

Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

Phaisatcha Inpoonjai*, Thiradet Jiarasuksakun

Department of Mathematics, Faculty of Science,
King Mongkut's University of Technology Thonburi
126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand.

E-mail: phaisatcha.in@outlook.com

E-mail: thiradet.jia@mail.kmutt.ac.th

ABSTRACT. A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers $1, 2, \dots, |E(G)|$ such that the sum of the labels of the edges incident with any vertex v is equal to $(1 + |E(G)|) \deg(v)/2$. Degree-magic graphs extend supermagic regular graphs. In this paper we find the necessary and sufficient conditions for the existence of balanced degree-magic labelings of graphs obtained by taking the join, composition, Cartesian product, tensor product and strong product of complete bipartite graphs.

Keywords: Complete bipartite graphs, Supermagic graphs, Degree-magic graphs, Balanced degree-magic graphs.

2000 Mathematics subject classification: 05C78.

*Corresponding Author

1. INTRODUCTION

We consider simple graphs without isolated vertices. If G is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and the edge set of G , respectively. Cardinalities of these sets are called the *order* and *size* of G .

Let a graph G and a mapping f from $E(G)$ into positive integers be given. The *index mapping* of f is the mapping f^* from $V(G)$ into positive integers defined by

$$f^*(v) = \sum_{e \in E(G)} \eta(v, e) f(e) \quad \text{for every } v \in V(G),$$

where $\eta(v, e)$ is equal to 1 when e is an edge incident with a vertex v , and 0 otherwise. An injective mapping f from $E(G)$ into positive integers is called a *magic labeling* of G for an *index* λ if its index mapping f^* satisfies

$$f^*(v) = \lambda \quad \text{for all } v \in V(G).$$

A magic labeling f of a graph G is called a *supermagic labeling* if the set $\{f(e) : e \in E(G)\}$ consists of consecutive positive integers. We say that a graph G is *supermagic* (*magic*) whenever a supermagic (magic) labeling of G exists.

A bijective mapping f from $E(G)$ into $\{1, 2, \dots, |E(G)|\}$ is called a *degree-magic labeling* (or only *d-magic labeling*) of a graph G if its index mapping f^* satisfies

$$f^*(v) = \frac{1 + |E(G)|}{2} \deg(v) \quad \text{for all } v \in V(G).$$

A d-magic labeling f of a graph G is called *balanced* if for all $v \in V(G)$, the following equation is satisfied

$$\begin{aligned} & |\{e \in E(G) : \eta(v, e) = 1, f(e) \leq \lfloor |E(G)|/2 \rfloor\}| \\ & = |\{e \in E(G) : \eta(v, e) = 1, f(e) > \lfloor |E(G)|/2 \rfloor\}|. \end{aligned}$$

We say that a graph G is *degree-magic* (*balanced degree-magic*) or only *d-magic* when a d-magic (balanced d-magic) labeling of G exists.

The concept of magic graphs was introduced by Sedláček [8]. Later, supermagic graphs were introduced by Stewart [9]. There are now many papers published on magic and supermagic graphs; see [6, 7, 10] for more comprehensive references. The concept of degree-magic graphs was then introduced by Bezegová and Ivančo [2] as an extension of supermagic regular graphs. They established the basic properties of degree-magic graphs and characterized degree-magic and balanced degree-magic complete bipartite graphs in [2]. They also characterized degree-magic complete tripartite graphs in [4]. Some of these concepts are investigated in [1, 3, 5]. We will hereinafter use the auxiliary results from these studies.

Theorem 1.1. [2] Let G be a regular graph. Then G is supermagic if and only if it is d -magic.

Theorem 1.2. [2] Let G be a d -magic graph of even size. Then every vertex of G has an even degree and every component of G has an even size.

Theorem 1.3. [2] Let G be a balanced d -magic graph. Then G has an even number of edges and every vertex has an even degree.

Theorem 1.4. [2] Let G be a d -magic graph having a half-factor. Then $2G$ is a balanced d -magic graph.

Theorem 1.5. [2] Let H_1 and H_2 be edge-disjoint subgraphs of a graph G which form its decomposition. If H_1 is d -magic and H_2 is balanced d -magic, then G is a d -magic graph. Moreover, if H_1 and H_2 are both balanced d -magic, then G is a balanced d -magic graph.

