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Abstract. In this paper, we investigate the connection between closed

Newton-Cotes formulae, trigonometrically-fitted methods, symplectic in-

tegrators and efficient integration of the Schrödinger equation. The study

of multistep symplectic integrators is very poor although in the last

decades several one step symplectic integrators have been produced based

on symplectic geometry (see the relevant literature and the references

here). In this paper, we study the closed Newton-Cotes formulae and

we write them as symplectic multilayer structures. Based on the closed

Newton-Cotes formulae, we also develop trigonometrically-fitted symplec-

tic methods. An error analysis for the one-dimensional Schrödinger equa-

tion of the new developed methods and a comparison with previous de-

veloped methods is also given. We apply the new symplectic schemes to

the well-known radial Schrödinger equation in order to investigate the

efficiency of the proposed method to these type of problems.
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1. Introduction

It is of great interest the research area of development of numerical inte-

gration methods for ordinary differential equations that preserve qualitative

properties of the analytic solution. In this paper, we consider Hamilton equa-

tions of motion which are linear in position p and momentum q

q̇ =mp

ṗ =−mq (1.1)

where m is a constant scalar or matrix. The Eq. (1.1) is an important one in

the field of molecular dynamics.

In order to preserve the characteristics of the Hamiltonian system in the

numerical approximation, it is necessary to use symplectic integrators. In the

recent years work has been done mainly in the production of one step symplec-

tic integrators (see [1]). Zhu et al. [26] have studied the symplectic integrators

and the well-known open Newton-Cotes differential methods. They have pre-

sented the open Newton-Cotes differential methods as multilayer symplectic

integrators. The construction of multistep symplectic integrators based on the

open Newton-Cotes integration methods was investigated by Chiou and Wu

[2]. The last decades much work has been done on exponential and trigono-

metrically fitting and the numerical solution of periodic initial value problems

(see [3-20] and references therein). In this paper:

• We try to present closed Newton-Cotes differential methods as multilayer

symplectic integrators.

• We apply the closed Newton-Cotes methods on the Hamiltonian system

(1) and we obtain the result that the Hamiltonian energy of the system remains

almost constant as the integration proceeds.

• The trigonometrically-fitted methods are developed.

• An error analysis for the one-dimensional Schrödinger equation of the new

developed methods and a comparison with previous developed methods is also

given.

We note that the aim of this paper is to generate methods that can be used

for non-linear differential equations as well as linear ones. In Section 2 the re-

sults about symplectic matrices and schemes are presented. In Section 3 closed

Newton-Cotes integral rules and differential methods are described and the

new trigonometrically-fitted methods are developed. In Section 4 the conver-

sion of the closed Newton-Cotes differential methods into multilayer symplectic

structures is presented. The error analysis for the one-dimensional Schrödinger

equation of the new developed methods and a comparison with previous devel-

oped methods is presented in Section 5. Finally, numerical results are presented

in Section 6.
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A new high order closed Newton-Cotes trigonometrically-fitted formulae 113

2. Basic Theory on Symplectic Schemes and Numerical Methods

Zhu et al. [26] have obtained a theory on symplectic numerical schemes and

symplectic matrices in which the following basic theory is based.

Dividing an interval [a, b] with N points we have

x0 = a , xn = x0 + nh = b, n = 1, 2, · · · , N (2.1)

The above division leads to the following discrete scheme:(
pn+1

qn+1

)
= Mn+1

(
pn
qn

)
, Mn+1 =

(
an+1 bn+1

cn+1 dn+1

)
. (2.2)

We note that x is the independent variable and a and b in the equation for x0

(Eq. (2.1)) are different than the a and b in Eq. (2.2). Based on the above we

can write the n-step approximation to the solution as(
pn
qn

)
=

(
an bn

cn dn

)(
an−1 bn−1

cn−1 dn−1

)
· · ·

(
a1 b1

c1 d1

)(
p0

q0

)
= MnMn−1, . . . ,M1

(
p0

q0

)
.

