

0

t
α
k−1f(tb+ (1− t)a)g(tb+ (1− t)a)dt.

Putting x = tb+ (1− t)a we get

2

(b− a)
α
k
f

(
a+ b

2

)∫ b

a

(x− a)
α
k−1g(x)dx

≤ 1

(b− a)
α
k

[∫ b

a

(x− a)
α
k−1f(a+ b− x)g(x)dx+

∫ b

a

(x− a)
α
k−1f(x)g(x)dx

]

=
1

(b− a)
α
k

[∫ b

a

(b− x)
α
k−1f(x)g(a+ b− x)dx+

∫ b

a

(x− a)
α
k−1f(x)g(x)dx

]

=
1

(b− a)
α
k

[∫ b

a

(b− x)
α
k−1f(x)g(x)dx+

∫ b

a

(x− a)
α
k−1f(x)g(x)dx

]
.

By using Lemma 2.2, we get the first inequality of (2.1).

For the second inequality of (2.1) convexity of f gives

f(ta+ (1− t)b) + f(tb+ (1− t)a) ≤ f(a) + f(b),
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where t ∈ [0, 1]. Multiplying both sides of the above inequality with t
α
k−1g(tb+

(1− t)a) and integrating the resulting inequality over [0, 1] we get

∫ 1

0

t
α
k−1f(ta+ (1− t)b)g(tb+ (1− t)a)dt

+

∫ 1

0

t
α
k−1f(tb+ (1− t)a)g(tb+ (1− t)a)dt

≤ (f(a) + f(b))

∫ 1

0

t
α
k−1g(tb+ (1− t)a)dt,

which after some computations the result follows. �

Remark 2.4. If we take k = 1 in Theorem 2.3, then we get Theorem 1.3. If we

take α = 1 along with k = 1, then we get [8, Theorem 1]. If we take g(x) = 1

in Theorem 2.3, then we get inequality (1.3). If we take g(x) = 1 along with

k = 1 in Theorem 2.3, then we get [12, Theorem 2].

Next we need the following lemma.

Lemma 2.5. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b

and f ′ ∈ L[a, b]. If g : [a, b] → R is integrable and symmetric to a+b
2 , then the

following equality for k-fractional integrals hold:

(
f(a) + f(b)

2

)
[Iα,ka+ g(b) + Iα,kb− g(a)]− [Iα,ka+ (fg)(b) + Iα,kb− (fg)(a)]

=
1

kΓk(α)

∫ b

a

[∫ t

a

(b− s)αk−1g(s)ds−
∫ b

t

(s− a)
α
k−1g(s)ds

]
f ′(t)dt

with α, k > 0.

Proof. Note that

1

kΓk(α)

∫ b

a

[∫ t

a

(b− s)αk−1g(s)ds−
∫ b

t

(s− a)
α
k−1g(s)ds

]
f ′(t)dt

=
1

kΓk(α)

[∫ b

a

(∫ t

a

(b− s)αk−1g(s)ds

)
f ′(t)dt (2.3)

+

∫ b

a

(
−
∫ b

t

(s− a)
α
k−1g(s)ds

)
f ′(t)dt

]
.
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By simple calculations one can get∫ b

a

(∫ t

a

(b− s)αk−1g(s)ds

)
f ′(t)dt

=

[(∫ b

a

(b− s)αk−1g(s)ds

)
f(b)−

∫ b

a

(b− t)αk−1fg(t)dt

]
= kΓk(α)

[
f(b)Iα,ka+ g(b)− Iα,ka+ (fg)(b)

]
= kΓk(α)

[
f(b)

2
[Iα,ka+ g(b) + Iα,kb− g(a)]− Iα,ka+ fg(b)

]
and ∫ b

a

(
−
∫ b

t

(s− a)
α
k−1g(s)ds

)
f ′(t)dt

=

(∫ b

a

(s− a)
α
k−1g(s)ds

)
f(a)−

∫ b

a

(t− a)
α
k−1(fg)(t)dt

= kΓk(α)

[
f(a)

2
[Iα,ka+ g(b) + Iα,kb− g(a)]− Iα,ka+ fg(a))

]
.

Hence using (2.3) implies the result. �

Theorem 2.6. Let f : I → R be a differentiable mapping on Io the interior

of I, and f ′ ∈ L[a, b], a, b ∈ Io with a < b. If |f ′| is convex on [a, b] and

g : [a, b]→ R is continuous and symmetric to a+b
2 , then the following inequality

for k-fractional integrals holds:∣∣∣∣(f(a) + f(b)

2

)
[Iα,ka+ g(b) + Iα,kb− g(a)]− [Iα,ka+ (fg)(b) + Iα,kb− (fg)(a)]

∣∣∣∣
≤ (b− a)

α
k+1‖g‖∞

(αk + 1)Γk(α+ k)

(
1− 1

2
α
k

)
[|f ′(a)|+ |f ′(b)|]

with α, k > 0.

