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1. Introduction

Let (Ω,A, µ) be a measurable space consisting of a set Ω, a σ – algebra A of

parts of Ω and a countably additive and positive measure µ on A with values

in R ∪ {∞} . Assume, for simplicity, that
∫

Ω
dµ = 1. Consider the Lebesgue

space

L (Ω, µ) := {f : Ω→ R, f is µ-measurable and

∫
Ω

|f (t)| dµ (t) <∞}.

For simplicity of notation we write everywhere in the sequel
∫

Ω
wdµ instead of∫

Ω
w (t) dµ (t) .

In order to provide a reverse of the celebrated Jensen’s integral inequality

for convex functions, S.S. Dragomir obtained in 2002 [29] the following result:
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2 S. S. Dragomir

Theorem 1.1. Let Φ : [m,M ] ⊂ R→ R be a differentiable convex function on

(m,M) and f : Ω → [m,M ] so that Φ ◦ f, f, Φ′ ◦ f, (Φ′ ◦ f) · f ∈ L (Ω, µ) .

Then we have the inequality:

0 ≤
∫

Ω

Φ ◦ fdµ− Φ

(∫
Ω

fdµ

)
(1.1)

≤
∫

Ω

f · (Φ′ ◦ f) dµ−
∫

Ω

Φ′ ◦ fdµ
∫

Ω

fdµ

≤ 1

2
[Φ′ (M)− Φ′ (m)]

∫
Ω

∣∣∣∣f − ∫
Ω

fdµ

∣∣∣∣ dµ.
In the case of discrete measure, we have:

Corollary 1.2. Let Φ : [m,M ] → R be a differentiable convex function on

(m,M) . If xi ∈ [m,M ] and wi ≥ 0 (i = 1, . . . , n) with Wn :=
∑n
i=1 wi = 1,

then one has the counterpart of Jensen’s weighted discrete inequality:

0 ≤
n∑
i=1

wiΦ (xi)− Φ

(
n∑
i=1

wixi

)
(1.2)

≤
n∑
i=1

wiΦ
′ (xi)xi −

n∑
i=1

wiΦ
′ (xi)

n∑
i=1

wixi

≤ 1

2
[Φ′ (M)− Φ′ (m)]

n∑
i=1

wi

∣∣∣∣∣∣xi −
n∑
j=1

wjxj

∣∣∣∣∣∣ .
Remark 1.3. We notice that the inequality between the first and the second

term in (1.2) was proved in 1994 by Dragomir & Ionescu, see [36].

If f, g : Ω → R are µ−measurable functions and f, g, fg ∈ L (Ω, µ) , then

we may consider the Čebyšev functional

T (f, g) :=

∫
Ω

fgdµ−
∫

Ω

fdµ

∫
Ω

gdµ. (1.3)

The following result is known in the literature as the Grüss inequality

|T (f, g)| ≤ 1

4
(Γ− γ) (∆− δ) , (1.4)

provided

−∞ < γ ≤ f (t) ≤ Γ <∞, −∞ < δ ≤ g (t) ≤ ∆ <∞ (1.5)

for µ – a.e. t ∈ Ω.

The constant 1
4 is sharp in the sense that it cannot be replaced by a smaller

quantity.

If we assume that −∞ < γ ≤ f (t) ≤ Γ <∞ for µ – a.e. t ∈ Ω, then by the

Grüss inequality for g = f and by the Schwarz’s integral inequality, we have∫
Ω

∣∣∣∣f − ∫
Ω

fdµ

∣∣∣∣ dµ ≤
[∫

Ω

f2dµ−
(∫

Ω

fdµ

)2
] 1

2

≤ 1

2
(Γ− γ) . (1.6)
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New Jensen and Ostrowski Type Inequalities 3

On making use of the results (1.1) and (1.6), we can state the following string

of reverse inequalities

0 ≤
∫

Ω

Φ ◦ fdµ− Φ

(∫
Ω

fdµ

)
(1.7)

