
Iranian Journal of Mathematical Sciences and Informatics

Vol. 10, No. 2 (2015), pp 115-122

DOI: 10.7508/ijmsi.2015.02.011

On the Computational Complexity of the Domination Game
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Abstract. The domination game is played on an arbitrary graph G by

two players, Dominator and Staller. It is known that verifying whether

the game domination number of a graph is bounded by a given integer k

is PSPACE-complete. On the other hand, it is showed in this paper that

the problem can be solved for a graph G in O(∆(G) · |V (G)|k) time. In

the special case when k = 3 and the graph G considered has maximum

diameter, the complexity is improved to O(|V (G)| · |E(G)|+ ∆(G)3).
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1. Introduction

The domination game is played on an arbitrary graph G by Dominator

and Staller. They are taking turns choosing a vertex from G such that at

least one previously undominated vertex becomes dominated. The game ends

when no move is possible, the score of the game being the total number of

vertices played. Dominator wants to minimize the score, while Staller wants

to maximize it. The game is called D-game when Dominator starts it, and S-

game if Staller has the first move. Assuming that both players play optimally,

the game domination number γg(G) (the Staller-start game domination number

γ′g(G)) of a graph G, denotes the score of D-game (S-game, resp.).

The game was introduced in 2010 in [4] and received a considerable attention

afterwards. A strong motivation factor for the game is the 3/5-conjecture

posed and studied in [12], and further investigated in depth in [2, 5, 6, 9].

Additional results and aspects of the domination game were also investigated.

For instance, guarded subgraphs and their role in the game was studied in [3],

the behaviour of the game on the disjoint union in [8], realizability of game

domination numbers in [14], and extremal trees with respect to the game in [15].

We also mention that two closely related games were introduced very recently:

the total domination game [10, 11] and the disjoint domination game [7].

In this paper we are interested in the complexity point of view of the game,

especially motivated by the result from [1] asserting that verifying whether

the game domination number of a graph is bounded by a given integer k is

PSPACE-complete. To put the game into another perspective we observe in the

next section that the problem can be solved for a graph G in O(∆(G) · |V (G)|k)

time. This means that if k is not part of the input, the problem becomes

polynomial. Then, in Section 3, using a characterization from [13], we show

that the general complexity O(∆(G) · |V (G)|3) can be improved to the time

O(|V (G)| · |E(G)|+ ∆(G)3) within the class of graphs of diameter 6.

In the rest of the section we introduce some additional concepts and notation

needed. A partially-dominated graph is a graph together with a declaration

that some vertices are already dominated. Such vertices thus need not be

dominated in the rest of the game. If S ⊆ V (G), then the partially dominated

graph in which vertices from S are already dominated will be denoted by G|S.

As usual, if x is a vertex of G, then its open and closed neighborhood will

be denoted by N(x) and N [x], respectively. If G is a graph, then Sr(x) =

{y ∈ V (G) : dG(x, y) = r} is the sphere with center x and radius r, and

Br(x) = {y ∈ V (G) : dG(x, y) ≤ r} is the ball with center x and radius r.

Finally, the maximum degree of G is denoted by ∆(G); we will simply write ∆

when G will be clear from the context.
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2. On the Complexity of the Game

The D-game domination problem is the following.

D-Game Domination Problem

Input: A graph G, and an integer k.

Question: Is γg(G) ≤ k?

Similarly, The S-game domination problem is:

S-Game Domination Problem

Input: A graph G, and an integer k.

Question: Is γ′g(G) ≤ k?

As already mentioned, it was proved in [1] that these problems are log-

complete in PSPACE. On the other hand, we show now that the following

holds.

Theorem 2.1. If G is a graph of order n and k is a fixed integer, then the

D-game domination problem and the S-game domination problem can be solved

in O(∆(G)nk) time.

Proof. We jointly define two recursive algorithms, A and A′, for D-game and

for S-game, as follows.

Algorithm A(G,S, k)

Input: A graph G, set of dominated vertices S ⊆ V (G), an integer k

Output: TRUE if γg(G|S) ≤ k, FALSE otherwise

if S = V (G) then

return TRUE and STOP

else if k = 0 then

return FALSE and STOP

else

for v ∈ V (G) do

if v is a legal move then

if A′(G,S ∪N [v], k − 1) then

return TRUE and STOP

return FALSE and STOP

We first prove the correctness of the algorithms by induction on k. For

k = 0, it is clear, because γg(G|S) = 0 or γ′g(G|S) = 0 if and only if S = V (G).