Proposition 1.6. [2] For $p, q > 1$, the complete bipartite graph $K_{p,q}$ is d -magic if and only if $p \equiv q \pmod{2}$ and $(p, q) \neq (2, 2)$.

Theorem 1.7. [2] The complete bipartite graph $K_{p,q}$ is balanced d -magic if and only if the following statements hold:

- (i) $p \equiv q \equiv 0 \pmod{2}$;
- (ii) if $p \equiv q \equiv 2 \pmod{4}$, then $\min\{p, q\} \geq 6$.

Lemma 1.8. [4] Let m, n and o be even positive integers. Then the complete tripartite graph $K_{m,n,o}$ is balanced d -magic.

2. BALANCED DEGREE-MAGIC LABELINGS IN THE JOIN OF COMPLETE BIPARTITE GRAPHS

For two vertex-disjoint graphs G and H , the *join* of graphs G and H , denoted by $G+H$, consists of $G \cup H$ and all edges joining a vertex of G and a vertex of H . For any positive integers p and q , we consider the join $K_{p,q} + K_{p,q}$ of complete bipartite graphs. Let $K_{p,q} + K_{p,q}$ be a d -magic graph. Since $\deg(v)$ is $p+2q$ or $2p+q$ and $f^*(v) = (2pq + (p+q)^2 + 1) \deg(v)/2$ for any $v \in V(K_{p,q} + K_{p,q})$, we have

Proposition 2.1. Let $K_{p,q} + K_{p,q}$ be a d -magic graph. Then p or q is even.

Proposition 2.2. Let $K_{p,q} + K_{p,q}$ be a balanced d -magic graph. Then both p and q are even.

Proposition 2.3. Let p and q be even positive integers. Then $K_{p+q,p+q}$ is a balanced d -magic graph.

Proof. Applying Theorem 1.7, $K_{p+q,p+q}$ is a balanced d -magic graph. \square

In the next result we show a sufficient condition for the existence of balanced d -magic labelings of the join of complete bipartite graphs $K_{p,q} + K_{p,q}$.

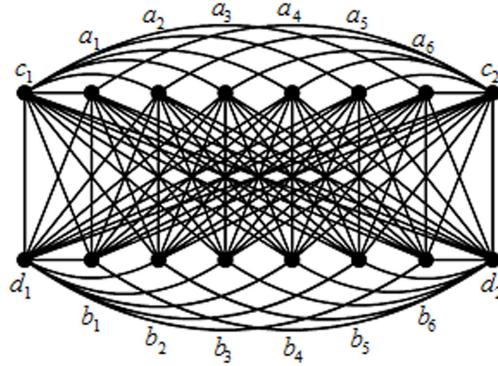


FIGURE 1. A balanced d-magic graph $K_{2,6} + K_{2,6}$ with 16 vertices and 88 edges.

Theorem 2.4. *Let p and q be even positive integers. Then $K_{p,q} + K_{p,q}$ is a balanced d-magic graph.*

Proof. Let p and q be even positive integers. We consider the following two cases:

Case I. If $(p, q) = (2, 2)$, the graph $K_{2,2} + K_{2,2}$ is decomposable into three balanced d-magic subgraphs isomorphic to $K_{2,4}$. According to Theorem 1.5, $K_{2,2} + K_{2,2}$ is a balanced d-magic graph.

Case II. If $(p, q) \neq (2, 2)$, then $K_{p+q,p+q}$ is balanced d-magic by Proposition 2.3, and $2K_{p,q}$ is balanced d-magic by Theorem 1.4. Since $K_{p,q} + K_{p,q}$ is the graph such that $K_{p+q,p+q}$ and $2K_{p,q}$ form its decomposition, by Theorem 1.5, $K_{p,q} + K_{p,q}$ is a balanced d-magic graph. \square

We know that $K_{2,6}$ is d-magic, but it is not balanced d-magic. Applying Theorem 2.4, we can construct a balanced d-magic graph $K_{2,6} + K_{2,6}$ (see Figure 1) with the labels on edges of $K_{2,6} + K_{2,6}$ in Table 2.