≤
∫

Ω

f · (Φ′ ◦ f) dµ−
∫

Ω

Φ′ ◦ fdµ
∫

Ω

fdµ

≤ 1

2
[Φ′ (M)− Φ′ (m)]

∫
Ω

∣∣∣∣f − ∫
Ω

fdµ

∣∣∣∣ dµ
≤ 1

2
[Φ′ (M)− Φ′ (m)]

[∫
Ω

f2dµ−
(∫

Ω

fdµ

)2
] 1

2

≤ 1

4
[Φ′ (M)− Φ′ (m)] (M −m) ,

provided that Φ : [m,M ] ⊂ R→ R is a differentiable convex function on (m,M)

and f : Ω→ [m,M ] so that Φ◦f, f, Φ′◦f, f ·(Φ′ ◦ f) ∈ L (Ω, µ) , with
∫

Ω
dµ = 1.

The following reverse of the Jensen’s inequality also holds [33]:

Theorem 1.4. Let Φ : I → R be a continuous convex function on the interval

of real numbers I and m,M ∈ R, m < M with [m,M ] ⊂ I̊, where I̊ is the

interior of I. If f : Ω→ R is µ-measurable, satisfies the bounds

−∞ < m ≤ f (t) ≤M <∞ for µ-a.e. t ∈ Ω

and such that f, Φ ◦ f ∈ L (Ω, µ) , then

0 ≤
∫

Ω

Φ ◦ fdµ− Φ

(∫
Ω

fdµ

)
(1.8)

≤
(
M −

∫
Ω

fdµ

)(∫
Ω

fdµ−m
)

Φ′− (M)− Φ′+ (m)

M −m

≤ 1

4
(M −m)

[
Φ′− (M)− Φ′+ (m)

]
,

where Φ′− is the left and Φ′+ is the right derivative of the convex function Φ.

For other reverse of Jensen inequality and applications to divergence mea-

sures see [33].

In 1938, A. Ostrowski [55], proved the following inequality concerning the

distance between the integral mean 1
b−a

∫ b
a

Φ (t) dt and the value Φ (x), x ∈
[a, b].

For various results related to Ostrowski’s inequality see [6]-[9], [15]-[41], [43]

and the references therein.

Theorem 1.5. Let Φ : [a, b]→ R be continuous on [a, b] and differentiable on

(a, b) such that Φ′ : (a, b)→ R is bounded on (a, b), i.e., ‖Φ′‖∞ := sup
t∈(a,b)

|Φ′ (t)| <
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4 S. S. Dragomir

∞. Then∣∣∣∣∣Φ (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 ‖Φ′‖∞ (b− a) , (1.9)

for all x ∈ [a, b] and the constant 1
4 is the best possible.

Now, for γ,Γ ∈ C and [a, b] an interval of real numbers, define the sets of

complex-valued functions [34]

Ū[a,b] (γ,Γ)

:=
{
f : [a, b]→ C|Re

[
(Γ− f (t))

(
f (t)− γ

)]
≥ 0 for almost every t ∈ [a, b]

}
and

∆̄[a,b] (γ,Γ) :=

{
f : [a, b]→ C|

∣∣∣∣f (t)− γ + Γ

2

∣∣∣∣ ≤ 1

2
|Γ− γ| for a.e. t ∈ [a, b]

}
.

The following representation result may be stated [34].

Proposition 1.6. For any γ,Γ ∈ C, γ 6= Γ, we have that Ū[a,b] (γ,Γ) and

∆̄[a,b] (γ,Γ) are nonempty, convex and closed sets and

Ū[a,b] (γ,Γ) = ∆̄[a,b] (γ,Γ) . (1.10)

On making use of the complex numbers field properties we can also state

that:

Corollary 1.7. For any γ,Γ ∈ C, γ 6= Γ,we have that

Ū[a,b] (γ,Γ) = {f : [a, b]→ C | (Re Γ− Re f (t)) (Re f (t)− Re γ) (1.11)

+ (Im Γ− Im f (t)) (Im f (t)− Im γ) ≥ 0 for a.e. t ∈ [a, b]} .