Assume now that the two algorithms are correct for some k ≥ 0. The algorithm

A(G,S, k+1) returns TRUE in two cases. In the first case when S = V (G), we

clearly get γg(G|S) = 0 < k+1. In the second case there exists a legal move v ∈
V (G), such that A′(G,S ∪N [v], k) returns TRUE. By induction hypothesis it

follows that γ′g(G|(S∪N [v])) ≤ k. Since γg(G|S) ≤ γ′g(G|(S∪N [v]))+1 holds by
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Algorithm A′(G,S, k)

Input: A graph G, set of dominated vertices S ⊆ V (G), an integer k

Output: TRUE if γ′g(G|S) ≤ k, FALSE otherwise

if S = V (G) then

return TRUE and STOP

else if k = 0 then

return FALSE and STOP

else

for v ∈ V (G) do

if v is a legal move then

if not A(G,S ∪N [v], k − 1) then

return FALSE and STOP

return TRUE and STOP

definition, we derive that γg(G|S) ≤ k+1. Conversely, if A(G,S, k+1) returns

FALSE, then for any legal move v ∈ V (G), the algorithm A′(G,S ∪ N [v], k)

returns FALSE. By induction hypothesis γ′g(G|(S ∪ N [v])) > k holds for all

legal moves v ∈ V (G). That proves that γg(G|S) > k+1. Hence the algorithm

A(·, ·, k+1) is correct. In a similar way, we prove the correctness of A′(·, ·, k+1).

Now we prove that the algorithms run in the announced time complexity.

The data structure we use for a partially dominated graph G|S is the adjacency

list for vertex-weighted graphs, where a vertex of G has weight 1 if it still needs

to be dominated, and weight 0 otherwise. That is, vertices from S receive

weight 0.

We show by induction on k that for a given graph G of order n, Algorithms

A(·, ·, k) and A′(·, ·, k) both run in O(∆nk) time. If k = 1, then for A we have

to check at most n times if a move v is legal and if N [v] ∪ S = V (G). To this

end we first compute S and store |S| which is done in time O(n). After that

when going in the loop for vertex v, we compute |N [v] \ S|. It takes time at

most O(∆). Since v is a legal move if and only if |N [v] \ S| > 0, computing

if this move is legal and if N [v] ∪ S = V (G) can be done in constant time.

In conclusion, we need time at most O(n∆). The same conclusion holds for

Algorithm A′.

If k > 0 then, for Algorithm A, we have to check at most n times whether the

move v ∈ V (G) is legal. We have already seen that this can be implemented in

O(n∆) time. Also, the algorithm A′(G,S ∪N [v], k− 1) must be run at most n

times. We need O(n) time to build G|(S ∪N [v]) and by induction hypothesis,

O(∆nk−1) time to run A′(G,S ∪N [v], k − 1). In conclusion, the time needed

is O(n∆ + n · (n+O(∆nk−1))) = O(∆nk).

By a similar argument we obtain the same complexity for Algorithm A′. �
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In a practical implementation it would be more efficient to use in Algorithm

A the recursive call A′(G−v, S∪N(v), k−1). However, this modification does

not improve the theoretical complexity of the algorithm.

3. Faster Algorithm for Graphs with γg = 3 and diam = 6

In this section we show that in particular cases the complexity of Algorithms

A and A′ can be improved. To be more specific, consider the class of graphs

E6
3 defined as follows:

E6
3 = {G : γg(G) = 3,diam(G) = 6} .

Here the diameter is not selected randomly, the reason to select diam(G) = 6

is that it is the largest possible diameter a graph G with γg(G) = 3 can have.

In the recent paper [13], graphs from E6
3 have been characterized and we are

going to use this characterization for a faster algorithm than the canonical one.

For this sake, we need to recall the following concept(s).

If G is a connected graph, then a vertex u of G is called nice if the following

five conditions are fulfilled.

(1) There exists v1 ∈ S1(u) such that N [v1] = B2(u).

(2) There is a join between N(S3(u)) ∩ S2(u) and S3(u), a join between

S3(u) and S4(u), and a join between S5(u) and S6(u).

(3) The spheres S3(u) and S6(u) induce cliques.

(4) There exists v5 ∈ S5(u) such that S4(u) ∪ S5(u) ⊆ N [v5].

(5) For any vertex x ∈ S4(u) (resp. S5(u)), there exists a vertex x′ ∈
S5(u) ∪ S6(u) (resp. S3(u) ∪ S4(u)) such that S4(u) ∪ S5(u) ⊆ N [x] ∪
N [x′].