We will now generalize to find the necessary and sufficient conditions for the existence of balanced d-magic labelings of the join of complete bipartite graphs in a general form. For any positive integers p, q, r and s , we consider the join $K_{p,q} + K_{r,s}$ of complete bipartite graphs. Let $K_{p,q} + K_{r,s}$ be a d-magic graph. Since $\deg(v)$ is $p+r+s$, $q+r+s$, $p+q+r$ or $p+q+s$ and $f^*(v) = (pq + (p+q)(r+s) + rs + 1) \deg(v)/2$ for any $v \in V(K_{p,q} + K_{r,s})$, we have

Proposition 2.5. *Let $K_{p,q} + K_{r,s}$ be a d-magic graph. Then the following conditions hold:*

- (i) *only one of p, q, r and s is even or*
- (ii) *only two of p, q, r and s are even or*
- (iii) *all of p, q, r and s are even.*

Vertices	a_1	a_2	a_3	a_4	a_5	a_6	c_1	c_2	d_1	d_2
b_1	15	70	75	26	23	62	18	67	1	88
b_2	74	16	17	63	66	24	71	25	11	78
b_3	69	19	14	68	61	27	76	22	3	86
b_4	36	57	56	37	44	49	29	48	85	4
b_5	31	54	59	42	39	46	34	51	84	5
b_6	58	32	33	47	50	40	55	41	83	6
d_1	20	73	72	21	28	65	13	64	-	-
d_2	53	35	30	52	45	43	60	38	-	-
c_1	77	87	79	9	8	7	-	-	-	-
c_2	12	2	10	80	81	82	-	-	-	-

TABLE 1. The labels on edges of balanced d-magic graph $K_{2,6} + K_{2,6}$.

Proposition 2.6. *Let $K_{p,q} + K_{r,s}$ be a balanced d-magic graph. Then p, q, r and s are even.*

Now we are able to show a sufficient condition for the existence of balanced d-magic labelings of the join of complete bipartite graphs $K_{p,q} + K_{r,s}$.

Theorem 2.7. *Let p, q, r and s be even positive integers. Then $K_{p,q} + K_{r,s}$ is a balanced d-magic graph.*

Proof. Let p, q, r and s be even positive integers. We consider the following two cases:

Case I. If at least one of p, q, r and s is not congruent to 2 modulo 4. Suppose that p is not congruent to 2 modulo 4. Thus, $K_{p,q}$ is balanced d-magic by Theorem 1.7. Since r, s and $p+q$ are even, $K_{r,s,p+q}$ is balanced d-magic by Lemma 1.8. The graph $K_{p,q} + K_{r,s}$ is decomposable into two balanced d-magic subgraphs isomorphic to $K_{p,q}$ and $K_{r,s,p+q}$. According to Theorem 1.5, $K_{p,q} + K_{r,s}$ is a balanced d-magic graph.

Case II. If p, q, r and s are congruent to 2 modulo 4. Thus $q+r, q+s$ and $p+q$ are not congruent to 2 modulo 4. By Theorem 1.7, $K_{p,q+r}, K_{r,q+s}$ and $K_{s,p+q}$ are balanced d-magic. The graph $K_{p,q} + K_{r,s}$ is decomposable into three balanced d-magic subgraphs isomorphic to $K_{p,q+r}$, $K_{r,q+s}$ and $K_{s,p+q}$. According to Theorem 1.5, $K_{p,q} + K_{r,s}$ is a balanced d-magic graph. \square

Corollary 2.8. *Let p, q, r and s be even positive integers. If $p = q = r = s$, then $K_{p,q} + K_{r,s}$ is a supermagic graph.*

Proof. Applying Theorems 1.1 and 2.7. \square

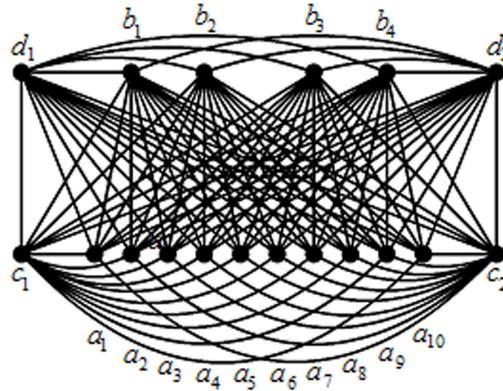


FIGURE 2. A balanced d-magic graph $K_{2,4} + K_{2,10}$ with 18 vertices and 100 edges.

