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ABSTRACT. In this paper we prove that any distance-balanced graph G
with A(G) > |V(G)| — 3 is regular. Also we define notion of distance-
balanced closure of a graph and we find distance-balanced closures of
trees T with A(T) > |V(T)| — 3.
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1. INTRODUCTION

Let G be a graph with vertex set V(G) and edge set E(G). We denote
|[V(G)| by n. The set of neighbors of a vertex v € V(G) is denoted by Ng(v),
and Ng[v] = Ng(v) U {v}. The degree of a vertex v is denoted by degq(v)

and minimum degree and maximum degree of G denoted by 6(G) and A(G),
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respectively. The distance dg(u,v) between vertices v and v is the length of
a shortest path between u and v in G. The diameter diam(G) of graph G is
defined as max{dg(u,v) : u,v € V(G)}. The notion of distance is studied in
several works in graph theory (See [2] and the references therein) and many
research works are based on the concepts related to this notion (See for instance
[8] and [10]).

For an edge xy of a graph G, Wg} is the set of vertices which are closer to
x than y, more formally

Wy, = {u € V(G)ldg(u,z) < de(u,y)}-

Moreover, g;WyG is the set of vertices of G that have equal distances to x and
y, that is

Wy = {u € V(G)ldg (u, v) = dg(u,y)}.

These sets play important roles in metric graph theory, see for instance [1, 3,
4, 5]. Since x always belongs to ny, for convenience we let UEJ = ny \ {z}.
Distance-balanced graphs are introduced in [9] as graphs for which [WS | =

\WyGT| (or equivalently |UTGy\ = |UyGT|) for every pair of adjacent vertices xfy €
V(@G).

In [9], the parameter b(G) of a graph G is introduced as the smallest number
of the edges which can be added to G such that the obtained graph is distance-
balanced. Since the complete graph is distance-balanced, this parameter is
well-defined. We call graph G a distance-balanced closure of H if G is distance-
balanced and H is a spanning subgraph of G with |E(G)| =b(H) + |E(H)|; in
other words, a distance-balanced closure of H is a distance-balanced graph G
which contains H as a spanning subgraph and has minimum number of edges.
As mentioned in [9], the computation of b(G) is quite hard in general but it
might be interesting in some special cases. In this paper we compute b(G) for
all trees T with A(T) > |V(T)| — 3. In Section 2, we compute that distance-
balanced closure of graphs G with A(G) = n — 1. In Section 3, and Section 4,
we concern graphs G with A(G) = n—2 and A(G) = n— 3, respectively. Then
we compute b(T') for all trees T with A(T) =n —2 and A(T) =n — 3.

Here we mention some more definitions and notations about trees. Let P,
denoted the path with n vertices. A tree which has exactly one vertex of degree
greater than two is said to be starlike. The vertex of maximum degree is called
the central vertex. We denote by S(ni,na,...,ng) a starlike tree in which
removing the central vertex leaves disjoint paths P, Pp,,...,P,,. We say
that S(n1,na,...,nk) has branches of length nq,no,...,ng. It is obvious that
S(ni,na,...,nk) has ng + na + ... + n, + 1 vertices. For simplicity a starlike
with «; branches of length n; (1 <14 < k) is denoted by S(n{*,n3?,...,ny*).
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2. DISTANCE-BALANCED GRAPHS WITH MAXIMUM DEGREE n — 1

In this section we prove that for any graph G with A(G) = n — 1, the only
distance-balanced closure of G is the complete graph K,,. The following result
is very useful in this paper. It is in fact a slight modification of Corollary 2.3
of [9].

Theorem 2.1. Let G be a graph with diameter at most 2 and H be a distance-
balanced graph such that G is a spanning subgraph of H. Then H is a regular
graph. Moreover, every regular graph with diameter at most 2 is distance-
balanced.

Corollary 2.2. For every integer m > 1, the graph K1 ,,, has a unique distance-
balanced closure which is isomorphic to Ky,+1, hence, b(K1 ) = (m;l) —m.

Proof. Let G be a distance-balanced closure of K ,,. By Theorem 2.1, G is a
regular graph and since K7 ,, has a vertex of degree m, GG should be m-regular,
hence G = K, 41. O

The following is an immediate conclusion of Theorem 2.1.

Corollary 2.3. Let G be a graph with n vertices and A(G) = n — 1. Then
the graph G has a unique distance balanced closure. Moreover, this closure is
isomorphic to K,,.

3. DISTANCE-BALANCED GRAPHS WITH MAXIMUM DEGREE n — 2

In this section, we prove that any distance-balanced graph G with A(G) =
n — 2 is a regular graph using this, we construct a distance-balanced closure
of T where T is a tree with this property (that is A(T) = n — 2) and then
compute b(T).

The following Lemma will be used occasionally in this paper and the proof
is easily deduced from the definition of Ug/.

Lemma 3.1. Let x and y be two adjacent vertices of a graph G, then Ug N
Ng(y) =0 (or US, C V(G)\ Ngly]). Furthermore, Ng|y] \ Uﬁc C Nglz].

