Distance-Balanced Closure of Some Graphs

N. Ghareghani ${ }^{a, *}$, B. Manoochehrian ${ }^{b}$, M. Mohammad-Noori ${ }^{c}$
${ }^{a}$ Department of Engineering Science, College of Engineering, University of Tehran, P.O. Box 11165-4563, Tehran, Iran.
${ }^{b}$ Academic Center for Education, Culture and Research (ACECR), Tehran Branch, P.O. Box 19395-5746, Tehran, Iran.
${ }^{c}$ Department of Computer Science, School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
E-mail: ghareghani@ut.ac.ir
E-mail: behzad@khayam.ut.ac.ir
E-mail: mnoori@khayam.ut.ac.ir, morteza@ipm.ir

Abstract. In this paper we prove that any distance-balanced graph G with $\Delta(G) \geq|V(G)|-3$ is regular. Also we define notion of distancebalanced closure of a graph and we find distance-balanced closures of trees T with $\Delta(T) \geq|V(T)|-3$.

Keywords: Distances in graphs, Distance-balanced graphs, Distance-balanced closure.

2000 Mathematics subject classification: 05B20, 05E30.

1. Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. We denote $|V(G)|$ by n. The set of neighbors of a vertex $v \in V(G)$ is denoted by $N_{G}(v)$, and $N_{G}[v]=N_{G}(v) \cup\{v\}$. The degree of a vertex v is denoted by $\operatorname{deg}_{G}(v)$ and minimum degree and maximum degree of G denoted by $\delta(G)$ and $\Delta(G)$,

[^0]respectively. The distance $d_{G}(u, v)$ between vertices u and v is the length of a shortest path between u and v in G. The diameter $\operatorname{diam}(G)$ of graph G is defined as $\max \left\{d_{G}(u, v): u, v \in V(G)\right\}$. The notion of distance is studied in several works in graph theory (See [2] and the references therein) and many research works are based on the concepts related to this notion (See for instance [8] and [10]).

For an edge $x y$ of a graph $G, W_{x y}^{G}$ is the set of vertices which are closer to x than y, more formally

$$
W_{x y}^{G}=\left\{u \in V(G) \mid d_{G}(u, x)<d_{G}(u, y)\right\} .
$$

Moreover, ${ }_{x} W_{y}^{G}$ is the set of vertices of G that have equal distances to x and y, that is

$$
{ }_{x} W_{y}^{G}=\left\{u \in V(G) \mid d_{G}(u, x)=d_{G}(u, y)\right\}
$$

These sets play important roles in metric graph theory, see for instance $[1,3$, 4, 5]. Since x always belongs to $W_{x y}^{G}$, for convenience we let $U_{x y}^{G}=W_{x y}^{G} \backslash\{x\}$. Distance-balanced graphs are introduced in [9] as graphs for which $\left|W_{x y}^{G}\right|=$ $\left|W_{y x}^{G}\right|$ (or equivalently $\left|U_{x y}^{G}\right|=\left|U_{y x}^{G}\right|$) for every pair of adjacent vertices $x, y \in$ $V(G)$.

In [9], the parameter $b(G)$ of a graph G is introduced as the smallest number of the edges which can be added to G such that the obtained graph is distancebalanced. Since the complete graph is distance-balanced, this parameter is well-defined. We call graph G a distance-balanced closure of H if G is distancebalanced and H is a spanning subgraph of G with $|E(G)|=b(H)+|E(H)|$; in other words, a distance-balanced closure of H is a distance-balanced graph G which contains H as a spanning subgraph and has minimum number of edges. As mentioned in [9], the computation of $b(G)$ is quite hard in general but it might be interesting in some special cases. In this paper we compute $b(G)$ for all trees T with $\Delta(T) \geq|V(T)|-3$. In Section 2, we compute that distancebalanced closure of graphs G with $\Delta(G)=n-1$. In Section 3, and Section 4, we concern graphs G with $\Delta(G)=n-2$ and $\Delta(G)=n-3$, respectively. Then we compute $b(T)$ for all trees T with $\Delta(T)=n-2$ and $\Delta(T)=n-3$.