Defining

S = MnMn−1, . . . ,M1 =

(
An Bn

Cn Dn

)
the discrete transformation can be written as(

pn+1

qn+1

)
= S

(
p0

q0

)
.

A discrete scheme (2.2) is a symplectic scheme if the transformation matrix S

is symplectic. A matrix A is symplectic if ATJA = J where

J =

(
0 1

−1 0

)
The product of symplectic matrices is also symplectic. Hence, if each matrix

Mn is symplectic the transformation matrix S is symplectic. Consequently, the

discrete scheme (2.1) is symplectic if each matrix Mn is symplectic.

3. Trigonometrically-fitted Closed Newton-Cotes Differential

Methods

3.1. General closed Newton-Cotes formulae. The closed Newton-Cotes

integral rules are given by∫ b

a

f (x) dx ≈ z h

k∑
i=0

tif (xi) (3.1)
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k z t0 t1 t2 t3 t4 t5
0 1 1

1 1/2 1 1

2 1/3 1 4 1

3 3/8 1 3 3 1

4 2/45 7 32 12 32 7

5 5/288 19 75 50 50 75 19

6 1/140 41 216 27 272 27 216

7 7/17280 751 3577 1323 2989 2989 3577

8 4/14175 989 5888 −928 10496 −4540 10496

9 1/89600 25713 141669 9720 174096 52002 52002

10 5/299376 427368 −260550 272400 −48525 106300 16067

Table 1. The coefficient z and its weights ti for i = 1, 2, . . . , 5

k z t6 t7 t8 t9 t10

0 1

1 1/2

2 1/3

3 3/8

4 2/45

5 5/288

6 1/140 41

7 7/17280 3577 751

8 4/14175 −928 5888 989

9 1/89600 174096 9720 141669 25713

10 5/299376 106300 −48525 272400 −260550 427368

Table 2. The coefficient z and its weights ti for i = 6, 7, . . . , 10

Where

h =
b− a
N

, xi = a+ ih, i = 0, 1, 2, . . . , N. (3.2)

The coefficient z as well as the weights ti are given in Tables 1,2. From tables

1 and 2 it is easy to see that the coefficients ti are symmetric, i.e., we have the

following relation:

ti = tk−i, i = 0, 1, . . . ,
k

2
. (3.3)
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A new high order closed Newton-Cotes trigonometrically-fitted formulae 115

Closed Newton-Cotes differential methods were produced from the integral

rules. For Table 1 we have the following differential methods:

k = 1 yn+1 − yn =
h

2
(fn+1 + fn)

k = 2 yn+1 − yn−1 =
h

3
(fn−1 + 4fn + fn+1)

k = 3 yn+1 − yn−2 =
3h

8
(fn−2 + 3fn−1 + 3fn + fn+1)

k = 4 yn+2 − yn−2 =
2h

45
(7fn−2 + 32fn−1 + 12fn + 32fn+1 + fn+2)

k = 5 yn+2 − yn−3 =
h

140
(19fn−3 + 75fn−2 + 50fn−1 + 50fn + 75fn+1 + 19fn+2)

... (3.4)

k = 10 yn+5 − yn−5 =
5h

299376
(427368fn − 260550 (fn+1 + fn−1)

+272400 (fn+2 + fn−2)− 48525 (fn+3 + fn−3)

+106300 (fn+4 + fn−4) + 16067 (fn+5 + fn−5))

In the present paper we will investigate the case k = 10 and we will produce

trigonometrically-fitted differential methods of order 12.