Vertices	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	c_1	c_2	d_1	d_2
b_1	31	70	79	22	57	61	42	41	58	44	85	16	100	1
b_2	23	78	71	30	45	52	54	53	49	50	84	17	2	99
b_3	77	24	29	72	56	46	48	47	55	51	18	83	3	98
b_4	76	25	28	73	39	43	59	60	40	62	19	82	97	4
d_1	75	26	27	74	38	64	65	36	67	33	81	20	-	-
d_2	21	80	69	32	68	37	35	66	34	63	15	86	-	-
c_1	96	6	7	93	92	10	11	89	88	14	-	-	-	-
c_2	5	95	94	8	9	91	90	12	13	87	-	-	-	-

TABLE 2. The labels on edges of balanced d-magic graph $K_{2,4} + K_{2,10}$.

Since 4 is not congruent to 2 modulo 4, applying Theorem 2.7, a balanced d-magic graph $K_{2,4} + K_{2,10}$ is constructed (see Figure 2), and the labels on edges of $K_{2,4} + K_{2,10}$ are shown in Table 2.

3. BALANCED DEGREE-MAGIC LABELINGS IN THE COMPOSITION OF COMPLETE BIPARTITE GRAPHS

For two vertex-disjoint graphs G and H , the *composition* of graphs G and H , denoted by $G \cdot H$, is a graph such that the vertex set of $G \cdot H$ is the Cartesian product $V(G) \times V(H)$ and any two vertices (u, v) and (x, y) are adjacent in $G \cdot H$ if and only if either u is adjacent with x in G or $u = x$ and v is adjacent with y in H . For any positive integers p, q, r and s , we consider the composition $K_{p,q} \cdot K_{r,s}$ of complete bipartite graphs. Let $K_{p,q} \cdot K_{r,s}$ be a d-magic graph. Since $\deg(v)$ is $(r+s)p+r$, $(r+s)p+s$, $(r+s)q+r$ or $(r+s)q+s$ and

$f^*(v) = (pq(r+s)^2 + rs(p+q) + 1) \deg(v)/2$ for any $v \in V(K_{p,q} \cdot K_{r,s})$, we have

Proposition 3.1. *Let $K_{p,q} \cdot K_{r,s}$ be a d-magic graph. Then the following conditions hold:*

- (i) *only one of p, q, r and s is even or*
- (ii) *at least both r and s are even.*

Proposition 3.2. *Let $K_{p,q} \cdot K_{r,s}$ be a balanced d-magic graph. Then at least both r and s are even.*

In the next result we find a sufficient condition for the existence of balanced d-magic labelings of the composition of complete bipartite graphs $K_{p,q} \cdot K_{r,s}$.

Theorem 3.3. *Let p and q be positive integers, and let r and s be even positive integers. Then $K_{p,q} \cdot K_{r,s}$ is a balanced d-magic graph.*

Proof. Let p and q be positive integers, and let $k = \min\{p, q\}$ and $h = \max\{p, q\}$. It is clear that $K_{r+s, r+s}$, $K_{r,s} + K_{r,s}$ and $K_{r,s, r+s}$ are balanced d-magic by Proposition 2.3, Theorem 2.4 and Lemma 1.8, respectively. The graph $K_{p,q} \cdot K_{r,s}$ is decomposable into k balanced d-magic subgraphs isomorphic to $K_{r,s} + K_{r,s}$, $h(k-1)$ balanced d-magic subgraphs isomorphic to $K_{r+s, r+s}$ and $h - k$ balanced d-magic subgraphs isomorphic to $K_{r,s, r+s}$. According to Theorem 1.5, $K_{p,q} \cdot K_{r,s}$ is a balanced d-magic graph. \square

Notice that the graph composition $K_{p,q} \cdot K_{r,s}$ is naturally nonisomorphic to $K_{r,s} \cdot K_{p,q}$ except for the case $(p, q) = (r, s)$.

