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ABSTRACT. Fejér Hadamard inequality is generalization of Hadamard
inequality. In this paper we prove certain Fejér Hadamard inequalities
for k-fractional integrals. We deduce Fejér Hadamard-type inequalities for
Riemann-Liouville fractional integrals. Also as a special case Hadamard

inequalities for k-fractional as well as fractional integrals are given.
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1. INTRODUCTION

Fractional calculus is a branch of mathematics that deals with the equations
concerning integrals and derivatives of fractional orders. The history of frac-
tional calculus is as old as the history of differential calculus. In fact, fractional
calculus is a natural extension of standard mathematics. In view of the fact
that the commencement of the hypothesis of differential and integral calculus,
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mathematicians such as Euler and Liouville developed their ideas on the calcu-
lation of derivatives and integral of non-integers. Possibly the topic would be
more suitably called ”integration and differentiation of arbitrary order” (see,
4)).

Fractional calculus has lots of applications in the fields of science counting rhe-
ology, fluid flow, diffusive transport, electrical networks, electromagnetic theory
and probability (see, [3]).

In mathematical analysis inequalities have been fascinating for researchers of all
ages (see, [1, 2, 5, 11, 15] and references there in). Now a days fractional integral
inequalities especially diverse versions of Hadamard and Ostrowski fractional
inequalities have been established (see, [6, 7, 8, 12] and references there in).
We are interested to give generalizations of fractional Hadamard inequalities
via k-fractional integrals.

In [9] k-fractional Riemann-Liouville integrals are defined.

Let f € Lq[a,b]. Then k-fractional integrals of order o, k > 0 with a > 0 are
defined as:

19 () = ﬁ@ / (@—DF L f(Odt, z>a (1.1)
and
b
IF () = ﬁm)/x (t—x)5 " 1f(t)dt, = <b, (1.2)

where I'y (@) is the k-Gamma function defined as:

Tufa) = [ ete
0
also
Pi(a+ k) = aTy(a)
and Ig;l (x) = Il?’,lf(ﬂf) = f(x).

For k = 1, k-fractional integrals give Riemann-Liouville integrals.
Following results for k-fractional integrals hold [7].

Theorem 1.1. Let f : [a,b] — R be a positive function with 0 < a < b. If
f s a convex function on [a,b], then the following inequalities for k-fractional
integrals hold:

fla) + f(b)
2

[E1®) + ¥ (o) <

f <a+b> < Ti(a+ k) (1.3)

2 ~2(b—a)¥

with a, k > 0.


http://ijmsi.ir/article-1-826-en.html

[ Downloaded from ijmsi.ir on 2025-11-04 ]

On generalizations of hadamard inequalities for fractional integrals 73

Theorem 1.2. Let f : [a,b] — R be a differentiable mapping on (a,b) with
a <b. If |f'| is convex on [a,b], then the following inequality for k-fractional
integral holds:

IO SO D) ks + @]

b—a 1 / /
< sty (1= 38 ) @i+ 1o
with a, k > 0.

There in [7] we remark that for £ = 1 in above theorems we get the results
of [12], and for o = 1 along with k = 1 we get the classical Hadamard inequal-
ity. In [8] the following results related to Fejér Hadamard-type inequalities for
fractional integrals are given.

Theorem 1.3. Let f : [a,b] — R be a convex function witha < b. Ifg: [a,b] —

R is nonnegative, integrable and symmetric to 2, then following inequalities

2
for fractional integrals hold:
a+b o o
f ( 5 ) [ 9(b) + I;g(a)]

< U3 (f9)(0) + I (fg)(a)]

<TI0 10 4) 1 17 g(0)]

with o > 0.

Theorem 1.4. Let f : I — R be a differentiable mapping on I° and f' € Lla, b
with a < b. If |f'| is convex on [a,b] and g : [a,b] — R is continuous and
symmetric to ‘LTH’, then the following inequality for fractional integrals holds:

’(W} [189(b) + Ii_g(a)] — [Ig, (F9)(b) + I} (fg)(a)]

(b—a)* gl
T (a+ 1)I(a+1)
with o > 0.