Now, if we assume that Re (Γ) ≥ Re (γ) and Im (Γ) ≥ Im (γ) , then we can

define the following set of functions as well:

S̄[a,b] (γ,Γ) := {f : [a, b]→ C | Re (Γ) ≥ Re f (t) ≥ Re (γ) (1.12)

and Im (Γ) ≥ Im f (t) ≥ Im (γ) for a.e. t ∈ [a, b]} .

One can easily observe that S̄[a,b] (γ,Γ) is closed, convex and

∅ 6= S̄[a,b] (γ,Γ) ⊆ Ū[a,b] (γ,Γ) . (1.13)

The following result holds [34]:

Theorem 1.8. Let Φ : I → C be an absolutely continuous functions on

[a, b] ⊂ I̊, the interior of I. For some γ,Γ ∈ C, γ 6= Γ, assume that Φ′ ∈
Ū[a,b] (γ,Γ)

(
= ∆̄[a,b] (γ,Γ)

)
. If g : Ω → [a, b] is Lebesgue µ-measurable on Ω

and such that Φ ◦ g, g ∈ L (Ω, µ) , then we have the inequality∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ (x)− γ + Γ

2

(∫
Ω

gdµ− x
)∣∣∣∣ ≤ 1

2
|Γ− γ|

∫
Ω

|g − x| dµ (1.14)
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New Jensen and Ostrowski Type Inequalities 5

for any x ∈ [a, b].

In particular, we have∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ

(
a+ b

2

)
− γ + Γ

2

(∫
Ω

gdµ− a+ b

2

)∣∣∣∣ (1.15)

≤ 1

2
|Γ− γ|

∫
Ω

∣∣∣∣g − a+ b

2

∣∣∣∣ dµ ≤ 1

4
(b− a) |Γ− γ|

and ∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ

(∫
Ω

gdµ

)∣∣∣∣ ≤ 1

2
|Γ− γ|

∫
Ω

∣∣∣∣g − ∫
Ω

gdµ

∣∣∣∣ dµ (1.16)

≤ 1

2
|Γ− γ|

(∫
Ω

g2dµ−
(∫

Ω

gdµ

)2
)1/2

≤ 1

4
(b− a) |Γ− γ| .

Motivated by the above results, in this paper we provide more upper bounds

for the quantity∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ (x)− λ
(∫

Ω

gdµ− x
)∣∣∣∣ , x ∈ [a, b] ,

under various assumptions on the absolutely continuous function Φ, which in

the particular case of x =
∫

Ω
gdµ provides some results connected with Jensen’s

inequality while in the case λ = 0 provides some generalizations of Ostrowski’s

inequality. Applications for divergence measures are provided as well.

2. Some Identities

The following result holds [34]:

Lemma 2.1. Let Φ : I → C be an absolutely continuous functions on [a, b] ⊂ I̊,

the interior of I. If g : Ω→ [a, b] is Lebesgue µ-measurable on Ω and such that

Φ ◦ g, g ∈ L (Ω, µ) , then we have the equality∫
Ω

Φ ◦ gdµ− Φ (x)− λ
(∫

Ω

gdµ− x
)

(2.1)

=

∫
Ω

[
(g − x)

∫ 1

0

(Φ′ ((1− s)x+ sg)− λ) ds

]
dµ

for any λ ∈ C and x ∈ [a, b].

In particular, we have∫
Ω

Φ ◦ gdµ− Φ (x) =

∫
Ω

[
(g − x)

∫ 1

0

Φ′ ((1− s)x+ sg) ds

]
dµ, (2.2)

for any x ∈ [a, b].
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6 S. S. Dragomir

Remark 2.2. With the assumptions of Lemma 2.1 we have∫
Ω

Φ ◦ gdµ− Φ

(
a+ b

2

)
(2.3)

=

∫
Ω

[(
g − a+ b

2

)∫ 1

0

Φ′
(

(1− s) a+ b

2
+ sg

)
ds

]
dµ.