Corollary 3.4. *Let p and q be positive integers, and let r and s be even positive integers. If $p = q$ and $r = s$, then $K_{p,q} \cdot K_{r,s}$ is a supermagic graph.*

Proof. Applying Theorems 1.1 and 3.3. \square

The following example is a balanced d-magic graph $K_{1,2} \cdot K_{2,2}$ (see Figure 3) with the labels on edges of $K_{1,2} \cdot K_{2,2}$ in Table 3.

4. BALANCED DEGREE-MAGIC LABELINGS IN THE CARTESIAN PRODUCT OF COMPLETE BIPARTITE GRAPHS

For two vertex-disjoint graphs G and H , the *Cartesian product* of graphs G and H , denoted by $G \times H$, is a graph such that the vertex set of $G \times H$ is the Cartesian product $V(G) \times V(H)$ and any two vertices (u, v) and (x, y) are adjacent in $G \times H$ if and only if either $u = x$ and v is adjacent with y in H or $v = y$ and u is adjacent with x in G . For any positive integers p, q, r and s , we consider the Cartesian product $K_{p,q} \times K_{r,s}$ of complete bipartite graphs. Let $K_{p,q} \times K_{r,s}$ be a d-magic graph. Since $\deg(v)$ is $p+r$, $p+s$, $q+r$ or $q+s$ and $f^*(v) = (pq(r+s) + rs(p+q) + 1) \deg(v)/2$ for any $v \in V(K_{p,q} \times K_{r,s})$, we have

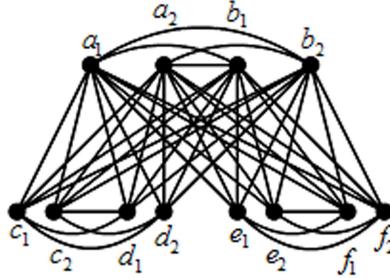


FIGURE 3. A balanced d-magic graph $K_{1,2} \cdot K_{2,2}$ with 12 vertices and 44 edges.

Vertices	c_1	c_2	d_1	d_2	e_1	e_2	f_1	f_2	b_1	b_2
a_1	12	34	43	2	27	26	20	17	35	9
a_2	33	11	1	44	19	18	25	28	10	36
b_1	8	38	39	5	32	14	15	29	-	-
b_2	37	7	6	40	13	31	30	16	-	-
d_1	4	42	-	-	-	-	-	-	-	-
d_2	41	3	-	-	-	-	-	-	-	-
f_1	-	-	-	-	23	22	-	-	-	-
f_2	-	-	-	-	21	24	-	-	-	-

TABLE 3. The labels on edges of balanced d-magic graph $K_{1,2} \cdot K_{2,2}$.

Proposition 4.1. *Let $K_{p,q} \times K_{r,s}$ be a d-magic graph. Then the following conditions hold:*

- (i) *only one of p, q, r and s is even or*
- (ii) *all of p, q, r and s are either odd or even.*

Proposition 4.2. *Let $K_{p,q} \times K_{r,s}$ be a balanced d-magic graph. Then p, q, r and s are either odd or even.*

In the next result we are able to find a sufficient condition for the existence of balanced d-magic labelings of the Cartesian product of complete bipartite graphs $K_{p,q} \times K_{r,s}$.

Theorem 4.3. *Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$ and $(r, s) \neq (2, 2)$. Then $K_{p,q} \times K_{r,s}$ is a balanced d-magic graph.*

Proof. Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$ and $(r, s) \neq (2, 2)$. Since $K_{p,q}$ and $K_{r,s}$ are d-magic by Proposition 1.6, $2K_{p,q}$ and $2K_{r,s}$ are balanced d-magic by Theorem 1.4. The graph $K_{p,q} \times K_{r,s}$ is decomposable into $(r+s)/2$ balanced d-magic subgraphs isomorphic to $2K_{p,q}$ and $(p+q)/2$