<1 _ 21) 1)l + 0]

Theorem 1.5. Let f: I — R be a differentiable mapping on I° with a < b. If
|f19, ¢ > 1 is convex on [a,b] and g : [a,b] — R is continuous and symmetric
to “TM, then the following inequality for fractional integrals holds:

‘ ( w ) [12,9(b) + Ig(a)] — 113, (f9)(0) + I} (f9)()]

2(b — a)**lgll (1_ 1) (If’(a)l"+ If’(b)l“>;
T (a4 D) (a+1)(b—a)i 20 2
with a > 0 and%—i—%:l,
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Theorem 1.6. Let f: I — R be a differentiable mapping on I° with a < b. If
|f'19, ¢ > 1 is convex on [a,b] and g : [a,b] — R is continuous and symmetric

“;b, then the following inequalities for fractional integrals hold:

0| (P52 (12000 + 1 at0) - U2, G0 + (7))

el (- L)' (e sy

to

2%(b —a

<
(ap+1)
with o > 0.

)| (H95 22 (12000 + 13 0t@) - 12000+ 13 () o)
(b—a)* gl (f’(a)l“lf’(b)“);

~ (ap+1)rT(a+1) 2
with 0 < a <1, where%—i—%:l.

In this paper we give Fejér Hadamard inequality for k-fractional integrals
and note that the results in [8] are special cases of these results. Also we present
new results as generalizations of Hadamard inequalities for fractional integrals
and deduce some results of [12, 7].

2. MAIN RESULTS
The following lemma is given in [14].
Lemma 2.1. For0< A <1 and 0<a <b, we have
la* — b < (b—a)™.
Here first we prove the following result.

. . ; +b
Lemma 2.2. If g : [a,b] — R is integrable and symmetric to %> with a < b,

then
_1

SUEEg(0) + 1 g(a)]

I3 g(b) = I;""g(a)
with a, k > 0.

Proof. By symmetricity of g we have g(a + b — ) = g(x), where = € [a,b].
Setting x = a + b — x in the following integral we have

e

b
1E00) = s [ (=0 (@)

1 b P
:FFk(a)/a (=) g(atb—z)de
1 b P
- i L @@ @
:Ili’kg(a).
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Using the above lemma we prove the following results.

Theorem 2.3. Let f : [a,b] = R be a convex function witha < b. If g : [a,b] —
R is nonnegative, integrable and symmetric to %H’, then following inequalities
for k-fractional integrals hold:

£(*57) [r2ta + 1ot (2.)
<[I5E(f9)(b) + IF(f9) (a)]

FOLIO [ergm) + 13 g(w)

—

<
with a, k > 0.

Proof. By convexity of f we have

f(a;-b>:f<ta+(1—t)b—;—tb+(1—t)a> (2.2)
< flta+ (1 —t)b) + f(tb+ (1 —t)a)
— 2 )

where ¢ € [0,1]. Multiplying both sides of the above inequality with 2¢t% ~1g(tb+
(1 —t)a) and integrating the resulting inequality over [0, 1] we have,

1
2f <a;rb>/0 tELg(th + (1 — t)a)dt

< /1 51 f(ta+ (1 — D)b)g(th+ (1 — t)a)dt

+ /1 tE = f(th + (1 — t)a)g(th + (1 — t)a)dt.
0

Putting z = tb+ (1 — t)a we get

(b —2a)z f (a ; b) /ab(fc —a)t " tg(x)dx

1 b . b .
< m /a (x —a)* f(a—i—b—x)g(ac)dx—i—/a (x —a)* f<x)g(x)d$]
. b —2)¥  f(z)gla+b—z)dw bm—a%*l x)g(z)dx
= e | [0 et s b —aaes [t s >d]
1 b oy b -
“h_af /a (b— ) f(x)g(x)dwr/a (z —a) f(a:)g(x)dx].