3.2. Trigonometrically-fitted closed Newton-Cotes differential method.

Requiring the differential scheme

yn+5 − yn−5 = h

(
b0fn +

5∑
i=1

bi (fn+i + fn−i)

)
(3.5)

to be accurate for the following set of functions (we note that fi = y′i, i =

n− 1, n, n+ 1):

{1, x, x2, x3, x4, x5, x6, x7, x8, x9, cos(ωh), sin(ωh)} (3.6)

the following set of equations is obtained:

2 b1 + 2 b2 + 2 b3 + 2 b4 + 2 b5 + b0 = 10

6 b1 + 24 b2 + 54 b3 + 96 b4 + 150 b5 = 250

2560 b4 + 810 b3 + 160 b2 + 6250 b5 + 10 b1 = 6250

10206 b3 + 57344 b4 + 14 b1 + 218750 b5 + 896 b2 = 156250

118098 b3 + 4608 b2 + 1179648 b4 + 7031250 b5 + 18 b1 = 3906250

− 24 sin(v) (cos(v))
2

+ 2 sin(v) + 32 sin(v) (cos(v))
4 − 2b4v − b0v

− 8 (cos (v))
3
b3v − 32 b5v (cos (v))

5

− 16 b4v (cos (v))
4

+ 40 (cos (v))
3
b5v − 10 cos (v) b5v − 4 (cos (v))

2
b2v

+ 16 (cos (v))
2
b4v + 6 cos (v) b3v − 2 b1 cos (v) v + 2 b2v = 0

(3.7)
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Solving the above system of equations we obtain

b0 =
1

2268

a0

T
b1 =

1

4536

a1

T
, b2 =

1

1134

a2

T
,

b3 =
1

9072

a3

T
, b4 =

1

9072

a4

T
, b5 =

1

9072

a5

T
,

where

a0 = 169555v cos5(v) + (426400v − 571536 sin(v)) cos4(v)

−145625v cos3(v) + (−344200v + 428652 sin(v)) cos2(v)

+60275v cos(v)− 35721 sin(v) + 12200v,

a1 = −275350v cos5(v) + (−746875v + 952560 sin(v)) (cos(v))
4

+315125v (cos(v))
3

+ (501250v − 714420 sin(v)) (cos(v))
2

−64250v cos(v) + 59535 sin(v)− 27575v,

a2 = 41675v cos5(v) + (95000v − 136080 sin(v)) cos4(v)

−21625v cos3(v) + (−95000v + 102060 sin(v)) cos2(v)

+20875v cos(v)− 8505 sin(v) + 1600v,

a3 = −116900v cos5(v) + (−325625v + 408240 sin(v)) cos4(v)

+146125v cos3(v) + (203750v − 306180 sin(v)) cos2(v)

−22000v cos(v)− 12925v + 25515 sin(v),

a4 = 20225v cos5(v)− 45360 sin(v) cos4(v) + 56125v cos3(v)

+ (−95000v + 34020 sin(v)) cos2(v) + 38625v cos(v)

−5800v − 2835 sin(v),

a5 = (−20225v + 9072 sin(v)) cos4(v) + 29225v cos3(v)

+ (−21450v − 6804 sin(v)) cos2(v) + 12500v cos(v)

−2885v + 567 sin(v),

and

T = v (cos(v)− 1)
5
.

For small values of v the above formulae are subject to heavy cancellations. In

this case the following Taylor series expansions must be used:

b0 =
89035

12474
− 673175

648648
v2 +

19375

2594592
v4 +

395515

264648384
v6

+
173704325

2534272925184
v8 +

104265059

55754004354048
v10 +

1839935

115700039110656
v12

− 14814979111

8401905440137617408
v14 − 19367733685

134430487042201878528
v16 + · · · ,
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b1 = −24125