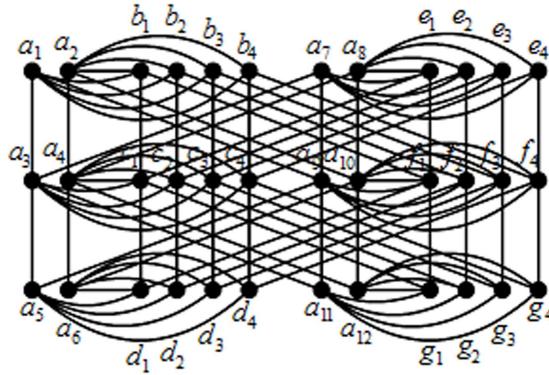


FIGURE 4. A balanced d-magic graph $K_{2,4} \times K_{2,4}$ with 36 vertices and 96 edges.

balanced d-magic subgraphs isomorphic to $2K_{r,s}$. According to Theorem 1.5, $K_{p,q} \times K_{r,s}$ is a balanced d-magic graph. \square

Observe that the Cartesian product graph $K_{p,q} \times K_{r,s}$ is naturally isomorphic to $K_{r,s} \times K_{p,q}$.

Corollary 4.4. *Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$ and $(r, s) \neq (2, 2)$. If $p = q$ and $r = s$, then $K_{p,q} \times K_{r,s}$ is a supermagic graph.*

Proof. Applying Theorems 1.1 and 4.3. \square

The following example is a balanced d-magic graph $K_{2,4} \times K_{2,4}$ (see Figure 4), and the labels on edges of $K_{2,4} \times K_{2,4}$ are shown in Table 4.

Vertices	b_1	b_2	b_3	b_4	e_1	e_2	e_3	e_4	a_3	a_4	a_9	a_{10}
a_1	96	2	3	93	-	-	-	-	72	-	25	-
a_2	1	95	94	4	-	-	-	-	-	64	-	33
a_7	-	-	-	-	8	90	91	5	27	-	70	-
a_8	-	-	-	-	89	7	6	92	-	35	-	62
c_1	48	-	-	-	51	-	-	-	88	9	-	-
c_2	-	32	-	-	-	67	-	-	10	87	-	-
c_3	-	-	40	-	-	-	59	-	11	86	-	-
c_4	-	-	-	56	-	-	-	43	85	12	-	-
f_1	49	-	-	-	46	-	-	-	-	-	16	81
f_2	-	65	-	-	-	30	-	-	-	-	82	15
f_3	-	-	57	-	-	-	38	-	-	-	83	14
f_4	-	-	-	41	-	-	-	54	-	-	13	84

Vertices	d_1	d_2	d_3	d_4	g_1	g_2	g_3	g_4	a_3	a_4	a_9	a_{10}
a_5	24	74	75	21	-	-	-	-	26	-	71	-
a_6	73	23	22	76	-	-	-	-	-	34	-	63
a_{11}	-	-	-	-	80	18	19	77	69	-	28	-
a_{12}	-	-	-	-	17	79	78	20	-	61	-	36
c_1	50	-	-	-	45	-	-	-	-	-	-	-
c_2	-	66	-	-	-	29	-	-	-	-	-	-
c_3	-	-	58	-	-	-	37	-	-	-	-	-
c_4	-	-	-	42	-	-	-	53	-	-	-	-
f_1	47	-	-	-	52	-	-	-	-	-	-	-
f_2	-	31	-	-	-	68	-	-	-	-	-	-
f_3	-	-	39	-	-	-	60	-	-	-	-	-
f_4	-	-	-	55	-	-	-	44	-	-	-	-

TABLE 4. The labels on edges of balanced d-magic graph $K_{2,4} \times K_{2,4}$.

5. BALANCED DEGREE-MAGIC LABELINGS IN THE TENSOR PRODUCT OF COMPLETE BIPARTITE GRAPHS

For two vertex-disjoint graphs G and H , the *tensor product* of graphs G and H , denoted by $G \oplus H$, is a graph such that the vertex set of $G \oplus H$ is the Cartesian product $V(G) \times V(H)$ and any two vertices (u, v) and (x, y) are adjacent in $G \oplus H$ if and only if u is adjacent with x in G and v is adjacent with y in H . For any positive integers p, q, r and s , we consider the tensor product $K_{p,q} \oplus K_{r,s}$ of complete bipartite graphs. Let $K_{p,q} \oplus K_{r,s}$ be a d-magic graph. Since $\deg(v)$ is pr, ps, qr or qs and $f^*(v) = (2pqrs + 1)\deg(v)/2$ for any $v \in V(K_{p,q} \oplus K_{r,s})$, we have