Ty =
Theorem 3.2. Let T = S(2,1™7 1) be a starlike tree and H be a distance-

balanced graph containing T as a spanning subgraph. Then diam(H) < 2,
hence, H is an r-regular graph for some m <r <m+ 1.

Proof. Suppose that the vertices of T are labeled as shown in Figure 1. If
oy € E(H), then H contains K ,,4+1 as a spanning subgraph, so by Corollary
22, H Kpyo.

So, we may assume that oy ¢ E(H) (and consequently diam(H) # 1).
We prove diam(H) = 2. For this, it is enough to show that d(y,x;) < 2 for
i = 2,---,m. Let i be an integer with 2 < ¢ < m; using the fact that y
is the only vertex which is not adjacent to o in H and using Lemma 3.1, we
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conclude that U, C {y}; If U¥ = {y}, then z;y € E(H) and dy(z;,y) =1,
hence in this case dy(z;,y) < 2. Otherwise, Uffo = (), in this case, for every
z € V(H)\ {o,2;} we have dg(z,2;) = dpu(z,0), particularly, dg(z,2;) =
dg(y,0) = 2. Hence, diam(H) = 2, as required. The result is now concluded
using Theorem 2.1.

X(3) o x(m-1)
x(2) x(m)
x(1)
y
Figure 1

Theorem 3.3. Let T = S(2,1™71) be a starlike of order m + 2. Then

2 . .
- —1 ifm is even;

_ 2
o(T) {(m;l) otherwise.

Proof. Suppose that the vertices of T be labeled as in Figure 1, and let T be a
distance-balanced closure of T'. First, suppose that m is an odd integer; Since
there is no m-regular graph of order m + 2, by Theorem 3.2, T = K, 5.
Now, suppose that m is an even integer. Let H = K,,42 be a complete graph
with vertex set V(T') and M be a complete matching of H which contains the
edge oy. Then H \ M, is an m-regular graph with diameter 2 and contains T
as a spanning subgraph. Hence, by Theorem 2.1 and Theorem 3.2, T = H\ M,
is a distance-balanced closure of T' and b(T') = mTQ -1 O

Corollary 3.4. Let G be a connected graph of order n, with A(G) = n — 2
and H be a distance-balanced graph which contains G as a spanning subgraph.
Then H is either an (n — 2)-regular graph or the complete graph K,.

Proof. In this case S(2,1"7?) is an spanning subgraph of G. So, by Theorem
3.2, H is either an (n — 2)-regular graph or the complete graph K. [

4. DISTANCE-BALANCED GRAPHS WITH MAXIMUM DEGREE n — 3

In this section we will prove that every distance-balanced graph with A(G) =
n — 3 is regular. Moreover, by constructing distance-balanced closure of trees
with A(T) = n — 3 we compute b(T) for these trees.
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Theorem 4.1. Let T = S(2%2,1™~2) be a starlike of order m + 3 and H be
a distance-balanced graph which contains T as a spanning subgraph. Then
diam(H) < 2. Moreover, H is an r-regular graph with r > m.

Proof. Suppose the vertices of T are labeled as in Figure 2. If either oy or oz
be an edge of H, then by Theorem 3.2, H is an r-regular graph with r > m+1,
which proves this theorem. So, suppose that oy, 0z ¢ E(H).

X(4) ’ ;3- x(m-1)

X(3) x(m)
x(2) x(1)
z y
Figure 2

By Lemma 3.1, for each 1 < i < m, Ugo C {y,z}. Now, we prove that
degy(x;) = m, for each ¢ = 1,--- ,m. For this, we consider three possible
cases:

Case 1. |U1)| = 0: Then U, =0 and UZ = 0. Hence, by Lemma 3.1,
Ny (z;) ={o,z1,22,...,2m} \ {2;} and degy(z;) = m.

Case 2. [Uf | = 1: Without loss of generality we can assume that U, =
{y}. Then there is an integer 1 < j < m such that UZ = {z;}.
Since dg(o,y) = 2, yx; € E(H). Hence, using Lemma 3.1, Ny (z;) =
{o,y,21,29,...,2m} \ {z;} and degy(z;) = m.

Case 3. |U[ | = 2: Wehave U!, = {y, z}. Since dy(0,y) = du(0,2) =
2, we conclude that yxz;,zz; € E(H). Since |UZ | = 2, there are
integers j and k such that U = {z;, 2;}. Hence, by Lemma 3.1, we
have Ny (z;) ={o0,y,2, 21,22, 23, ..., Tm }\{i, x;, 21 } and degy (z;) =
m.

Next, we prove that degy(y) > m — 3 and degy(z) > m — 3. From
degy (1) = m and Lemma 3.1, it concludes that |UJL | < 2, hence, US| <2,
which means that there are at most two elements in Ny (x1) \ Ng[y]. Using
this and Lemma 3.1, we provide degy (y) > m — 3. With a similar argument,
the inequality degy(2) > m — 3 is concluded.