5544
+

3365875

3891888
v2 − 96875

15567552
v4 − 1977575

1587890304
v6

− 868521625

15205637551104
v8 − 521325295

334524026124288
v10 − 9199675

694200234663936
v12

+
74074895555

50411432640825704448
v14 +

96838668425

806582922253211271168
v16 + · · · ,

b2 =
28375

6237
− 3365875

6810804
v2 +

96875

27243216
v4 +

1977575

2778808032
v6

+
868521625

26609865714432
v8 +

521325295

585417045717504
v10 +

9199675

1214850410661888
v12

− 74074895555

88220007121444982784
v14 − 96838668425

1411520113943119724544
v16 + · · · ,

b3 = −80875

99792
+

3365875

18162144
v2 − 96875

72648576
v4 − 1977575

7410154752
v6

− 868521625

70959641905152
v8 − 521325295

1561112121913344
v10 − 9199675

3239601095098368
v12

+
74074895555

235253352323853287424
v14 +

96838668425

3764053637181652598784
v16 + · · · ,

b4 =
132875

74844
− 3365875

81729648
v2 +

96875

326918592
v4 +

1977575

33345696384
v6

+
868521625

319318388573184
v8 +

521325295

7025004548610048
v10 +

9199675

14578204927942656
v12

− 74074895555

1058640085457339793408
v14 − 96838668425

16938241367317436694528
v16 + · · · ,

b5 =
80335

299376
+

673175

163459296
v2 − 19375

653837184
v4 − 395515

66691392768
v6

− 173704325

638636777146368
v8 − 104265059

14050009097220096
v10 − 1839935

29156409855885312
v12

+
14814979111

2117280170914679586816
v14 +

19367733685

33876482734634873389056
v16 + · · · .

The local truncation error for the above differential method is given by

LTE = − 673175

163459296

(
yn

(13) + ω2yn
(11)
)
h13. (3.8)

4. Closed Newton-Cotes Can be Expressed as Symplectic

Integrators

Theorem 4.1. A discrete scheme of the form(
b −a
a b

)(
qn+1

pn+1

)
=

(
b a

−a b

)(
qn
pn

)
, (4.1)

is symplectic.
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Figure 1. Behavior of the coefficients b0 and b1 of the new method.

Figure 2. Behavior of the coefficients b2 and b3 of the new method.

Figure 3. Behavior of the coefficients b4 and b5 of the new method.
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Proof. We rewrite (2.3) as(
qn+1

pn+1

)
=

(
b −a
a b

)−1(
b a

−a b

)(
qn
pn

)
.

Define

M =

(
b −a
a b

)−1(
b a

−a b

)
=

1

b2 + a2

(
b2 − a2 2ab

−2ab b2 − a2

)
and it can easily be verified that

MT J M = J

thus the matrix M is symplectic. The symplectic structure of the well-known

second order differential scheme (SOD) has been proven in [26] by Zhu et al.

yn+i − yn−i = 2ihfn i = 1(1)5 (4.2)

The above methods have been produced by the simplest open Newton-Cotes

integral formula. Based on the paper Chiou et al. [2], the closed Newton-Cotes

differential schemes will be written as multilayer symplectic structures. If we

apply the Newton-Cotes differential formula for n = 5 to the linear Hamiltonian

system (1.1) we obtain

qn+5 − qn−5 =s

(
b0pn +

5∑
i=1

bi (pn+i + pn−i)

)
,

pn+5 − pn−5 =s

(
b0qn +

5∑
i=1

bi (qn+i + qn−i)

) (4.3)

where s = mh, where m is defined in (1). From (3.4) we have

qn+j − qn−j =2 j s pn ,

pn+j − pn−j =− 2 j s qn , j = 1(1)5 , or j =
1

2
(1)

5

2
.

