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1. INTRODUCTION

Equilibrium problems and variational inequalities in a variety of disciplines
play vital roles. Market equilibrium problems, economic equilibrium problems,
traffic network equilibrium problems and so on, are some instances each of
which has a long history in economic or industry or other branches of applied
sciences. In recent years, variational inequality theory has proved a very use-
ful tool in computation of various equilibrium problems. With any such close
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relationship between equilibrium problems and variational inequalities and the
role each concept plays in applied sciences, it certainly will be of high impor-
tance to generalize the results achieved by authors who have worked in these
fields. In references [1, 2, 3, 4, 7, 8, 10, 18] the reader could find a lot of mate-
rials for the history of the work. The following paper considers some kinds of
generalized equilibrium problems and generalized variational inequalities and
furnishes some new results. Using the celebrated KKM theorem (or Fan’s the-
orem), we follow some existence results consisting of some sufficient conditions
guaranteeing the solvability of the mentioned problems.

The paper is organized as follows. In Section 2 we present definitions and
notations needed in addressing our study. In Section 3 some existence theo-
rems for generalized e-vector equilibrium problems ((GV EP)., in short) and
generalized e-vector variational inequalities ((GV'VI)., in short) are verified.
We hope the reader will find something of interest in this article.

2. PRELIMINARIES

Throughout this paper, unless otherwise specified, let X be a Banach space
with its dual X* and let X}, = L(X,R™) denote the set of all linear continuous
operators from X to R™. Let K C R™ be a closed convex pointed cone with
int K # (), where int K denotes the topological interior of K. We denote

RY ={z = (z1,22,...,0m) ER™ 1 2; >0,i =1,2,...,m}.
Given x,y € R™, we consider the following ordering relations [10]:
Yy<g xS y—x € —intk, y€rreoy—o ¢ —intK
and
y<grey—ze—K, y€rrsy—x ¢ —K.

Let h: X x X - R™ and f: X — R™ be two vector-valued mappings such
that h(xz,z) = 0 for all x € X. Consider the following generalized e-vector
equilibrium problem (GVEP).:

Find zg € X such that

hMzo, x) + f(z) — f(xo) + €|l — zo||lrm £x 0, Vo e X. (2.1)

An element xy € X satisfying (2.1) is called an e-solution of (GVEP)..

If e = 0, then (GVEP). reduces to the following generalized vector equilib-
rium problem (GVEP) introduced and studied by Li and Zhao [16]:
Find zg € X such that

h(l‘o,x) + f(l‘) — f(xo) {K 0, VzelX.

If f =0 and e =0, then (GVEP), reduces to the following vector equilibrium
problem (VEP):
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Find zg € X such that
h(zo,x) £k 0, Ve X.

For further details on (VEP), we refer [3, 2, 4, 7, 8] and the references therein.
If h(z,y) = (T'(x),y — x) where T : X — X%, then (GVEP). reduces to the
following generalized e-vector variational inequality (GVVI).:

Find zg € X such that

(T(xo),x — zo) + f(x) — f(mo) + €llz — zol|Irm £K 0, Va e X.

For further details on (GVEP), we refer [13, 14, 15] and the references therein.
In this paper, we consider the generalized e-vector equilibrium problem (GVEP),
and establish some existence theorems for solutions of (GVEP)..

Definition 2.1. ([10, 9].) A vector-valued mapping f : X — R™ is said to be
K-convex if

fltzy + (1 —t)wa) <g tf(z1) + (1 —t)f(22),

for any x1,z2 € X and ¢ € [0,1]. Furthermore, f is said to be K-concave, if
—f is K-convex.

Definition 2.2. A vector-valued mapping f : X — R™ is said to be ¢ — K-
convex if for any z,y € X and any ¢ € [0, 1]

[tz + (1 =1)y) <k tf(z) + (1 =) f(y) —et(l = )]z = y[llrn.
Definition 2.3. [17] Let f : X — R™ be a map. A subdifferential of f at
ro € X is defined as

Of(zo) ={z* € X, : (", — x0) <k f(z) — f(x0),Vr € X}.