Here we mention some more definitions and notations about trees. Let P_{n} denoted the path with n vertices. A tree which has exactly one vertex of degree greater than two is said to be starlike. The vertex of maximum degree is called the central vertex. We denote by $S\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ a starlike tree in which removing the central vertex leaves disjoint paths $P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{k}}$. We say that $S\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ has branches of length $n_{1}, n_{2}, \ldots, n_{k}$. It is obvious that $S\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ has $n_{1}+n_{2}+\ldots+n_{k}+1$ vertices. For simplicity a starlike with α_{i} branches of length $n_{i}(1 \leq i \leq k)$ is denoted by $S\left(n_{1}^{\alpha_{1}}, n_{2}^{\alpha_{2}}, \ldots, n_{k}^{\alpha_{k}}\right)$.

2. Distance-Balanced Graphs with Maximum Degree $n-1$

In this section we prove that for any graph G with $\Delta(G)=n-1$, the only distance-balanced closure of G is the complete graph K_{n}. The following result is very useful in this paper. It is in fact a slight modification of Corollary 2.3 of [9].

Theorem 2.1. Let G be a graph with diameter at most 2 and H be a distancebalanced graph such that G is a spanning subgraph of H. Then H is a regular graph. Moreover, every regular graph with diameter at most 2 is distancebalanced.

Corollary 2.2. For every integer $m \geq 1$, the graph $K_{1, m}$ has a unique distancebalanced closure which is isomorphic to K_{m+1}, hence, $b\left(K_{1, m}\right)=\binom{m+1}{2}-m$.

Proof. Let G be a distance-balanced closure of $K_{1, m}$. By Theorem 2.1, G is a regular graph and since $K_{1, m}$ has a vertex of degree m, G should be m-regular, hence $G \cong K_{m+1}$.

The following is an immediate conclusion of Theorem 2.1.
Corollary 2.3. Let G be a graph with n vertices and $\Delta(G)=n-1$. Then the graph G has a unique distance balanced closure. Moreover, this closure is isomorphic to K_{n}.

3. Distance-Balanced Graphs with Maximum Degree $n-2$

In this section, we prove that any distance-balanced graph G with $\Delta(G)=$ $n-2$ is a regular graph using this, we construct a distance-balanced closure of T where T is a tree with this property (that is $\Delta(T)=n-2$) and then compute $b(T)$.

The following Lemma will be used occasionally in this paper and the proof is easily deduced from the definition of $U_{x y}^{G}$.

Lemma 3.1. Let x and y be two adjacent vertices of a graph G, then $U_{x y}^{G} \cap$ $N_{G}(y)=\emptyset\left(\right.$ or $\left.U_{x y}^{G} \subseteq V(G) \backslash N_{G}[y]\right)$. Furthermore, $N_{G}[y] \backslash U_{y x}^{G} \subseteq N_{G}[x]$.

Theorem 3.2. Let $T=S\left(2,1^{m-1}\right)$ be a starlike tree and H be a distancebalanced graph containing T as a spanning subgraph. Then $\operatorname{diam}(H) \leq 2$, hence, H is an r-regular graph for some $m \leq r \leq m+1$.

Proof. Suppose that the vertices of T are labeled as shown in Figure 1. If oy $\in E(H)$, then H contains $K_{1, m+1}$ as a spanning subgraph, so by Corollary 2.2, $H \cong K_{m+2}$.

So, we may assume that oy $\notin E(H)$ (and consequently $\operatorname{diam}(H) \neq 1$). We prove $\operatorname{diam}(H)=2$. For this, it is enough to show that $d\left(y, x_{i}\right) \leq 2$ for $i=2, \cdots, m$. Let i be an integer with $2 \leq i \leq m$; using the fact that y is the only vertex which is not adjacent to o in H and using Lemma 3.1, we
conclude that $U_{x_{i} o}^{H} \subseteq\{y\}$; If $U_{x_{i} o}^{H}=\{y\}$, then $x_{i} y \in E(H)$ and $d_{H}\left(x_{i}, y\right)=1$, hence in this case $d_{H}\left(x_{i}, y\right) \leq 2$. Otherwise, $U_{x_{i} o}^{H}=\emptyset$, in this case, for every $z \in V(H) \backslash\left\{o, x_{i}\right\}$ we have $d_{H}\left(z, x_{i}\right)=d_{H}(z, o)$, particularly, $d_{H}\left(z, x_{i}\right)=$ $d_{H}(y, o)=2$. Hence, $\operatorname{diam}(H)=2$, as required. The result is now concluded using Theorem 2.1.