(4.4)

Considering the approximation based on the first formula of (4.1) for (n+ 1)-

step gives (taking into account the second formula of (4.1))

qn+i + qn−j =
(
qn + spn+i− 1

2

)
+
(
qn − spn−i+ 1

2

)
= qn+i−1 + qn−i+1 + s

(
pn+i− 1

2
− pn−i+ 1

2

)
= (2− i2s2)qn. (4.5)

Substituting (4.2)-(4.5) into (3.5) and considering that bi = b5−i, i = 0(1)4, we

have

qn+5 − qn−5 = s
[
b5(pn−5 + pn+5) +

(
b4(2− 42s2) + b3(2− 32s2)

+b2(2− 22s2) + b1(2− s2) + b0
)
pn

]
, (4.6)
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pn+5 − pn−5 = s
[
b5(qn−5 + qn+5) +

(
b4(2− 42s2) + b3(2− 32s2)

+b2(2− 22s2) + b1(2− s2) + b0
)
qn

]
,

and with (3.6) we have

qn+5 − qn−5 = s
[
b5(pn−5 + pn+5) +

(
b4(2− 42s2) + b3(2− 32s2)

+b2(2− 22s2) + b1(2− s2) + b0
)qn+5 − qn−5

10 s

]
,

pn+5 − pn−5 = s
[
b5(qn−5 + qn+5) +

(
b4(2− 42s2) + b3(2− 32s2)

+b2(2− 22s2) + b1(2− s2) + b0
)pn+5 − pn−5

10 s

]
,

which gives

(qn+5 − qn−5).A = s b0(pn+5 + pn−5),

(pn+5 − pn−5).B = s b0(qn+5 + qn−5).

where

A = 1− b4(2− 42s2) + b3(2− 32s2) + b2(2− 22s2) + b1(2− s2) + b0
10

,

and

B = 1− b4(2− 42s2) + b3(2− 32s2) + b2(2− 22s2) + b1(2− s2) + b0
10

.

The above formula in matrix form can be written as(
T (s) −s b5
s b5 T (s)

)(
qn+5

pn+5

)
=

(
T (s) s b5
−s b5 T (s)

)(
qn−5

pn−5

)
where

T (s) = 1− b4(2− 42s2) + b3(2− 32s2) + b2(2− 22s2) + b1(2− s2) + b0
10

(4.7)

which is a discrete scheme of the form (3.3) and hence it is symplectic. �

5. Error Analysis for the Radial Schrödinger Equation

In this section, we will investigate theoretically the methods constructed in

[21, 22, 23, 24, 25] and in this paper. The scope of this investigation is to find

a quantitative estimation for the extent of the accuracy gain to be expected

from the exponentially-fitted versions.

Definition 5.1. A method is called classical if it has constant coefficients.

Remark 5.2. A trigonometrically-fitted method is not a classical one because

it has coefficients which are dependent on the quantity v = ω h, where w is the

frequency of the problem and h is the step length of the integration.
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Consider the radial Schrödinger equation

y′′(x) =

(
l(l + 1)

x2
+ V (x)− k2

)
y(x) = f(x)y(x). (5.1)

where f(x) = U(x)−k2 and U(x) = l(l + 1)/x 2 +V (x). We write f(x) in (5.1)

in the form

f(x) = g(x) + d, (5.2)

where g(x) = U(x) − Uc = g, where Uc is the constant approximation of the

potential and G = v2 = Uc − E.

So, g(x) depends on the potential and the constant approximation of the

potential while d shows the energy dependence. We will compare the following

methods:

• The classical fourth order closed Newton-Cotes formulae (Method I).

• The classical sixth order closed Newton-Cotes formulae (Method II).

• The classical eighth order closed Newton-Cotes formulae (Method III).

• The closed Newton-Cotes formulae developed in [21] (Method IV).

• The closed Newton-Cotes formulae developed in [19] (Method V).

• The closed Newton-Cotes formulae developed in [23] (Method VI).

• The classical tenth order closed Newton-Cotes formulae (Method VII)

• The closed Newton-Cotes formulae developed in the paragraph 3.2, in [22]

(Method VIII).

• The closed Newton-Cotes formulae developed in the paragraph 3.3 in [22]

(Method IX).

• The closed Newton-Cotes formulae developed in this paper (Method X).

We now present the formulae of the local truncation error (LTE) for the

above methods.