Proposition 5.1. *Let $K_{p,q} \oplus K_{r,s}$ be a balanced d-magic graph. Then p and q are even or r and s are even.*

Now we can prove a sufficient condition for the existence of balanced d-magic labelings of the tensor product of complete bipartite graphs $K_{p,q} \oplus K_{r,s}$.

Theorem 5.2. *Let p and q be positive integers with $(p, q) \neq (1, 1)$. Then $K_{p,q} \oplus K_{2,2}$ is a balanced d-magic graph.*

Proof. Let p and q be positive integers with $(p, q) \neq (1, 1)$. Let $k = \min\{p, q\}$ and $h = \max\{p, q\}$. Since $K_{2,2h}$ is d-magic by Proposition 1.6, $2K_{2,2h}$ is balanced d-magic by Theorem 1.4. The graph $K_{p,q} \oplus K_{2,2}$ is decomposable into k balanced d-magic subgraphs isomorphic to $2K_{2,2h}$. According to Theorem 1.5, $K_{p,q} \oplus K_{2,2}$ is a balanced d-magic graph. \square

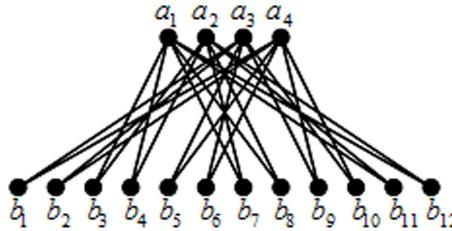


FIGURE 5. A balanced d-magic graph $K_{1,3} \oplus K_{2,2}$ with 16 vertices and 24 edges.

Vertices	b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	b_9	b_{10}	b_{11}	b_{12}
a_1	-	-	1	11	-	-	3	21	-	-	20	19
a_2	-	-	24	14	-	-	22	4	-	-	5	6
a_3	13	23	-	-	15	9	-	-	8	7	-	-
a_4	12	2	-	-	10	16	-	-	17	18	-	-

TABLE 5. The labels on edges of balanced d-magic graph $K_{1,3} \oplus K_{2,2}$.

Theorem 5.3. Let p and q be positive integers, and let r and s be even positive integers with $(r, s) \neq (2, 2)$. Then $K_{p,q} \oplus K_{r,s}$ is a balanced d-magic graph.

Proof. Let p and q be positive integers, and let r and s be even positive integers with $(r, s) \neq (2, 2)$. Since $K_{r,s}$ is d-magic by Proposition 1.6, $2K_{r,s}$ is balanced d-magic by Theorem 1.4. The graph $K_{p,q} \oplus K_{r,s}$ is decomposable into pq balanced d-magic subgraphs isomorphic to $2K_{r,s}$. According to Theorem 1.5, $K_{p,q} \oplus K_{r,s}$ is a balanced d-magic graph. \square

It is clear that the tensor product graph $K_{p,q} \oplus K_{r,s}$ is isomorphic to $K_{r,s} \oplus K_{p,q}$.

Corollary 5.4. Let p, q be positive integers with $(p, q) \neq (1, 1)$, and let r, s be even positive integers. If $p = q$ and $r = s$, then $K_{p,q} \oplus K_{r,s}$ is a supermagic graph.

Proof. Applying Theorems 1.1, 5.2 and 5.3. \square

Below is an example of balanced d-magic graph $K_{1,3} \oplus K_{2,2}$ (see Figure 5), and the labels on edges of $K_{1,3} \oplus K_{2,2}$ are shown in Table 5.