Corollary 2.3. With the assumptions of Lemma 2.1 we have∫
Ω

Φ ◦ gdµ− Φ

(∫
Ω

gdµ

)
(2.4)

=

∫
Ω

[(
g −

∫
Ω

gdµ

)∫ 1

0

Φ′
(

(1− s)
∫

Ω

gdµ+ sg

)
ds

]
dµ.

Proof. We observe that since g : Ω → [a, b] and
∫

Ω
dµ = 1 then

∫
Ω
gdµ ∈ [a, b]

and by taking x =
∫

Ω
gdµ in (2.2) we get (2.4). �

Corollary 2.4. With the assumptions of Lemma 2.1 we have∫
Ω

Φ ◦ gdµ− 1

b− a

∫ b

a

Φ (x) dx− λ
(∫

Ω

gdµ− a+ b

2

)
(2.5)

=

∫
Ω

{
1

b− a

∫ b

a

[
(g − x)

∫ 1

0

(Φ′ ((1− s)x+ sg)− λ) ds

]
dx

}
dµ.

Proof. Follows by integrating the identity (2.1) over x ∈ [a, b] , dividing by

b− a > 0 and using Fubini’s theorem. �

Corollary 2.5. Let Φ : I → C be an absolutely continuous functions on [a, b] ⊂
I̊, the interior of I. If g, h : Ω → [a, b] are Lebesgue µ-measurable on Ω and

such that Φ ◦ g, Φ ◦ h, g, h ∈ L (Ω, µ) , then we have the equality∫
Ω

Φ ◦ gdµ−
∫

Ω

Φ ◦ hdµ− λ
(∫

Ω

gdµ−
∫

Ω

hdµ

)
(2.6)

=

∫
Ω

∫
Ω

[
(g (t)− h (τ))

∫ 1

0

(Φ′ ((1− s)h (τ) + sg (t))− λ) ds

]
× dµ (t) dµ (τ)

for any λ ∈ C and x ∈ [a, b].

In particular, we have∫
Ω

Φ ◦ gdµ−
∫

Ω

Φ ◦ hdµ (2.7)

=

∫
Ω

∫
Ω

[
(g (t)− h (τ))

∫ 1

0

Φ′ ((1− s)h (τ) + sg (t)) ds

]
dµ (t) dµ (τ) ,

for any x ∈ [a, b].
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New Jensen and Ostrowski Type Inequalities 7

Remark 2.6. The above inequality (2.6) can be extended for two measures as

follows ∫
Ω1

Φ ◦ gdµ1 −
∫

Ω2

Φ ◦ hdµ2 − λ
(∫

Ω1

gdµ1 −
∫

Ω2

hdµ2

)
(2.8)

=

∫
Ω1

∫
Ω2

[
(g (t)− h (τ))

∫ 1

0

(Φ′ ((1− s)h (τ) + sg (t))− λ) ds

]
× dµ1 (t) dµ2 (τ) ,

for any λ ∈ C and x ∈ [a, b] and provided that Φ ◦ g, g ∈ L (Ω1, µ1) while

Φ ◦ h, h ∈ L (Ω2, µ2) .

Remark 2.7. If w ≥ 0 µ-almost everywhere (µ-a.e.) on Ω with
∫

Ω
wdµ > 0,

then by replacing dµ with wdµ∫
Ω
wdµ

in (2.1) we have the weighted equality

1∫
Ω
wdµ

∫
Ω

w (Φ ◦ g) dµ− Φ (x)− λ
(

1∫
Ω
wdµ

∫
Ω

wgdµ− x
)

(2.9)

=
1∫

Ω
wdµ

∫
Ω

w ·
[
(g − x)

∫ 1

0

(Φ′ ((1− s)x+ sg)− λ) ds

]
dµ

for any λ ∈ C and x ∈ [a, b], provided Φ ◦ g, g ∈ Lw (Ω, µ) where

Lw (Ω, µ) :=

{
g|
∫

Ω

w |g| dµ <∞
}
.