Definition 2.4. [17] Let f : X — R™ be a map. An e-subdifferential of f at
zo € X is defined as

O:f(xo) ={z* € X}, : (", x—xo) —¢|lz—xo||lgm <k f(x)—f(x9), Vze X}

Letting € = 0 we follow 0. f(xo) = 9f(x0). It is worth observing that the
following subdifferential equation also holds: 0. f(zo) = 9(f(.) +e||. — zol|) (x0)-

The definition of e-subdifferential of a scalar function can be extended to
the vector-valued functions through the following trick. Suppose that f; : X —
R,i = 1,2,...,m are the components of f : X — R™. The Generalized e-
subdifferential of f at x € X is defined by the set

aef(x) = aefl('r) X asz(x) X X aefm@j)

Let us introduce the KKM theorem needed for the proof of the existence
results of the paper. Indeed, we use the original Fan’s theorem for our purposes
with the following wording:
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Definition 2.5. ([7, 21].) A set-valued mapping G : X = X is said to be a
KKM mapping if for each finite subset {z1,z3,...,2z,} of X, we have

co{z1,Z2,...,xn} C U G(z,),

=1

where coA denotes the convex hull of the set A.
The following well-known Fan-KKM theorem will be used in the sequel.

Theorem 2.6 (Fan-KKM Theorem (7, 21]). Let G : X = X be a KKM
mapping. If for each x € X, G(x) is closed and G(xo) is compact for some
rg € X, then

() G(z) # 0.

zeX

3. EXISTENCE THEOREMS FOR (GVEP). AND (GVVI),

In this section, we establish some existence results for solutions of general-
ized e-vector equilibrium problem (GVEP). by using Fan-KKM theorem. As
particular cases, we derive some existence results for solutions of generalized
e-vector variational inequality problem (GVVIP)..

Theorem 3.1. Let the following assumptions hold:
(i) The mappings h: X x X - R™ and f: X — R™ are continuous;
(i) For anyy € X, the set By = {x € X : h(z,y) + f(y) — f(z) + ||z —
yl[lgm <x 0} is conve;
(iii) There exist the nonempty compact subset C' and z € C such that for
anyy € X\ C,

h(z,y) + f(y) — f(2) +ellz — ylllpm <k O.
Then (GVEP). is solvable.
Proof. Define a set-valued mapping I' : X — X by
I(x)={ye X :h(z,y)+ fly) — f(z) +e||lx — y||lgm £k 0}, Vze X.

Clearly, z € T'(x) for all z € X, and thus T'(z) # 0 for all x € X. Also, zg solves
(GVEP). if and only if zg € (¢ x I'(2). Thus, if we show [,y T'(z) # 0, then
the desired conclusion follows.To prove this, it only suffices to show that I' is
a KKM mapping and satisfies the conditions of Fan-KKM theorem. Suppose,
on the contrary, that I'(z) is not a KKM mapping. Then there exists a finite
subset {y1,¥ya2,...,Yyn} of X such that

cofy1,y2, - yn} & (T (wi)-

=1
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Hence, there exists y € co{y1,y2, ..., Yyn} such that

v | JTw).

i=1

So, for any i € {1,2,...,n}, we have

h(yi,y) + f(y) — f(y:) + €llys — yl[lrm <k O.

Hence, {y1,v2,...,yn} C By. Since By is convex, we deduce that

co{y1, Y2, .-, Yn}t C By.
Since y € co{y1,Y2,...,Yn}, we have y € B,. This implies that

h(y,y) + f(y) — f(y) +elly — ylllrgm <k O,

which is absurd. Therefore, I' is a KKM mapping.
The closedness of I'(z) is a straightforward conclusion of the continuity of
the two mappings h and f and the fact that int K is open.