Figure 1

Theorem 3.3. Let $T=S\left(2,1^{m-1}\right)$ be a starlike of order $m+2$. Then

$$
b(T)= \begin{cases}\frac{m^{2}}{2}-1 & \text { if } m \text { is even } \\ \binom{2+1}{2} & \text { otherwise }\end{cases}
$$

Proof. Suppose that the vertices of T be labeled as in Figure 1, and let \bar{T} be a distance-balanced closure of T. First, suppose that m is an odd integer; Since there is no m-regular graph of order $m+2$, by Theorem $3.2, \bar{T} \cong K_{m+2}$.

Now, suppose that m is an even integer. Let $H=K_{m+2}$ be a complete graph with vertex set $V(T)$ and M be a complete matching of H which contains the edge oy. Then $H \backslash M$, is an m-regular graph with diameter 2 and contains T as a spanning subgraph. Hence, by Theorem 2.1 and Theorem 3.2, $\bar{T}=H \backslash M$, is a distance-balanced closure of T and $b(T)=\frac{m^{2}}{2}-1$.

Corollary 3.4. Let G be a connected graph of order n, with $\Delta(G)=n-2$ and H be a distance-balanced graph which contains G as a spanning subgraph. Then H is either an $(n-2)$-regular graph or the complete graph K_{n}.

Proof. In this case $S\left(2,1^{n-3}\right)$ is an spanning subgraph of G. So, by Theorem $3.2, H$ is either an $(n-2)$-regular graph or the complete graph K_{n}.

4. Distance-Balanced Graphs with Maximum Degree $n-3$

In this section we will prove that every distance-balanced graph with $\Delta(G)=$ $n-3$ is regular. Moreover, by constructing distance-balanced closure of trees with $\Delta(T)=n-3$ we compute $b(T)$ for these trees.

Theorem 4.1. Let $T=S\left(2^{2}, 1^{m-2}\right)$ be a starlike of order $m+3$ and H be a distance-balanced graph which contains T as a spanning subgraph. Then $\operatorname{diam}(H) \leq 2$. Moreover, H is an r-regular graph with $r \geq m$.

Proof. Suppose the vertices of T are labeled as in Figure 2. If either oy or oz be an edge of H, then by Theorem 3.2, H is an r-regular graph with $r \geq m+1$, which proves this theorem. So, suppose that oy,oz $\notin E(H)$.

Figure 2
By Lemma 3.1, for each $1 \leq i \leq m, U_{x_{i} o}^{H} \subseteq\{y, z\}$. Now, we prove that $\operatorname{deg}_{H}\left(x_{i}\right)=m$, for each $i=1, \cdots, m$. For this, we consider three possible cases:

Case 1. $\left|U_{x_{i} o}^{H}\right|=0$: Then $U_{x_{i} o}^{H}=\emptyset$ and $U_{o x_{i}}^{H}=\emptyset$. Hence, by Lemma 3.1, $N_{H}\left(x_{i}\right)=\left\{o, x_{1}, x_{2}, \ldots, x_{m}\right\} \backslash\left\{x_{i}\right\}$ and $\operatorname{deg}_{H}\left(x_{i}\right)=m$.
Case 2. $\left|U_{x_{i} o}^{H}\right|=1$: Without loss of generality we can assume that $U_{x_{i} o}^{H}=$ $\{y\}$. Then there is an integer $1 \leq j \leq m$ such that $U_{o x_{i}}^{H}=\left\{x_{j}\right\}$. Since $d_{H}(o, y)=2, y x_{i} \in E(H)$. Hence, using Lemma 3.1, $N_{H}\left(x_{i}\right)=$ $\left\{o, y, x_{1}, x_{2}, \ldots, x_{m}\right\} \backslash\left\{x_{j}\right\}$ and $\operatorname{deg}_{H}\left(x_{i}\right)=m$.
Case 3. $\left|U_{x_{i} o}^{H}\right|=2$: We have $U_{x_{i} o}^{H}=\{y, z\}$. Since $d_{H}(o, y)=d_{H}(o, z)=$ 2, we conclude that $y x_{i}, z x_{i} \in E(H)$. Since $\left|U_{o x_{i}}^{H}\right|=2$, there are integers j and k such that $U_{o x_{i}}^{H}=\left\{x_{j}, x_{k}\right\}$. Hence, by Lemma 3.1, we have $N_{H}\left(x_{i}\right)=\left\{o, y, z, x_{1}, x_{2}, x_{3}, \ldots, x_{m}\right\} \backslash\left\{x_{i}, x_{j}, x_{k}\right\}$ and $\operatorname{deg}_{H}\left(x_{i}\right)=$ m.