For the Method I is equal to:

LTEMI = −h
5

90
y(5)
n .

For the Method II is equal to:

LTEMII = −8h5

945
y(7)
n .

For the Method III is equal to:

LTEMIII = − 9h9

1400
y(9)
n .

For the Method IV is equal to:

LTEMIV = −8h9

945
(y(7)

n + v2y(5)
n ).

For the Method V is equal to:

LTEMV = −h
5

90
(y(5)

n + v2y(3)
n ).
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For the Method VI is equal to:

LTEMV I = − 9h5

1400
(y(9)

n + 3v2y(7)
n + 3v4y(5)

n + v6y(3)
n ).

For the Method VII is equal to:

LTEMV II = − 2368

467775
y(11)
n h11.

For the Method VIII is equal to:

LTEMV III = − 2368

467775

(
y(11)
n + 2ν2y(9)

n + ν4y(7)
n

)
h11.

For the Method IX is equal to:

LTEMIX = − 2368

467775

(
y(11)
n + 5ν2y(9)

n + 4ν4y(7)
n

)
h11.

For the new Method (Method X) is equal to:

LTEMX = − 673175

163459296

(
y(13)
n + v2y(11)

n

)
h13.

We express, now, the derivatives y(2), y(4), . . . and y(13) in terms of Eq. (5.1),

ie.

y(2)
n = f(x).y(x),

y(3)
n =

(
d

dx
g(x)

)
y(x) + (g(x) + d)

d

dx
y(x)

y(5)
n =

(
d3

dx3
g(x)

)
y(x) + 3

(
d2

dx2
g(x)

)
d

dx
y(x),

+3

(
d

dx
g(x)

)
d2

dx2
y(x) + (g(x) + d)

d3

dx3
y(x), (5.3)

and etc. We note that g(n) = U (n)(x) for the n-th order derivative with respect

to x. Introducing the expressions obtained in (5.3) into the Local Truncation

Error of the methods mentioned above, we obtain the expressions (as polyno-

mials of d) for local truncation error of the methods. The leading terms (in d)

of the above expressions are given by:

For the Method I is equal to:

LTEMI = h5d2

(
− 1

90

d

dx
y(x)

)
.

For the Method II is equal to:

LTEMII = h7d3

(
− 8

945

d

dx
y(x)

)
.

For the Method III is equal to:

LTEMIII = h9d4

(
− 9

1400

d

dx
y(x)

)
.
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For the Method IV is equal to:

LTEMIV = − 8

945

(
g(x)

d

dx
y(x) + 5

(
d

dx
g(x)

)
y(x)

)
h9d2.

For the Method V is equal to:

LTEMV = − 1

90

((
d

dx
y(x)

)
g(x) + 3

(
d

dx
g(x)

)
y(x)

)
h9d.

For the Method VI is equal to:

LTEMV I = − 9

700

(
3

(
d

dx
g(x)

)
y(x)g(x) + 8

(
d3

dx3
g(x)

)
y(x)

+2

(
d2

dx2
g(x)

)
d

dx
y(x)

)
h9d2.

For the Method VII is equal to:

LTEMV II = h11d5

(
− 2368

467775

d

dx
y(x)

)
.

For the Method VIII is equal to:

LTEMV III = h11d4

(
− 4736

467775
y(x)

d

dx
g(x)

)
.

For the Method IX is equal to:

LTEMIX =
2368

155925
h11d4

(
19

3

(
d

dx
g(x)

)
y(x) +

(
d

dx
y(x)

)
g(x)

)
.

For the Method X is equal to:

LTEMX = − 673175

163459296

(
g(x)

d

dx
y(x) + 11

(
d

dx
g(x)

)
y(x)

)
h13d5.