Now, by using deg(y),degy(z) > m — 3, degy(x;) >m, (i=1,---,m),
and oy,0z ¢ E(H), hence every two nonadjacent vertices have a common
neighbor, provided that m > 7. This means that diam(H) = 2, which proves
the result in case m > 7, using Theorem 2.1. For the cases, 3 < m < 6, through
a case by case inspection (by using degy(x;) > m, i = 1,--- ,m,) the same
result is obtained. O


http://dx.doi.org/10.7508/ijmsi.2015.01.007
http://ijmsi.ir/article-1-714-en.html

[ Downloaded from ijmsi.ir on 2026-02-04 ]

[ DOI: 10.7508/ijmsi.2015.01.007 ]

100 N. Ghareghani, B. Manoochehrian, M. Mohammad-Noori

Theorem 4.2. For the starlike tree T = S(2%2,1m~2) of order m + 3, b(G) =
m2+m—4
mn=s,

Proof. Let the vertices of T be labeled as in Figure 2 and T be a distance-
balanced closure of T. Now, we are going to construct 7. Let H = K,, 3
be a complete graph with the same vertex set as H. Omit the edges of cycles
Cy = 210223 . .. 21 and Cy = oyzo from H to obtain T = H \ (C; U Cy).
Now, G is an m-regular graph with diameter 2, which contains 7" as a spanning

subgraph, so by Theorem 4.1 and Theorem 2.1, T is a distance-balanced closure
of T and b(T) = m*tm=4, O

Theorem 4.3. Let T be the tree of Figure 8 and H be a distance-balanced
graph which contains T as a spanning subgraph. Then diam(H) < 2, hence, H

is a regular graph. Moreover, b(T) = %-
x(3) °tc Xx(m-1)
0
x(2) X(m)
x(1)
z y
Figure 3

Proof. 1If either oy € E(H) or 0oz € E(H), then by Theorem 3.2, diam(H) < 2
and H is a regular graph. So, suppose that neither oy nor oz is in E(H).
Since [WH | = W[ | and 0 € W[, there exists a vertex x;, i # 1, such that
yr; € E(H). Therefore, graph H contains graph S(22,1™72) as a spanning
subgraph and using Theorem 4.1, diam(H) < 2 and H is a regular graph.
Furthermore, the graph introduced in the proof of Theorem 4.2, is also distance-

balanced closure of T. Hence b(T') = W. O

Theorem 4.4. Consider the starlike tree T = S(3,1™~1) of order m + 3 and
let H be a distance-balanced graph which contains T as a spanning subgraph.
Then H is an r-regular graph for some m <r < m + 2.

Proof. Let the vertices of T be labeled as in Figure 4.

x(3) o x(m-1)
X(2) x(m)
x(1)
y
z
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Figure 4

If either oy € E(H) or oz € E(H), then by Theorem 3.2, diam(H) < 2 and
H is a regular graph. If zzy € E(H), then H contains the graph shown in
Figure 3 as a spanning subgraph, so by Theorem 4.3, H is a regular graph.
So we may assume that {oy, 0z, z12} N E(H) = . Since [W/[I| = [W/| and
T, € Wy‘z, the vertex z is adjacent to at least one vertex in {zs,x3,...,Zm}
(because otherwise according to the structure of " we have V' \ {y, 2} C U,.).
Hence, H contains the graph S(22,1™72), as a spanning subgraph. So, by
Theorem 4.1, diamH < 2 and H is a regular graph, as desired. (I

Corollary 4.5. Let G be a connected graph of order n with A(G) = n—3. Then
every distance-balanced graph H which contains G as a spanning subgraph, is
regular.

Proof. Since A(G) =n — 3, G contains at least one of the graphs S(22,1"72),
S(3,1™71) or the graph shown in Figure 3, as a spanning subgraph. Hence, the
result follows from Theorem 4.2, Theorem 4.6 and Theorem 4.3. O

Theorem 4.6. For the starlike tree G = S(3,1™71) of order m + 3, b(G) =

m2+m—4

Proof. Let the vertices of G be labeled as in Figure 4 and let G be a distance-
balanced closure of G. Now, we are going to construct G. Let H = K,, 3
be a complete graph with the same vertex set as G. Omit the edges of cycles
Cy = z324 ... 723 and Cy = oywoxi20 from H to obtain G = H \ (C1 U Cy).
Then the graph G is an n-regular graph with diameter 2, which contains G as

a spanning subgraph. So by Theorem 4.4, G is a distance-balanced closure of
G and b(G) = %. O

Conclusion. In previous sections, we have proved that any connected
distance-balanced graph G with A(G) > |V(G)| — 3, is a regular graph, more-
over, distanced-closure of such a graph G is a smallest regular graph which
contains G. This helped us to find a distance-balanced closure of trees T" with
A(T) > |V(T)| — 3 and to compute b(T') for such trees.
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