By using Lemma 2.2, we get the first inequality of (2.1).
For the second inequality of (2.1) convexity of f gives

flta+ (1 =1)b) + f(tb+ (1 —t)a) < f(a) + f(b),
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where t € [0, 1]. Multiplying both sides of the above inequality with % ~!g(tb+
(1 —t)a) and integrating the resulting inequality over [0, 1] we get

/1 tE 1 f(ta+ (1 —t)b)g(th+ (1 — t)a)dt

0

+ /1 th T f(tb+ (1 — t)a)g(th + (1 — t)a)dt
0

1 [e3
< (f(a) + F) / 12 g (th + (1~ t)a)dt,

which after some computations the result follows. O
Remark 2.4. If we take k = 1 in Theorem 2.3, then we get Theorem 1.3. If we
take @ = 1 along with k£ = 1, then we get [8, Theorem 1]. If we take g(z) =1
in Theorem 2.3, then we get inequality (1.3). If we take g(x) = 1 along with
k =1 in Theorem 2.3, then we get [12, Theorem 2].

Next we need the following lemma.
Lemma 2.5. Let [ : [a,b] — R be a differentiable mapping on (a,b) with a < b

and f' € Lla,b]. If g : [a,b] — R is integrable and symmetric to “T'H’, then the
following equality for k-fractional integrals hold:

(W) 1555 9(0) + IR g(@)] = L2 (F9) () + 12" (fg) (a)]

_;bti%il 7177%71 ,
71{:Fk(04)/a [/a (b—s) g(s)ds /t(s a) Q(S)dS]f(t)dt

with a, k > 0.

Proof. Note that
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By simple calculations one can get

/ b ( / b 3):1g(s)ds) 7 eyt
- l( / ‘- 5):1g(s)d5> - [ - t)‘élfga)dt]

= Kw(0) [FO)I2E90) = 12 (Fo) )

= krula) | B2 zo ) + 1300 - 12 1900

and
b b w
/ (— /- a>k-lg<s>ds> 7't
b N b N

- ( / <s—a>klg<s>ds> fa) - [ -0t o

= kruta) | L5 g0) 4 1ot - 124 fota)|.
Hence using (2.3) implies the result. O

Theorem 2.6. Let f : I — R be a differentiable mapping on I° the interior
of I, and f'" € Lla,b,a,b € I° with a < b. If |f'| is convex on [a,b] and
g : [a,b] = R is continuous and symmetric to ‘%rb, then the following inequality
for k-fractional integrals holds:

‘ (W) 15 9(0) + Iy g(a)] = IZE (f9)(B) + 1" (fg) (a)]

(b — CL)%'HHgHOO 1 / ’
< ST (-5 ) @i+

with a, k > 0.

Proof. Using Lemma 2.5 we have

‘ (W) 2 g(0) + I g(a)] = (15 (f9) (0) + 12" (f9) (a)]

t . b .
/ (b— )T g(s)ds — / (s — a)F Tg(s)ds| |/ ()b, (2.4)

< [

Using convexity of |f’| we have

Ol < @)+ ) (25)

where t € [a, b].
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From symmetricity of g we have

b a+b—t
/(s—a* / (b—s)%tg(a+b— s)ds
¢

a+b—t
/ (b—s)%tg(s)ds.

This gives

/ (b )t g(s)ds / (s — @)t g(s)ds

a+b—t
(b— s)%_lg(s)ds < o N
/t vyt [0 —=5)FTg(s)|ds, € [452,].
By virtue of (2.4), (2.5), (2.6), we have

’ < fla) + £(b) ) 15 90) + I g(@)| = (I (F9) ) + I (fo) @) ‘

2
atb a+b—t .
( | lo=9 ) ds) (f_;|f’<a>| 7

1 2
= kD (a) [[1
+/b </at+bt|(b_s>:1g<s>ds|> (i = ’(b)|>dt]

a+b

bl [ @0t~ -0ty @@+ e-anrona

{ T (b — 5)ELg(s)|ds, t € [a, %52

) at

>R

= Fip(a+k)(b—

b
JF/G+b (t=a)® = -1t)%) ((b=1)|f'(a)] +(t—a)|f’(b)|)dt] - (2.7)
One can have
ot . . b . .
(b-0)F ~(t—a)F)b-ndi= [ (1= a)F —(b—0)F)(t—ait
(b