Assumption (iii) implies that T'(z) is contained in a compact set. Being
closed, I'(z) is compact by it’s own right. Therefore, by Theorem 2.6, we have
() T(x) #90.

rzeX
This completes the proof. O
Remark 3.2. If the function f is K-concave, the mapping x — h(z,y) is K-
convex for all y € X and K = R, then the condition (ii) of Theorem 3.1
holds.
To see this, let x1, 22 € B, and ¢ € [0,1]. Then, we have
h(z1,y) + f(y) = f(z1) + e[|z — yl[lrm € —intK,
and
h(z2,y) + f(y) — f(22) + l|z2 — y[[lpm € —intK.
Since f is K-concave and h(.,y) is K-convex, we have (see [10]: page 22, Lemma
2.3.4)
h(tzy + (1 =)z, y) + f(y) — f(tzr + (1 = t)z2)
+€||t$1 + (]. — t)IL'Q — y”lR"L
€ tlh(zy,y) + fly) = f(@1) +eller — yl[1pn]
+(1 =) M2, y) + f(y) — f(22) +ellzz —yllprn] - K - K - K
—intK —intKk — K - K- K
C —intK.

N

So, By is convex.

Remark 3.2 readily implies the following result.
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Corollary 3.3. Let K = R'. Suppose that the following conditions are satis-
fied:
(i) The function y — h(x,y) is continuous for all x € X and the function
x> h(z,y) is K-convex for ally € X;
(ii) f: X — R™ is a continuous and K -concave mapping;
(iii) There exist the nonempty compact subset C and z € C such that for
anyy € X\ C,
h(z,y) + f(y) — f(2) + €]z = yl[lrm <k 0.

Then (GVEP). is solvable.

EXAMPLE 3.4. Let X =R and m = 2. Let K = R%. Define the two mappings
f:X —R?and h: X x X — R? respectively by z — —(z2,2?) and (z,y) —
(x—y,z—y). One can easily verify that the two first conditions of the Corollary
3.3 are satisfied. Furthermore, letting z = 0 we see that the set

{y e X :h(z,9) + fy) — f(2) +elz — yllrm £k 0},
is compact and thus the last condition of the Corollary 3.3 is satisfied too. By
Corollary 3.3 we conclude that the associated (GVEP), problem has a solution.

Theorem 3.1 and Corollary 3.3 yield the following existence results for solu-
tions of (GVVIP)..
Theorem 3.5. Suppose that the following conditions are satisfied:
(i) The mappings T : X — X, and f: X — R™ are continuous;
(ii) For any y € X, the set
By ={z e X: (T(y),z—y)+ f(z) - f(y) + el — yl 1~ <k 0},

18 convex;
(iii) There exists a nonempty compact subset C and z € C such that for any
yeX\C,
(T(y),z—y) + f(2) = f(y) +ellz —yllpm <k 0.
Then (GVVIP). is solvable.

Corollary 3.6. Let K = RT'. Suppose that the following conditions are satis-
fied:
(i) T: X — X}, is a continuous mapping and f : X — R™ is a continuous
and K -concave mapping;

(ii) There exists a nonempty compact subset C' and z € C such that for any
yeX\C,

(T(y),z—y)+ f(z) = fly) +€llz — yl|lgm <k 0.
Then (GVVIP). is solvable.
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Remark 3.7. Theorem 3.5 and Corollary 3.6 can be viewed as extensions of
Theorem 1 in Yang [22].

The following theorems using weak topology yields some similar results. The
details are as follows.

Theorem 3.8. Let K = R'. Assume that the following assumptions hold.

(i) y — h(z,y) is weakly continuous for all x € X and f : X — R™ is
weakly continuous;
(i) For anyy € X, the set B, = {x € X : h(z,y) + f(y) — f(z) — €|z —
yl|lgm <k 0} is conve;
(ili) there exists a nonempty weakly compact subset C' and z € C' such that
foranyy e X\ C,

h(z,y)+ fly) — f(z) —€llz — y|[Irm <k O.
Then (GVEP). is solvable.

Proof. Define a set-valued mapping I': : X — X by
Ie(z) :={y € X : h(z,y) + f(y) — f(z) —€llz —yllem £K 0}, VeeX.