The other equalities have similar weighted versions. However the details are

omitted.

3. Inequalities for Derivatives of Bounded Variation

The following result holds:

Theorem 3.1. Let Φ : I → C be an absolutely continuous functions on [a, b] ⊂
I̊, the interior of I and with the property that the derivative Φ′ is of bounded

variation on [a, b] . If g : Ω → [a, b] is Lebesgue µ-measurable on Ω and such

that Φ ◦ g, g ∈ L (Ω, µ) , then we have∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ (x)− Φ′ (a) + Φ′ (b)

2

(∫
Ω

gdµ− x
)∣∣∣∣ (3.1)

≤ 1

2

b∨
a

(Φ′)

∫
Ω

|g − x| dµ

for any x ∈ [a, b].

In particular, we have∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ

(
a+ b

2

)
− Φ′ (a) + Φ′ (b)

2

(∫
Ω

gdµ− a+ b

2

)∣∣∣∣ (3.2)

≤ 1

2

b∨
a

(Φ′)

∫
Ω

∣∣∣∣g − a+ b

2

∣∣∣∣ dµ ≤ 1

2
(b− a)

b∨
a

(Φ′)
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8 S. S. Dragomir

and ∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ

(∫
Ω

gdµ

)∣∣∣∣ ≤ 1

2

b∨
a

(Φ′)

∫
Ω

∣∣∣∣g − ∫
Ω

gdµ

∣∣∣∣ dµ (3.3)

≤ 1

2

b∨
a

(Φ′)

(∫
Ω

g2dµ−
(∫

Ω

gdµ

)2
)1/2

≤ 1

4
(b− a)

b∨
a

(Φ′) .

Proof. From the identity (2.1) we have∫
Ω

Φ ◦ gdµ− Φ (x)− Φ′ (a) + Φ′ (b)

2

(∫
Ω

gdµ− x
)

(3.4)

=

∫
Ω

[
(g − x)

∫ 1

0

(
Φ′ ((1− s)x+ sg)− Φ′ (a) + Φ′ (b)

2

)
ds

]
dµ

for any x ∈ [a, b].

Taking the modulus in (3.4) we get∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ (x)− Φ′ (a) + Φ′ (b)

2

(∫
Ω

gdµ− x
)∣∣∣∣ (3.5)

≤
∫

Ω

∣∣∣∣(g − x)

∫ 1

0

(
Φ′ ((1− s)x+ sg)− Φ′ (a) + Φ′ (b)

2

)∣∣∣∣ dsdµ
≤
∫

Ω

|g − x|
∫ 1

0

∣∣∣∣Φ′ ((1− s)x+ sg)− Φ′ (a) + Φ′ (b)

2

∣∣∣∣ dsdµ
for any x ∈ [a, b].

Since Φ′ is of bounded variation on [a, b] , then for any s ∈ [0, 1] , x ∈ [a, b]

and t ∈ Ω we have∣∣∣∣Φ′ ((1− s)x+ sg (t))− Φ′ (a) + Φ′ (b)

2

∣∣∣∣
=

1

2
|Φ′ ((1− s)x+ sg (t))− Φ′ (a) + Φ′ ((1− s)x+ sg (t))− Φ′ (b)|

≤ 1

2
[|Φ′ ((1− s)x+ sg (t))− Φ′ (a)|+ |Φ′ (b)− Φ′ ((1− s)x+ sg (t))|]

≤ 1

2

b∨
a

(Φ′) .

Then we have∫
Ω

|g − x|
∫ 1

0

∣∣∣∣Φ′ ((1− s)x+ sg)− Φ′ (a) + Φ′ (b)

2

∣∣∣∣ dsdµ (3.6)

≤ 1

2

b∨
a

(Φ′)

∫
Ω

|g − x| dµ
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New Jensen and Ostrowski Type Inequalities 9

for any x ∈ [a, b].