Next, we prove that $\operatorname{deg}_{H}(y) \geq m-3$ and $\operatorname{deg}_{H}(z) \geq m-3$. From $\operatorname{deg}_{H}\left(x_{1}\right)=m$ and Lemma 3.1, it concludes that $\left|U_{y x_{1}}^{H}\right| \leq 2$, hence, $\left|U_{x_{1} y}^{H}\right| \leq 2$, which means that there are at most two elements in $N_{H}\left(x_{1}\right) \backslash N_{H}[y]$. Using this and Lemma 3.1, we provide $\operatorname{deg}_{H}(y) \geq m-3$. With a similar argument, the inequality $\operatorname{deg}_{H}(z) \geq m-3$ is concluded.

Now, by using $\operatorname{deg}_{H}(y), \operatorname{deg}_{H}(z) \geq m-3, \operatorname{deg}_{H}\left(x_{i}\right) \geq m, \quad(i=1, \cdots, m)$, and oy, oz $\notin E(H)$, hence every two nonadjacent vertices have a common neighbor, provided that $m \geq 7$. This means that $\operatorname{diam}(H)=2$, which proves the result in case $m \geq 7$, using Theorem 2.1. For the cases, $3 \leq m \leq 6$, through a case by case inspection (by using $\operatorname{deg}_{H}\left(x_{i}\right) \geq m, i=1, \cdots, m$,) the same result is obtained.

Theorem 4.2. For the starlike tree $T=S\left(2^{2}, 1^{m-2}\right)$ of order $m+3, b(G)=$ $\frac{m^{2}+m-4}{2}$.

Proof. Let the vertices of T be labeled as in Figure 2 and \bar{T} be a distancebalanced closure of T. Now, we are going to construct \bar{T}. Let $H=K_{m+3}$ be a complete graph with the same vertex set as H. Omit the edges of cycles $C_{1}=x_{1} x_{2} x_{3} \ldots x_{m} x_{1}$ and $C_{2}=o y z o$ from H to obtain $\bar{T}=H \backslash\left(C_{1} \cup C_{2}\right)$. Now, \bar{G} is an m-regular graph with diameter 2 , which contains T as a spanning subgraph, so by Theorem 4.1 and Theorem 2.1, \bar{T} is a distance-balanced closure of T and $b(T)=\frac{m^{2}+m-4}{2}$.
Theorem 4.3. Let T be the tree of Figure 3 and H be a distance-balanced graph which contains T as a spanning subgraph. Then diam $(H) \leq 2$, hence, H is a regular graph. Moreover, $b(T)=\frac{m^{2}+m-4}{2}$.

Figure 3
Proof. If either oy $\in E(H)$ or $o z \in E(H)$, then by Theorem 3.2, $\operatorname{diam}(H) \leq 2$ and H is a regular graph. So, suppose that neither oy nor $o z$ is in $E(H)$. Since $\left|W_{x_{1} y}^{H}\right|=\left|W_{y x_{1}}^{H}\right|$ and $o \in W_{x_{1} y}^{H}$, there exists a vertex $x_{i}, i \neq 1$, such that $y x_{i} \in E(H)$. Therefore, graph H contains graph $S\left(2^{2}, 1^{m-2}\right)$ as a spanning subgraph and using Theorem 4.1, $\operatorname{diam}(H) \leq 2$ and H is a regular graph. Furthermore, the graph introduced in the proof of Theorem 4.2, is also distancebalanced closure of T. Hence $b(T)=\frac{m^{2}+m-4}{2}$.
Theorem 4.4. Consider the starlike tree $T=S\left(3,1^{m-1}\right)$ of order $m+3$ and let H be a distance-balanced graph which contains T as a spanning subgraph. Then H is an r-regular graph for some $m \leq r \leq m+2$.
Proof. Let the vertices of T be labeled as in Figure 4.