Obviously, z € T'.(z) for all x € X, and thus I'.(z) # 0 for all z € X.
Clearly, o solves (GVEP). if and only if 2 € (), y I'—c(2). Thus if we show
Nyex D—<(x) # 0, then the desired conclusion immediately follows. We proceed
to show that I'. is a KKM mapping and satisfies the conditions of Fan-KKM
theorem. One can easily, by using an argument analogous to that of Theorem
3.1, verify that I'; is a KKM mapping. Let us verify that each I'c(z) is weakly
closed. This is a conclusion of the weak continuity of the mappings y — h(z,y)
and f, the openness of intK, the fact that the vector-valued norm function
2+ ||z||1gm is weakly lower semicontinuous and finally a simple application of
a net-argument discussion. Let us verify this item more precisely. Let () er
be a net in I';(z) converging weakly to some y € X. Notice first that the weak
lower semicontinuity of the function z — ||z|| implies that

timint [, ] |}y ~ ],
from which we deduce that
lirr;inf lyy — z||lgm >k |y — z||1gm. (3.1)

By way of contradiction, we assume that y ¢ I'c(z). Let w, = h(x,y) + f(y) —
f(@) —¢|lz — y|[lgm. Thus w, € —intK. On the other hand by the first
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hypothesis of theorem and (3.1) we deduce that
lim inf {h(z, y7) + f(y,) = F(2) —ellyy — @1z}
= hiz,y) + fly) - f(2) —eliminf fly, — z][1g~
= wo + (ellz =yl — limint fy, — 2]1)
€ —intK — K
—intK.

The openness of int K now implies that there exists some vy € I" so that

h(l’,y%) + f(y’yo) - f(f) - EHy’Yo - x”lRm € *intKv

which contradicts the fact that each y, € I'.(x). This completes the proof
of weak closedness of each T'.(x). Obviously condition (iii) implies that T'(z’)
is contained in a weakly compact set. Being weakly closed, I'(2’) is weakly
compact by it’s own right. Therefore, by Theorem 2.6 we have

[ Te(a) # 0.
reX

But notice that I'.(z) C I'_.(z) for all z € X, from which the desired result
follows. 0

Theorem 3.9. Let K = R'. Assume that the following conditions are satis-
fied:
(i) the function y — h(x,y) +¢|ly — x| is weakly upper semicontinuous for
allz € X and f: X — R™ is weakly upper semicontinuous;
(ii) for any y € X, the set B, = {x € X : h(z,y) + f(y) — f(z) + ||z —
yl|[lrm <k 0} is convex;
(iii) there exists a nonempty weakly compact subset C' and x’' € C such that
for anyy € X \ C one has

h(a',y) + f(y) = f(&) + ella’ = ylllpm <x 0.
Then, the generalized e-vector equilibrium problem (GVEP). is solvable.

Proof. The proof is analogous with the proof of the previous theorem, we there-
fore omit it. 0

The following theorem yields a better result. Indeed, when X is infinite
dimensional, the function  — ||z|| is not weakly upper semicontinuous, since
otherwise the weak and strong topologies coincide. Hence the first condition of
the previous theorem may be rarely satisfied.

Theorem 3.10. Let K = RY'. Assume that the following conditions are sat-
isfied:
(i) the function y — h(x,y) is weakly upper semicontinuous for all x € X
and f: X — R™ is weakly upper semicontinuous;
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(i) for any y € X, the set B, = {z € X : h(z,y) + f(y) — f(z) —ellx —
yl[lrm <k 0} is convex;

(iii) there exist a nonempty weakly compact subset C, ' € C and T* € X*
such that for any y € X \ C one has

h(a',y) + f(y) — f(a) — elz*(a" — y)[1lpm <k 0.
Then, the generalized e-vector equilibrium problem (GVEP). is solvable.

Proof. Again, we aim to use the Fan’s theorem to achieve the desired result.
Let

Dz, 2%) = {y € X : h(z,y) + f(y) - f(2) —elz"(z —y)[lem £k 0}, V2 € X,

I(z) :={y € X : h(z,y) + f(y) — f(z) —ellz —y[lgm £x O}, VzeX.
Using a net-argument one can verify that I'(x,2*) is weakly closed for each
z € X and z* € X*. This implies that the intersection .oy , I'(z,2%) is
weakly closed for each x € X, where Ux+ denotes the set of all norm-one
functionals belonging to X*. The following equality holds:

I(z)= () T(zz*). (3.2)
z*eUx*

To see this let y € I'(x). Thus h(z,y)+ f(y) — f(z) —¢|lz—y||lgm £x 0. If now
Y & Nerevy. D@, 2%), thus there exists some 2* € Ux+ so that y ¢ I'(z,z*)
and therefore h(z,y) + f(y) — f(x) —e|z*(x — y)|lgm <k 0. On the other hand
|z (x—y)| < ||z—y|| from which we deduce that e|z*(x—y)|1rm —¢||x—y||1rm €
—K. These two last inequalities imply h(z,y)+ f(y) — f(z) —€l|lz —y||1zm <x O
which is absurd. Conversely let y € (., I'(x,2*). This implies h(z,y) +
fly) — f(x) —ela*(z — y)|1lgm £k for all z* € Ux~. By Hahn-Banach theorem
there exists some a* € Ux« so that 2*(z — y) = ||z — y||, from which we
deduce that h(z,y) + f(y) — f(z) — ¢l|lz — y||lrm £x 0. Thus equality (3.2)
holds. On the other hand the last hypothesis of theorem implies that I'(a’, Z*)
I'(a',2*) is weakly compact too. Hence

is weakly compact and thus ﬂz*eUX*
I'(2') is weakly compact. By our discussion above (before the equality (3.2)),
and using the mentioned equality we know that I'(x) is weakly closed for all
x € X. It is not difficult to prove that I'(.) is a KKM map and we see that the

whole conditions of Fan’s theorem hold. The reminder of the proof is easy. [

Theorem 3.11. Let K be a closed convex pointed cone in R™. Assume that
the following conditions are satisfied:

(i) the function y — h(x,y) is weakly upper semicontinuous for all x € X
and f : X — R™ is weakly upper semicontinuous;

(ii) for anyy € X and y* € Sx«, the set By ,» = {x € X : h(z,y) + f(y) —
f(z) +ey*(x — y)lrm <k 0} is convex, where Sx~ denotes the closed
unite ball in X*;
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(iii) there exist a nonempty weakly compact subset C, ' € C' and T* € X*
such that for any y € X \ C one has

h(z',y) + f(y) — f(@') + e (2" — y)lgm <k O,
Then, the generalized e-vector equilibrium problem (GVEP). is solvable.

Proof. The proof is somewhat similar to that of Theorem 3.10 and we therefor
give only a sketch of the proof. Let © = X x Sx+. Equip © with the product
topology, being X equipped with the weak(o(X, X*)) topology and Sx« with
the relative weak*(o(X™*, X)) topology. Define the set-valued map I' : © = ©
by

D(z,2*) :={y € X : h(z,y) + f(y) — f(z) + ez"(z — y)lgm £x 0} X Sx-,

V(x,2*) € ©. One can easily verify that I" is a KKM map. By Banach-Alaoglu
theorem and in virtue of the last condition of theorem we know that I' satisfies
the conditions of Fan’s theorem entirely. It follows that there exists some
(y,y*) € © so that (y,y*) € I'(z,2*) for all (z,2*) € ©. Thus

hz,y) + f(y) = f(z) +ex”(z — y)lpm £k O, (3-3)

for all z € X and z* € Sx+. By Hahn-Banach theorem we deduce that for any
x € X there exists some z} € Sx« satisfying 2% (x —y) = ||z — y||. By (3.3) we
have

W, y) + fy) = f(2) + ex(z — y)lpm L5 0,

for all x € X, from which the desired conclusion follows. O
The following corollaries shed a little more light on the preceding theorems:

Corollary 3.12. Let K = R'. Suppose that the following conditions are
satisfied:
(i) the function y — h(x,y) is weakly continuous for all x € X and the
function x — h(x,y) — el|lx — y||1rm is K-convex for all y € X;
(ii) the function f: X — R™ is weakly continuous and K -concave;
(iii) there exists a nonempty weakly compact subset C and an 2’ € C such
that for any y € X \ C one has

ha' y) + f(y) — f(a) —ella’ = ylllpm <x 0.
Then, the generalized e-vector equilibrium problem (GVEP). has a solution.
Corollary 3.13. Let K = R'. Suppose that the following conditions are
satisfied:

(i) the function y — h(z,y)+ellx —y[|1gm is weakly upper semicontinuous
for all x € X and the function x — h(x,y) is K-convez for ally € X;

(ii) the function f : X — R™ is weakly upper semicontinuous and K-
concave;
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(iii) there exists a nonempty weakly compact subset C' and an z’ € C such
that for any y € X \ C one has

h(z',y) + f(y) = f(z') —el|2” = y[[lgm <k O.