Making use of (3.5) and (3.6) we deduce the desired result (3.1). �

Remark 3.2. Let Φ : I → C be an absolutely continuous functions on [a, b] ⊂ I̊,

the interior of I and with the property that the derivative Φ′ is of bounded

variation on [a, b] . If xi ∈ [m,M ] and wi ≥ 0 (i = 1, . . . , n) with Wn :=∑n
i=1 wi = 1, then one has the weighted discrete inequality:∣∣∣∣∣

n∑
i=1

wiΦ (xi)− Φ (x)− Φ′ (a) + Φ′ (b)

2

(
n∑
i=1

wixi − x

)∣∣∣∣∣ (3.7)

≤ 1

2

b∨
a

(Φ′)

n∑
i=1

wi |xi − x|

for any x ∈ [a, b].

In particular, we have∣∣∣∣∣
n∑
i=1

wiΦ (xi)− Φ

(
a+ b

2

)
− Φ′ (a) + Φ′ (b)

2

(
n∑
i=1

wixi −
a+ b

2

)∣∣∣∣∣ (3.8)

≤ 1

2

b∨
a

(Φ′)

n∑
i=1

wi

∣∣∣∣xi − a+ b

2

∣∣∣∣ ≤ 1

4
(b− a)

b∨
a

(Φ′)

and∣∣∣∣∣
n∑
i=1

wiΦ (xi)− Φ

(
n∑
i=1

wixi

)∣∣∣∣∣ ≤ 1

2

b∨
a

(Φ′)

n∑
i=1

wi

∣∣∣∣∣xi −
n∑
i=1

wixi

∣∣∣∣∣ (3.9)

≤ 1

2

b∨
a

(Φ′)

 n∑
j=1

wix
2
j −

(
n∑
k=1

wkxk

)2
1/2

≤ 1

4
(b− a)

b∨
a

(Φ′) .

4. Inequalities for Lipschitzian Derivatives

The following result holds:

Theorem 4.1. Let Φ : I → C be an absolutely continuous functions on [a, b] ⊂
I̊, the interior of I and with the property that the derivative Φ′ is Lipschitzian

with the constant K > 0 on [a, b] . If g : Ω→ [a, b] is Lebesgue µ-measurable on

Ω and such that Φ ◦ g, g ∈ L (Ω, µ) , then we have∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ (x)− Φ′ (x)

(∫
Ω

gdµ− x
)∣∣∣∣ (4.1)

≤ 1

2
K

[
σ2
µ (g) +

(∫
Ω

gdµ− x
)2
]
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10 S. S. Dragomir

for any x ∈ [a, b], where σµ (g) is the dispersion or the standard variation,

namely

σµ (g) :=

(∫
Ω

(
g −

∫
Ω

gdµ

)2

dµ

)1/2

=

(∫
Ω

g2dµ−
(∫

Ω

gdµ

)2
)1/2

.

In particular, we have

∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ

(
a+ b

2

)
− Φ′

(
a+ b

2

)(∫
Ω

gdµ− a+ b

2

)∣∣∣∣ (4.2)

≤ 1

2
K

[
σ2
µ (g) +

(∫
Ω

gdµ− a+ b

2

)2
]

and ∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ

(∫
Ω

gdµ

)∣∣∣∣ ≤ 1

2
Kσ2

µ (g) ≤ 1

8
K (b− a)

2
. (4.3)

Proof. From the identity (2.1) we have for λ = Φ′ (x) that

∫
Ω

Φ ◦ gdµ− Φ (x)− Φ′ (x)

(∫
Ω

gdµ− x
)

(4.4)

=

∫
Ω

[
(g − x)

∫ 1

0

(Φ′ ((1− s)x+ sg)− Φ′ (x)) ds

]
dµ

for any x ∈ [a, b].