From the above equations we have the following theorem:

Theorem 5.3. For the Closed Newton-Cotes formulae studied in this paper we

have:

• Fourth Algebraic Order Methods

In the fourth algebraic order method MI the error increases as the

second power of d, while in the fourth algebraic order method MV the

the error increases as the first power of d. So, for the numerical solution

of the time independent radial Schrödinger equation the Method MV is

more accurate, especially for large values of d.

• Sixth Algebraic Order Methods

In the sixth algebraic order method MII the error increases as the

third power of d, while in the sixth algebraic order method MIV the the

error increases as the second power of d. So, for the numerical solution

of the time independent radial Schrödinger equation the Method MIV

is more accurate, especially for large values of d.

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.ir
 o

n 
20

25
-0

7-
04

 ]
 

                            13 / 19

http://ijmsi.ir/article-1-785-en.html


124 A. Shokri, H. Saadat, A. R. Khodadadi

• Eighth Algebraic Order Methods

In the eighth algebraic order method MIII the error increases as the

fourth power of d, while in the eighth algebraic order method MVI the

the error increases as the second power of d. So, for the numerical so-

lution of the time independent radial Schrödinger equation new Method

MVI is more accurate, especially for large values of d.

• Tenth Algebraic Order Methods

In the tenth algebraic order method MVII the error increases as the

fifth power of d, while in the tenth algebraic order methods MVIII and

MIX the the error increases as the fourth power of d. The coefficient

of the fourth power of d in the Method MVIII is much lower than the

coefficient of the fourth power of d in the Method MIX. So, for the

numerical solution of the time independent radial Schrödinger equation

new Methods MVIII is the most accurate one, especially for large values

of d.

• Twelfth Algebraic Order Methods

In the twelfth algebraic order method MX the error increases as the

fifth power of d. So, for the numerical solution of the time independent

radial Schrödinger equation new Methods MX is the most accurate one,

especially for large values of d.

6. Numerical Results

In this section we present some numerical results to illustrate the per-

formance of our new methods. Consider the numerical integration of the

Schrödinger equation:

y′′(x) =

(
l(l + 1)

x 2
+ V (x)− k2

)
y(x), (6.1)

using the well-known Woods-Saxon potential which is given by

V (x) = Vw =
u0

1 + z
− u0z

a(1 + z)2
, (6.2)

with z = exp[(x − R0)/a], u0 = −50, a = 0.6, and R0 = 7.0. In Fig. 2,

we give a graph of this potential. In the case of negative eigenenergies (i.e.

when E ∈ [−50, 0]) we have the well-known bound-states problem while in the

case of positive eigenenergies (i.e. when E ∈ (0, 1000]) we have the well-known

resonance problem. Many problems in chemistry, physics, physical chemistry,

chemical physics, electronics etc., are expressed by Eq. (6.1).

6.1. Resonance problem. In the case of positive energies, E = k2, the po-

tential dies away faster than the term l(l+1)
x2 and the Schrödinger equation
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Figure 4. The Woods - Saxon potential.

effectively reduces to

y ′′(x) =

(
k2 − l(l + 1)

x2

)
y(x), (6.3)

for x greater than some valueX. The last equation has two linearly independent

solutions kxjl(kx) and kxnl(kx), where jl(kx) and nl(kx) are the spherical

Bessel and Neumann functions respectively. Thus the solution of Eq. (6.1) has

When (x→∞) the solution takes the asymptotic form

y(x) ≈ Ak x jl(k x)−B k xnl(k x)

≈ D [sin(k x− πl/2) + tan(δ l) cos(kx− πl/2)],

where δ l is called scattering phase shift that may be calculated from the formula

tan(δ l) =
y(x i)S(x i+1)− y(x i+1)S(x i)

y(x i+1)C(x i)− y(x i, )C(x i+1)
(6.4)

for x1 and x2 distinct points in the asymptotic region (we choose x1 as the

right-hand end point of the interval of integration and x2 = x1−h)with S(x) =

kxjl(kx) and C(x) = −kxnl(kx). Since the problem is treated as an initial-

value problem, we need y0 before starting a eight-step method. From the initial

condition we obtain y0. With these starting values we evaluate at x1 of the

asymptotic region the phase shift δl from the above relation.