Then, the generalized e-vector equilibrium problem (GVEP). has a solution.

Corollary 3.14. Let K be a closed convex pointed cone in R™. Assume that
the following conditions are satisfied:
(i) the function y — h(x,y) is weakly upper semicontinuous for all x € X
and f: X — R™ is weakly upper semicontinuous;
(ii) the function x — h(z,y) is K-convez for ally € X and f : X — R™
1s K-concave;
(iii) there exist a nonempty weakly compact subset C, ' € C and T* € X*
such that for any y € X \ C one has

W', y) + f(y) = F(@) + 2" (@' — y)lgm <k 0.
Then, the generalized e-vector equilibrium problem (GVEP). has a solution.

Proof. Notice that the condition (ii) guarantees that the second condition of
Theorem 3.11 holds. This completes the proof. (]

Remark 3.15. Corollary 3.14 relaxes the condition K = R used in the previous
results into a general one, by letting K to be an arbitrary closed convex pointed
cone in R™.

EXAMPLE 3.16. Let (X, ||.]]) be an infinite dimensional Banach space. Let
m=2and K = R%r. Define the two mappings f : X - R?2and h: X x X — R?
vespectively by @ - —(|la]l |2/} and (z,) - (||~ llyll o]l [lyll). One can
easily verify that the two first conditions of the Corollary 3.14 are satisfied. Let
z* € X* be a functional satisfying [|z*|| < 2. Having these we can see that the
set
[y € X : h(y) + f(y) — J(#) +ea* (& — y)lan £x O},

at £ = 0 is weakly compact and thus the last condition of the Corollary 3.14 is
also fulfilled. Corollary 3.14 now implies that the (GVEP). problem associated
with these definitions has a solution. Of course if we assume that ¢ < 2, then
using again Corollary 3.3 one may prove the solvability of this problem as well.

EXAMPLE 3.17. Let X =R. Let m = 2 and K = R%.. Define the two mappings
f:X —-R?and h: X x X — R? respectively by z + — (|2, |z|) and
(2l =yl lzl=lyl) v =15
(z,y) =
T Yy oz Y
=122 - 12 1.
151 - 12121 -12) v >
One can easily verify that the conditions of the Corollary 3.14 are entirely
satisfied. Corollary 3.14 implies that the (GVEP). problem associated with
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these data has a solution. Notice that in this example the function y — h(z,y)
is not continuous at y = 1 for any z # 41 and thus Corollary 3.3 fails to
respond.

In the following theorem we state and prove an existence result for an
(GVVI). problem. Let T : X = X* be a set-valued map. Given a map
f: X — R™, the following generalized (GVVI). problem is discussed here:
Find z € X such that for any y € X there exists z* € T'(x) satisfying:

(2%, y —x) £ f(2) = f(y) —elly — 2)[[1rm.

For this problem we have the following existence result. We first recall the
notion of Painlevé-Kuratowski set-convergence [19]. Let X and Y be normed
linear spaces. For a sequence of sets (S,,) in X, we set the notations

LiS, = {zeX:z= lim z,, x, €S,, forsufficiently large n},
n—oo
LsS, = {reX:z= klim Tnyy Ty € Sny,  (ng) a subsequence of (n)}.
—00

We say that the sequence of sets (S,) converges to a set S in the sense of
Painlevé-Kuratowski if and only if

LsS, C S CLiS,.
For easy reference consider the following definition.