Proof. Using Lemma 2.5 we have∣∣∣∣(f(a) + f(b)

2

)
[Iα,ka+ g(b) + Iα,kb− g(a)]− [Iα,ka+ (fg)(b) + Iα,kb− (fg)(a)]

∣∣∣∣
≤ 1

kΓk(α)

∫ b

a

∣∣∣∣∣
∫ t

a

(b− s)αk−1g(s)ds−
∫ b

t

(s− a)
α
k−1g(s)ds

∣∣∣∣∣ |f ′(t)|dt. (2.4)

Using convexity of |f ′| we have

|f ′(t)| ≤ b− t
t− a

|f ′(a)|+ t− a
b− a

|f ′(b)|, (2.5)

where t ∈ [a, b].
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From symmetricity of g we have∫ b

t

(s− a)
α
k−1g(s)ds =

∫ a+b−t

a

(b− s)αk−1g(a+ b− s)ds

=

∫ a+b−t

a

(b− s)αk−1g(s)ds.

This gives∣∣∣∣∣
∫ t

a

(b− s)αk−1g(s)ds−
∫ b

t

(s− a)
α
k−1g(s)ds

∣∣∣∣∣ (2.6)

=

∣∣∣∣∣
∫ a+b−t

t

(b− s)αk−1g(s)ds

∣∣∣∣∣ ≤
{ ∫ a+b−t

t
|(b− s)αk−1g(s)|ds, t ∈ [a, a+b2 ]∫ t

a+b−t |(b− s)
α
k−1g(s)|ds, t ∈ [a+b2 , b].

By virtue of (2.4), (2.5), (2.6), we have∣∣∣∣(f(a) + f(b)

2

)[
Iα,ka+ g(b) + Iα,kb− g(a)

]
−
[
Iα,ka+ (fg)(b) + Iα,kb− (fg)(a)

]∣∣∣∣
≤ 1

kΓk(α)

[∫ a+b
2

a

(∫ a+b−t

t

∣∣(b− s)αk−1g(s)
∣∣ ds)( b− t

t− a
|f ′(a)|+ t− a

b− a
|f ′(b)|

)
dt

+

∫ b

a+b
2

(∫ t

a+b−t

∣∣(b− s)αk−1g(s)ds
∣∣)( b− t

t− a
|f ′(a)|+ t− a

b− a
|f ′(b)|

)
dt

]

≤ ‖g‖∞
Γk(α+ k)(b− a)

[∫ a+b
2

a

(
(b− t)αk − (t− a)

α
k

)
((b− t)|f ′(a)|+ (t− a)|f ′(b)|) dt

+

∫ b

a+b
2

(
(t− a)

α
k − (b− t)αk

)
((b− t)|f ′(a)|+ (t− a)|f ′(b)|) dt

]
. (2.7)

One can have∫ a+b
2

a

((b− t)αk − (t− a)
α
k )(b− t)dt =

∫ b

a+b
2

((t− a)
α
k − (b− t)αk )(t− a)dt

=
(b− a)

α
k+2

α
k + 1

( α
k + 1
α
k + 1

− 1

2
α
k+1

)
(2.8)

and∫ a+b
2

a

((b− t)αk − (t− a)
α
k )(t− a)dt =

∫ b

a+b
2

((t− a)
α
k − (b− t)αk )(b− t)dt

=
(b− a)

α
k+2

(αk + 1)

(
1

α
k + 2

− 1

2
α
k+1

)
. (2.9)

Using (2.8), (2.9) in (2.7) we get required result. �

Remark 2.7. If we take k = 1, then we get Theorem 1.4. If we take g(x) = 1

in the above theorem, then we get inequality (1.4). If we take g(x) = 1 along

with k = 1 in above theorem, then we get [12, Theorem 3].
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Theorem 2.8. Let f : I → R be a differentiable mapping on Io the interior of

I, and f ′ ∈ L[a, b], a, b ∈ Io with a < b. If |f ′|q, q > 1 is convex on [a, b] and

g : [a, b]→ R is continuous and symmetric to a+b
2 , then the following inequality

for k-fractional integrals holds:∣∣∣∣(f(a) + f(b)

2

)[
Iα,ka+ g(b) + Iα,kb− g(a)

]
−
[
Iα,ka+ (fg)(b) + Iα,kb− (fg)(a)

]∣∣∣∣
≤ 2(b− a)

α
k+1‖g‖∞

(αk + 1)Γk(α+ k)(b− a)
1
q

(
1− 1

2
α
k

)(
|f ′(a)|q + |f ′(b)|q

2

) 1
q

with α, k > 0 and 1
p + 1

q = 1.