Taking the modulus in (4.4) we get

∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ (x)− Φ′ (x)

(∫
Ω

gdµ− x
)∣∣∣∣ (4.5)

≤
∫

Ω

|g − x|
∣∣∣∣∫ 1

0

(Φ′ ((1− s)x+ sg)− Φ′ (x)) ds

∣∣∣∣ dµ
≤
∫

Ω

[
|g − x|

∫ 1

0

|(Φ′ ((1− s)x+ sg)− Φ′ (x))| ds
]
dµ

≤ K
∫

Ω

[
|g − x|

∫ 1

0

s |g − x| ds
]
dµ =

1

2
K

∫
Ω

(g − x)
2
dµ

for any x ∈ [a, b].
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New Jensen and Ostrowski Type Inequalities 11

However,∫
Ω

(g − x)
2
dµ

=

∫
Ω

(
g −

∫
Ω

gdµ+

∫
Ω

gdµ− x
)2

dµ

=

∫
Ω

(
g −

∫
Ω

gdµ

)2

dµ+ 2

∫
Ω

(
g −

∫
Ω

gdµ

)(∫
Ω

gdµ− x
)
dµ

+

∫
Ω

(∫
Ω

gdµ− x
)2

dµ

=

∫
Ω

(
g −

∫
Ω

gdµ

)2

dµ+

(∫
Ω

gdµ− x
)2

for any x ∈ [a, b], and by (4.5) we get the desired result (4.1). �

Corollary 4.2. Let Φ : I → C be a twice differentiable functions on [a, b] ⊂ I̊

with ‖Φ′′‖[a,b],∞ := ess supt∈[a,b] |Φ′′ (t)| <∞. Then the inequalities (4.1)-(4.3)

hold for K = ‖Φ′′‖[a,b],∞ .

Remark 4.3. Let Φ : I → C be an absolutely continuous functions on [a, b] ⊂ I̊
and with the property that the derivative Φ′ is Lipschitzian with the con-

stant K > 0 on [a, b] . If xi ∈ [m,M ] and wi ≥ 0 (i = 1, . . . , n) with Wn :=∑n
i=1 wi = 1, then one has the weighted discrete inequality:∣∣∣∣∣

n∑
i=1

wiΦ (xi)− Φ (x)− Φ′ (x)

(
n∑
i=1

wixi − x

)∣∣∣∣∣ (4.6)

≤ 1

2
K

σ2
w (x) +

(
n∑
i=1

wixi − x

)2


for any x ∈ [a, b], where

σw (x) :=

 n∑
i=1

wi

(
xi −

n∑
k=1

wkxk

)2
1/2

=

 n∑
i=1

wix
2
i −

(
n∑
k=1

wkxk

)2
1/2

.

The following lemma may be stated:

Lemma 4.4. Let u : [a, b] → R and l, L ∈ R with L > l. The following

statements are equivalent:

(i) The function u− l+L2 ·e, where e (t) = t, t ∈ [a, b] is 1
2 (L− l)−Lipschitzian;

(ii) We have the inequalities

l ≤ u (t)− u (s)

t− s
≤ L for each t, s ∈ [a, b] with t 6= s; (4.7)

(iii) We have the inequalities

l (t− s) ≤ u (t)− u (s) ≤ L (t− s) for each t, s ∈ [a, b] with t > s. (4.8)
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12 S. S. Dragomir

Following [53], we can introduce the definition of (l, L)-Lipschitzian func-

tions:

Definition 4.5. The function u : [a, b] → R which satisfies one of the equiv-

alent conditions (i) – (iii) from Lemma 4.4 is said to be (l, L)-Lipschitzian on

[a, b] .

If L > 0 and l = −L, then (−L,L)−Lipschitzian means L-Lipschitzian in

the classical sense.

Utilising Lagrange’s mean value theorem, we can state the following result

that provides examples of (l, L)-Lipschitzian functions.

Proposition 4.6. Let u : [a, b] → R be continuous on [a, b] and differentiable

on (a, b) . If −∞ < l = inft∈[a,b] u
′ (t) and supt∈[a,b] u

′ (t) = L < ∞, then u is

(l, L)-Lipschitzian on [a, b] .

The following result holds.