Definition 3.18. Let X and Y be normed linear spaces. A set valued map
T:X =2Y is said to be compactly-sequentially upper continuous if

(i) &, — « implies T(x,) — T(x) in the sense of Painlevé-Kuratowski
described above;

(ii) for all z € X there exists a compact set N, containing T'(x) for which
the following holds:
if (U,) is a sequence of neighborhoods so that each U,, contains N,
then there exists a neighborhood V' containing z so that T'(V) C U,
for all n € N.

We now are completely ready to state the desired existence result.

Theorem 3.19. Assume that f: X — R™ is a lower semicontinuous e-convex
function and K C R™ be a convex cone with a nonempty interior. Suppose that
the set-valued map T : X =3 X, is compactly-sequentially upper continuous.
Suppose further that O, f(x) # 0 implies O f(x) T (x) # 0. If there exists a
nonempty compact subset D of X and xy € X such that for every x € X \ D
and x* € T(x) one has

(a* w0 — ) <x f(x) = f0) — el — z0 g,

then the problem (GVVI). has a solution.
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Proof. For each x € X define the set-valued map I' : X = X by

I(z) ={y € X : Jy* € T(y) such that (y*,z—y) LK f(y)—f(x)—cllz—y|1rm}.

We will prove that I'(z) is a KKM map on X. Suppose, on the contrary, that
I'(z) is not a KKM map. Then there exists t; € [0,1] and z; € X,i = 1,...,n
with Y7 | ¢; = 1 such that > | t;x; =2 ¢ J;—, ['(2;). Then

(% 2 — x) <k f(z) — f(2:) —ellzi — 2|/ 1rm,

for every 2* € T(z) and ¢ = 1,2,...,n. The lower semicontinuity and e-
convexity of f at x, implies that f is locally Lipschitz at x and hence the
Clarke subdifferential of f at z is a nonempty set. This, of course, forces
O f(z) to be nonempty as well, as it contains Clarke subdifferential of f at z
(Proposition 4.3[6]). Consequently for every z* € 0. f(x) (T (z) we have

(%, 2, — x) — ¢||lx; — z||1lgm <k f(z;) — f().
These two last inequalities yield
(", 2; — x) <k 0.

Multiplying both sides of this result by ¢; and then summing over i = 1,...,n

we deduce that
n

Z(m*,ti(mi — 1)) <k 0,

i=1
for every 2* € 0. f(x) ()T (x). This leads to a contradiction, since " | t;z; = x
and Y ., t; = 1. Therefore I' is a KKM mapping. Let us now show that I'(u)
is closed for each u € X. For an arbitrary u € X, let (x,) be a sequence in
I'(u) converging to some x € X. Then there exists x} € T(x,) such that

(@, u—n) £x f(en) = f(u) = ellu—zn|[1zm. (3-4)

Let N, be the compact set satisfying the item (ii) of Definition 3.18. For § > 0,
let
Gs = U {z* ¢ ||]z* —w*|| < d}.
w* €N,

Obviously for any d > 0, the set G is an open neighborhood in X}, containing
N,. Now the compactly-sequentially upper continuity of T at = implies that
there exists a neighborhood U of x such that T(U) C G1 for all n € N. For
sufficiently large n, we observe that z, € U and hencenT(acn) C G1 for n
sufficiently large. Since z} € T(x,) it follows that there exists a sgquence

%) in N, so that ||z, — wi|| < L for n sufficiently large. The compactness
of N, guarantees that there exists a subsequence {wy, } of the sequence {wy, }

(w
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such that wy, converges to some z* € N,. Thus the subsequence (z7};, ) of the

i .
sequence (x}) satisfies

*

-t < e, —wn, [ fJwr, — 27l

1
S A

Letting £ — oo it follows that x}, — x*. The first item in Definition 3.18
guarantees that «* € T'(z). Notice that (3.4) implies

(@ —zn,) £k f(@n,) = f(u) —ellu =z, [[1rm. (3-5)
Letting k — oo in (3.5) it follows that x € I'(u). This guarantees the closedness
of T'(u). Moreover, the last condition of theorem implies that I'(zg) is contained
in the compact set D. As a consequence I'(xq) is compact too, as a closed subset
of the compact set D. Using the KKM theorem it follows that (), I'(z) # 0.
This completes the proof. O
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