Proof. By Using Lemma 2.5, Hölder inequality, inequality (2.6) and convexity

of |f ′|q we have∣∣∣∣(f(a) + f(b)

2

)[
Iα,ka+ g(b) + Iα,kb− g(a)

]
−
[
Iα,ka+ (fg)(b) + Iα,kb− (fg)(a)

]∣∣∣∣
≤ 1

kΓk(α)

[∫ b

a

∣∣∣∣∣
∫ a+b−t

t

(b− s)αk−1g(s)ds

∣∣∣∣∣ dt
]1− 1

q

[∫ b

a

∣∣∣∣∣
∫ a+b−t

t

(b− s)αk−1g(s)ds

∣∣∣∣∣ |f ′(t)|qdt
] 1
q

≤ 1

kΓk(α)

[∫ a+b
2

a

(∫ a+b−t

t

|(b− s)αk−1g(s)|ds

)
dt

+

∫ b

a+b
2

(∫ t

a+b−t
|(b− s)αk−1g(s)|ds

)
dt

]1− 1
q

[∫ a+b
2

a

(∫ a+b−t

t

∣∣(b− s)αk−1g(s)
∣∣ ds) |f ′(t)|qdt

+

∫ b

a+b
2

(∫ t

a+b−t
|(b− s)αk−1g(s)|ds

)
|f ′(t)|qdt

] 1
q

≤ ‖g‖∞
kΓk(α)

[(
2k(b− a)

α
k+1

α(αk + 1)

(
1− 1

2
α
k

))1− 1
q

(
k(|f ′(a)|q + |f ′(b)|q)(b− a)

α
k+1

α(αk + 1)(b− a)
1
q

(
1− 1

2
α
k

)) 1
q

 .
From which after a little computation one can have required result. �

Theorem 2.9. Let f : I → R be a differential mapping on Io the interior of

I, and f ′ ∈ L[a, b], a, b ∈ Io with a < b. If |f ′|q, q > 1 is convex on [a, b] and
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g : [a, b] → R is continuous and symmetric to a+b
2 , then following inequalities

for k-fractional integrals hold:

(i)

∣∣∣∣(f(a) + f(b)

2

)[
Iα,ka+ g(b) + Iα,kb− g(a)

]
−
[
Iα,ka+ (fg)(b) + Iα,kb− (fg)(a)

]∣∣∣∣
≤ 2

1
p (b− a)

α
k+1‖g‖∞

(αpk + 1)
1
pΓk(α+ k)

(
1− 1

2
αp
k

) 1
p
(
|f ′(a)|q + |f ′(b)|q

2

) 1
q

with α, k > 0.

(ii)

∣∣∣∣(f(a) + f(b)

2

)[
Iα,ka+ g(b) + Iα,kb− g(a)

]
− [Iα,ka+ (fg)(b) + Iα,kb− (fg)(a)]

∣∣∣∣
≤ (b− a)

α
k+1‖g‖∞

(αpk + 1)
1
pΓk(α+ k)

(
|f ′(a)|q + |f ′(b)|q

2

) 1
q

(2.10)

with 0 < α ≤ 1, where 1
p + 1

q = 1.

Proof. By Using Lemma 2.5, Hölder inequality, inequality (2.6) and convexity

of |f ′|q we have∣∣∣∣(f(a) + f(b)

2

)[
Iα,ka+ g(b) + Iα,kb− g(a)

]
− [Iα,ka+ (fg)(b) + Iα,kb− (fg)(a)]

∣∣∣∣
≤ 1

kΓk(α)

(∫ b

a

∣∣∣∣∣
∫ a+b−t

t

(b− s)αk−1g(s)ds

∣∣∣∣∣
p

dt

) 1
p
(∫ b

a

|f ′(t)|qdt

) 1
q

≤ 1

kΓk(α)

[∫ a+b
2

a

(∫ a+b−t

t

|(b− s)αk−1g(s)|ds

)
dt

+

∫ b

a+b
2

(∫ t

a+b−t
|(b− s)αk−1g(s)|ds

)
dt

] 1
p
[∫ b

a

(
b− t
b− a

|f ′(a)|q +
t− a
b− a

|f ′(b)|q
)
dt

] 1
q

≤ ‖g‖∞
kΓk(α+ k)

[∫ a+b
2

a

(
(b− t)αk − (t− a)

α
k

)p
dt+

∫ b

a+b
2

(
(t− a)

α
k − (b− t)αk

)p
dt

] 1
p

[∫ b

a

(
b− t
b− a

|f ′(a)|q +
t− a
b− a

|f ′(b)|q
)
dt

] 1
q

. (2.11)

Now

(A−B)q ≤ Aq −Bq, A ≥ B ≥ 0

gives

[(b− t)αk − (t− a)
α
k ]p ≤ (b− t)

αp
k − (t− a)

αp
k (2.12)

for t ∈ [a, a+b2 ], and

[(t− a)
α
k − (b− t)αk ]p ≤ (t− a)

αp
k − (b− t)

αp
k (2.13)

for t ∈ [a+b2 , b].
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Using (2.12) and (2.13) in inequality (2.11) and solving we get required

result.

For (2.10) use (2.11) and Lemma 2.1. �

Remark 2.10. If we take k = 1 in above theorem we get Theorem 1.6.
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