B (b—a)%t?
(gD (

Using (2.8), (2.9) in (2.7) we get required result. O
Remark 2.7. If we take k = 1, then we get Theorem 1.4. If we take g(x) =1

in the above theorem, then we get inequality (1.4). If we take g(z) = 1 along
with & =1 in above theorem, then we get [12, Theorem 3.


http://ijmsi.ir/article-1-826-en.html

[ Downloaded from ijmsi.ir on 2025-11-04 ]

On generalizations of hadamard inequalities for fractional integrals 79

Theorem 2.8. Let f : I — R be a differentiable mapping on I° the interior of
I, and [’ € L[a,b],a,b € I° with a < b. If |f'|9, ¢ > 1 is convex on [a,b] and
g :[a,b] = R is continuous and symmetric to “=
for k-fractional integrals holds:

’ (W) 12 g) + 1 g(0)| — [1F () (0) + I (F9) (@) \

2(b— a)F+gloo L (1@l 1B
T (& +)Th(a+ k) (b—a)d (1 )( 2 >

b then the following inequality

2%
witha,k>0and%+%:1.

Proof. By Using Lemma 2.5, Holder inequality, inequality (2.6) and convexity
of | f'|4 we have

’ ( Jle) +J0) ) [t g®) + I g(@)] - [1 (F9) ) + 12 (F9) ()] \

- ﬁ@ [/ab dt] “a
/ta+bt(b — 5)%719(8)6&9 7

< kr:(a) [/a"’ (/ta+b_t |(b— Sﬁ_lﬂ(S)lds) it

+/b“’ </at+bt G S)zlg(s)us) dt] o

/aa;b </ta+bt (b— 8)?_1g(s)|ds> | (£)|9dt

[ ([, Jom o ton) If’(t)lth] %

<l (e ()

(k(lf’(a)q LI OIEG-a)tH <1 . 1>> "
o(f +1)(b—a) 2

a+b—t N
/t (b— 5)E1g(s)ds

f’(t)lth]

From which after a little computation one can have required result. (I

Theorem 2.9. Let f : I — R be a differential mapping on I° the interior of
I, and f' € Lla,b],a,b € I° with a < b. If |f'|7, ¢ > 1 is convez on [a,b] and
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g : [a,b] = R is continuous and symmetric to %H’, then following inequalities

for k-fractional integrals hold:
fla) + f(b)

)| (L 29 [rzto) + 12 @)] = (122000 + 12 o))
20—t gl (,_ 1\ (L@ IO
= (%2 4+ 1)7 Ty (a + k) (1 2(7«”) < 2 )
with a, k > 0.
(i) | (H5 L0 [rzgo) + 1o()] - 200 + 12 (Fo)o)

< (=0 gl <|f'<a>|q+|f/<b>|q)3
T (82 +1)rTi(a+k) 2

with 0 < a <1, where%—i—%:l.

(2.10)

Proof. By Using Lemma 2.5, Holder inequality, inequality (2.6) and convexity
of |f'|2 we have

(ﬂ);ﬂb)) 15 90) + I g(@)| = I2F(F9) () + I (f9) @)

< </b /t%_t(b— $)Eg(s)ds pdt>; </b f’<t>|th>é
+/b+ (/;b_t (b~ s)z—lg(s)|ds) dtr Vb (;’__Zu’(a)q + Z:Zf’(b)lq) dtr

a+b b

/a ’ ((b—t)%—(t—a)%)”dH/

a+b

2

1
P

91lo0
= klp(a+k)

(t—a)® —(b- t)?)pdt]

i » :
[ (=hir@r+ (=2 a (.11

Now

(A—B)I<AT—Bi, A>B>0

gives

6-0% — (- @)P < p-0F —(t—a)¥ (212
for t € [a, %£2], and

(=) (-0 < (-0 — 0 1)¥ (213
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Using (2.12) and (2.13) in inequality (2.11) and solving we get required

result.

For (2.10) use (2.11) and Lemma 2.1. O

Remark 2.10. If we take kK = 1 in above theorem we get Theorem 1.6.
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