Figure 4
If either $o y \in E(H)$ or $o z \in E(H)$, then by Theorem 3.2, $\operatorname{diam}(H) \leq 2$ and H is a regular graph. If $z x_{1} \in E(H)$, then H contains the graph shown in Figure 3 as a spanning subgraph, so by Theorem 4.3, H is a regular graph. So we may assume that $\left\{o y, o z, x_{1} z\right\} \cap E(H)=\emptyset$. Since $\left|W_{y z}^{H}\right|=\left|W_{z y}^{H}\right|$ and $x_{1} \in W_{y z}^{H}$, the vertex z is adjacent to at least one vertex in $\left\{x_{2}, x_{3}, \ldots, x_{m}\right\}$ (because otherwise according to the structure of T we have $V \backslash\{y, z\} \subseteq U_{y z}$). Hence, H contains the graph $S\left(2^{2}, 1^{m-2}\right)$, as a spanning subgraph. So, by Theorem 4.1, $\operatorname{diam} H \leq 2$ and H is a regular graph, as desired.

Corollary 4.5. Let G be a connected graph of order n with $\Delta(G)=n-3$. Then every distance-balanced graph H which contains G as a spanning subgraph, is regular.

Proof. Since $\Delta(G)=n-3, G$ contains at least one of the graphs $S\left(2^{2}, 1^{n-2}\right)$, $S\left(3,1^{n-1}\right)$ or the graph shown in Figure 3, as a spanning subgraph. Hence, the result follows from Theorem 4.2, Theorem 4.6 and Theorem 4.3.

Theorem 4.6. For the starlike tree $G=S\left(3,1^{m-1}\right)$ of order $m+3, b(G)=$ $\frac{m^{2}+m-4}{2}$.

Proof. Let the vertices of G be labeled as in Figure 4 and let \bar{G} be a distancebalanced closure of G. Now, we are going to construct \bar{G}. Let $H=K_{m+3}$ be a complete graph with the same vertex set as G. Omit the edges of cycles $C_{1}=x_{3} x_{4} \ldots x_{m} x_{3}$ and $C_{2}=o y x_{2} x_{1} z o$ from H to obtain $\bar{G}=H \backslash\left(C_{1} \cup C_{2}\right)$. Then the graph \bar{G} is an n-regular graph with diameter 2 , which contains G as a spanning subgraph. So by Theorem $4.4, \bar{G}$ is a distance-balanced closure of G and $b(G)=\frac{m^{2}+m-4}{2}$.

Conclusion. In previous sections, we have proved that any connected distance-balanced graph G with $\Delta(G) \geq|V(G)|-3$, is a regular graph, moreover, distanced-closure of such a graph G is a smallest regular graph which contains G. This helped us to find a distance-balanced closure of trees T with $\Delta(T) \geq|V(T)|-3$ and to compute $b(T)$ for such trees.

Acknowledgments

The authors would like to thank the anonymous referees for their useful comments and suggestions.

References

1. H. J. Bandelt, V. Chepoi, Metric graph theory and geometry: a survey, manuscript, 2004.
. F. Buckley, F. Harary, Distance in graphs, Addison-Wesley, 1990.
2. V. Chepoi, Isometric subgraphs of hamming graphs and d-convexity, Cybernetics, 24, (1988), 6-10 (Russian, English transl.)
3. D. Ž. Dijoković, Dictance preserving subgraphs of hypercubes, J. Combin. Theory Ser B., 14, (1973), 263-267.
4. D. Eppstein, The lattice dimention of a graph, European J. Combin., 26, (2005), 585592.
5. A. Graovac, M. Juvan, M.Petkovšek, A. Vasel, J. Žerovnik, The Szged index of fasciagraphs, MATCH Commun. Math. Comput. Chem., 49, (2003), 47-66.
6. I. Gutman, L. Popovič, P. V. Khadikar S. Karmarkar, S. Joshi, M. Mandloi, Relations between Wiener and Szeged indices of monocyclic molecules, MATCH Commun. Math. Comput. Chem., 35, (1997), 91-103.
7. J. Fathali, N. Jafari Rad, S. Rahimi Sherbaf, The p-median and p-center Problems on Bipartite Graphs, Iranian Journal of Mathematical Sciences and Informatics, 9 (2), (2014), 37-43.
8. J. Jerebic, S. Klavžar, D. F. Rall, Dictance-balanced graphs, Ann. Combin., 12, (2008), 71-79.
9. H. S. Ramane, I. Gutman, A. B. Ganagi, On Diameter of Line Graphs, Iranian Journal of Mathematical Sciences and Informatics, 8 (1), (2013), 105-109.

[^0]: * Corresponding Author

 Received 26 July 2013; Accepted 11 June 2014
 (C)2015 Academic Center for Education, Culture and Research TMU

