E. Rostami ^{}

Let $R$ be a commutative ring and $I$ an ideal of $R$. The zero-divisor graph of $R$ with respect to $I$, denoted by $Gamma_I(R)$, is the simple graph whose vertex set is ${x in Rsetminus I mid xy in I$, for some $y in Rsetminus I}$, with two distinct vertices $x$ and $y$ are adjacent if and only if $xy in I$. In this paper, we state a relation between zero-divisor graph of $R$ with respect to an ideal and almost prime ideals of $R$. We then use this result to give a graphical characterization for $SPAP$-rings.