6. BALANCED DEGREE-MAGIC LABELINGS IN THE STRONG PRODUCT OF COMPLETE BIPARTITE GRAPHS

For two vertex-disjoint graphs G and H , the *strong product* of graphs G and H , denoted by $G \otimes H$, is a graph such that the vertex set of $G \otimes H$ is

the Cartesian product $V(G) \times V(H)$ and any two vertices (u, v) and (x, y) are adjacent in $G \otimes H$ if and only if $u = x$ and v is adjacent with y in H , or $v = y$ and u is adjacent with x in G , or u is adjacent with x in G and v is adjacent with y in H . For any positive integers p, q, r and s , we consider the strong product $K_{p,q} \otimes K_{r,s}$ of complete bipartite graphs. Let $K_{p,q} \otimes K_{r,s}$ be a d-magic graph. Since $\deg(v)$ is $p + r + pr$, $p + s + ps$, $q + r + qr$ or $q + s + qs$ and $f^*(v) = (pq(r+s) + rs(p+q) + 2pqrs + 1) \deg(v)/2$ for any $v \in V(K_{p,q} \otimes K_{r,s})$, we have

Proposition 6.1. *Let $K_{p,q} \otimes K_{r,s}$ be a d-magic graph. Then the following conditions hold:*

- (i) *only one of p, q, r and s is even or*
- (ii) *all of p, q, r and s are even.*

Proposition 6.2. *Let $K_{p,q} \otimes K_{r,s}$ be a balanced d-magic graph. Then p, q, r and s are even.*

We conclude this paper with an identification of the sufficient condition for the existence of balanced d-magic labelings of the strong product of complete bipartite graphs $K_{p,q} \otimes K_{r,s}$.

Theorem 6.3. *Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$ and $(r, s) \neq (2, 2)$. Then $K_{p,q} \otimes K_{r,s}$ is a balanced d-magic graph.*

Proof. Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$ and $(r, s) \neq (2, 2)$. Thus, $K_{p,q} \times K_{r,s}$ is balanced d-magic by Theorem 4.3, and $K_{p,q} \oplus K_{r,s}$ is balanced d-magic by Theorem 5.3. Since $K_{p,q} \otimes K_{r,s}$ is the graph such that $K_{p,q} \times K_{r,s}$ and $K_{p,q} \oplus K_{r,s}$ form its decomposition, by Theorem 1.5, $K_{p,q} \otimes K_{r,s}$ is a balanced d-magic graph. \square

It is clear that the strong product graph $K_{p,q} \otimes K_{r,s}$ is isomorphic to $K_{r,s} \otimes K_{p,q}$.

Corollary 6.4. *Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$ and $(r, s) \neq (2, 2)$. If $p = q$ and $r = s$, then $K_{p,q} \otimes K_{r,s}$ is a supermagic graph.*

Proof. Applying Theorems 1.1 and 6.3. \square

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referee for careful reading and the helpful comments improving this paper.

REFERENCES

1. L' Bezugová, Balanced Degree-Magic Complements of Bipartite Graphs, *Discrete Math.*, **313**, (2013), 1918-1923.
2. L' Bezugová, J. Ivančo, An Extension of Regular Supermagic Graphs, *Discrete Math.*, **310**, (2010), 3571-3578.

3. L'. Bezugová, J. Ivančo, On Conservative and Supermagic Graphs, *Discrete Math.*, **311**, (2011), 2428-2436.
4. L'. Bezugová, J. Ivančo, A Characterization of Complete Tripartite Degree-Magic Graphs, *Discuss. Math. Graph Theory*, **32**, (2012), 243-253.
5. L'. Bezugová, J. Ivančo, Number of Edges in Degree-Magic Graphs, *Discrete Math.*, **313**, (2013), 1349-1357.
6. J.A. Gallian, A Dynamic Survey of Graph Labeling, *Electron. J. Combin.*, **16**, (2009), #DS6.
7. E. Salehi, Integer-Magic Spectra of Cycle Related Graphs, *Iranian Journal of Mathematical Sciences and Informatics*, **1**(2), (2006), 53-63.
8. J. Sedláček, Problem 27. Theory of Graphs and Its Applications, *Proc. Symp. Smolenice*, Praha, (1963), 163-164.
9. B.M. Stewart, Magic Graphs, *Canad. J. Math.*, **18**, (1966), 1031-1059.
10. M.T. Varela, On Barycentric-Magic Graphs, *Iranian Journal of Mathematical Sciences and Informatics*, **10**(1), (2015), 121-129.