Using the concept of a nice vertex, the above mentioned characterization

from [13] reads as follows.

Theorem 3.1. If G is a connected graph, then the following statements are

equivalent.

(i) The graph G belongs to E6
3 .

(ii) Any diametrical pair of vertices contains at least one nice vertex.

(iii) There exists a nice diametrical vertex.

As already mentioned, applying the canonical algorithm from Section 2,

graphs G from E6
3 can be recognized in time O(∆ · |V (G)|3). Using the above

theorem, we can substantially improve this complexity as the next result as-

serts.

Theorem 3.2. Deciding whether a given graph G belongs to E6
3 can be imple-

mented in time O(|V (G)| · |E(G)|+ ∆3).

Proof. We will prove that the following algorithm recognizes graphs in E6
3

within the claimed time complexity.

 [
 D

O
I:

 1
0.

75
08

/ij
m

si
.2

01
5.

02
.0

11
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
25

-1
0-

25
 ]

 

                               5 / 8

http://dx.doi.org/10.7508/ijmsi.2015.02.011
http://ijmsi.ir/article-1-794-en.html
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Algorithm Rec-E6
3(G)

Input: A (connected) graph G

Output: TRUE if G ∈ E6
3 , FALSE otherwise

for v ∈ V (G) do

determine S0(v), . . . , Secc(v)(v) and si(v) = |Si(v)|, 0 ≤ i ≤ ecc(v)

if not diam(G) = 6 then

return FALSE

else

select a vertex u with ecc(u) = 6 and a vertex u′ from S6(u)

if u is nice or u′ is nice then

return TRUE

else

return FALSE

We first claim that Algorithm Rec-E6
3(G) is correct. If it returns TRUE,

then G has diameter 6 and contains a nice vertex, hence by Theorem 3.1(iii)

G belongs to E6
3 . On the other hand, when Rec-E6

3(G) returns FALSE, there

are two possibilities. First, diam(G) 6= 6, which obviously implies that G is not

in E6
3 . Second, there exists one pair of diametrical vertices such that both of

them are not nice and by Theorem 3.1(ii) we then infer that G does not belong

to E6
3 . This proves the correctness of the algorithm.

We next consider the complexity of Algorithm Rec-E6
3(G). To simplify the

notation set n = |V (G)| and m = |E(G)|. Using the standard BFS, the spheres

around each vertex can be determined in time O(m). Hence, the first loop of

the algorithm can be performed in O(nm) time. If diam(G) = 6, then the

algorithm checks if one of the vertices from a selected diametrical pair u, u′ is

nice. The corresponding conditions can be verified sequentially. To simplify

the notation, we will write Si to refer to either Si(u) or to Si(u
′). The five

conditions can be then verified as follows.

Condition 1: For any vertex v ∈ S1, N [v] = S0 ∪ S1 ∪ S2 if and only if

deg(v) = s0 + s1 + s2. Hence, Condition 1 can be verified in time O(s1∆).

Condition 2: There is a join between N(S3) ∩ S2 and S3 if and only if, for

any vertex v ∈ N(S3)∩S2, |N(v)∩S3| = s3. Hence, we can check that there is

such a join in time O(s2∆). In the same way, we can verify the two other join

conditions. After all, checking Condition 2 can be done in O((s2 + s3 + s6)∆).

Condition 3: This condition needs time O((s3 + s6)∆).

Condition 4: This condition needs time O(s5∆).
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Condition 5: For each vertex in S4 (resp. S5), we have to find one vertex in

S5 ∪ S6 (resp. S3 ∪ S4) which fulfils the given condition. We conclude that the

required time is O(s4(s5 + s6)∆ + s5(s3 + s4)∆).

By the above it follows that the first four conditions can be verified in time

O(nm). For the last condition we have to be a bit more careful. Indeed, if

we would bound s3, s4, s5, and s6 above by n, we would get the complexity

O(n2∆). However, note that Condition 5 is tested only if Condition 2 has been

successfully tested before. This ensures that s3, s4, s5, and s6 are bounded

above by ∆. Therefore, the complexity of testing Condition 5 is O(∆3). We

conclude that the complexity of Algorithm Rec-E6
3(G) is O(nm+ ∆3). �
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13. S. Klavžar, G. Košmrlj, S. Schmidt, On Graphs with Small Game Domination Number,

manuscript, 2015.
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