6.1.1. The woods-saxon potential. As a test for the accuracy of our methods we

consider the numerical integration of the Schrödinger equation (6.1) with l = 0

in the well-known case where the potential V (r) is the Woods-Saxon one (6.2).

One can investigate the problem considered here, following two procedures. The

first procedure consists of finding the phase shift δ(E) = δl for E ∈ [1, 1000].
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The second procedure consists of finding those E, for E ∈ [1, 1000], at which

δ equals π/2. In our case we follow the first procedure i.e. we try to find the

phase shifts for given energies. The obtained phase shift is then compared to the

analytic value of π/2. The above problem is the so-called resonance problem

when the positive eigenenergies lie under the potential barrier.We solve this

problem, using the technique fully described in [1]. The boundary conditions

for this problem are:

y(0) = 0, y(x) ≈ cos(
√
Ex), for large x. (6.5)

The domain of numerical integration is [0, 15].

For comparison purposes in our numerical illustration we use the following

methods:

• The well known Numerov’s method (which is indicated as Method A).

• The exponentially-fitted method of Raptis and Allison [11] (which is

indicated as Method B).

• The P-stable exponentially-fitted Method developed by Kalogiratou

and Simos [6] (which is indicated as Method C)

• The four-step method developed by Henrici [3] (which is indicated as

Method D).

• The Newton-Cotes trigonometrically-fitted formula developed in [20]

(which is indicated as Method E).

• The Newton-Cotes trigonometrically-fitted formula developed in [23]

(which is indicated as Method F).

• The Newton-Cotes trigonometrically-fitted formula developed in [24]

(which is indicated as Method G).

• The Newton-Cotes exponentially-fitted method developed in [22] (which

is indicated as Method H).

• The Newton-Cotes trigonometrically-fitted method developed in [22]

(which is indicated as Method I).

• The new proposed trigonometrically-fitted method (which is indicated

as Method J).

The numerical results obtained for the six methods, with several number of

function evaluations (NFE), were compared with the analytic solution of the

Woods-Saxon potential resonance problem, rounded to six decimal places. Fig-

ure , show the errors Err = −log10|Ecalculated − Eanalytical| of the highest

eigenenergy E3 = 989.701916 for several values of NFE, where NFE are the

Number of Function Evaluations.

7. Conclusions

In this paper a new high order closed Newton-Cotes differential method for

the numerical solution of the Schrödinger type equations is introduced.

From the numerical results we have the following remarks:
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Figure 5. Error Errmax for several values of n for the eigen-

value E1 = 989.701916. The nonexistence of a value of Errmax

indicates that for this value of n, Errmax is positive

• The Numerovs method and the exponentially-fitted method of Raptis

and Allison [11] have better behavior than the P-stable exponentially-

fitted method developed by Kalogiratou and Simos [6].

• The exponentially-fitted method of Raptis and Allison [11] is more

efficient than the well known Numerov method.

• The four-step method developed by Henrici [3] has better behavior than

all the previous mentioned methods. The Newton-Cotes trigonometrically-

fitted formula developed in [20] has better behavior than all the above

methods.

• The Newton-Cotes trigonometrically-fitted formula developed in [22]

is more efficient than all the above methods. The behavior of the

Newton-Cotes trigonometrically-fitted formula developed in [24] is bet-

ter than all the above methods.

• The new proposed trigonometrically-fitted method is more efficient

than all the above methods.

• Finally, the new developed exponentially-fitted method is the most

efficient one.

Remark 7.1. As the theoretical and numerical results show us, for the de-

velopment of numerical methods for the approximate solution of the radial

Schrödinger equation, the exponentially-fitted methodology gives much more

efficient methods than the trigonometrically-fitted methodology.
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