Corollary 4.7. Let Φ : I → R be an absolutely continuous functions on [a, b] ⊂
I̊, with the property that the derivative Φ′ is (l, L)-Lipschitzian on [a, b] , where

l, L ∈ R with L > l. If g : Ω → [a, b] is Lebesgue µ-measurable on Ω and such

that Φ ◦ g, g ∈ L (Ω, µ) , then we have∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ (x)− Φ′ (x)

(∫
Ω

gdµ− x
)

(4.9)

−1

4
(L+ l)

[
σ2
µ (g) +

(∫
Ω

gdµ− x
)2
]∣∣∣∣∣

≤ 1

4
(L− l)

[
σ2
µ (g) +

(∫
Ω

gdµ− x
)2
]

for any x ∈ [a, b].

In particular, we have∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ

(
a+ b

2

)
− Φ′

(
a+ b

2

)(∫
Ω

gdµ− a+ b

2

)
(4.10)

−1

4
(L+ l)

[
σ2
µ (g) +

(∫
Ω

gdµ− a+ b

2

)2
]∣∣∣∣∣

≤ 1

4
(L− l)

[
σ2
µ (g) +

(∫
Ω

gdµ− a+ b

2

)2
]

and ∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ

(∫
Ω

gdµ

)
− 1

4
(L+ l)σ2

µ (g)

∣∣∣∣ ≤ 1

4
(L− l)σ2

µ (g) (4.11)

≤ 1

16
(L− l) (b− a)

2
.
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New Jensen and Ostrowski Type Inequalities 13

Proof. Consider the auxiliary function Ψ : [a, b]→ R given by

Ψ (x) = Φ (x)− 1

4
(L+ l)x2.

We observe that Ψ is differentiable and

Ψ′ (x) = Φ′ (x)− 1

2
(L+ l)x.

Since Φ′ is (l, L)-Lipschitzian on [a, b] it follows that Ψ′ is Lipschitzian with

the constant 1
2 (L− l) , so we can apply Theorem 4.1 for Ψ, i.e. we have the

inequality ∣∣∣∣∫
Ω

Ψ ◦ gdµ−Ψ (x)−Ψ′ (x)

(∫
Ω

gdµ− x
)∣∣∣∣ (4.12)

≤ 1

4
(L− l)

[
σ2
µ (g) +

(∫
Ω

gdµ− x
)2
]
.

However ∫
Ω

Ψ ◦ gdµ−Ψ (x)−Ψ′ (x)

(∫
Ω

gdµ− x
)

=

∫
Ω

Φ ◦ gdµ− Φ (x)− Φ′ (x)

(∫
Ω

gdµ− x
)

− 1

4
(L+ l)

[∫
Ω

g2dµ− x2 − 2x

(∫
Ω

gdµ− x
)]

=

∫
Ω

Φ ◦ gdµ− Φ (x)− Φ′ (x)

(∫
Ω

gdµ− x
)

− 1

4
(L+ l)

[
σ2
µ (g) +

(∫
Ω

gdµ− x
)2
]

and by (4.12) we get the desired result (4.9). �

Remark 4.8. We observe that if the function Φ is twice differentiable on I̊ and

for [a, b] ⊂ I̊ we have

−∞ < l ≤ Φ′′ (x) ≤ L <∞ for any x ∈ [a, b] ,

then Φ′ is (l, L)-Lipschitzian on [a, b] and the inequalities (4.9)-(4.11) hold true.

The following result also holds:

Theorem 4.9. Let Φ : I → C be an absolutely continuous functions on [a, b] ⊂
I̊, the interior of I and with the property that the derivative Φ′ is Lipschitzian

with the constant K > 0 on [a, b] . If g : Ω→ [a, b] is Lebesgue µ-measurable on
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14 S. S. Dragomir

Ω and such that Φ ◦ g, g ∈ L (Ω, µ) , then we have

∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ (x)− Φ′
(∫

Ω

gdµ

)(∫
Ω

gdµ− x
)∣∣∣∣ (4.13)

≤ 1

2
K

[∣∣∣∣x− ∫
Ω

gdµ

∣∣∣∣ ∫
Ω

|g − x| dµ+

∫
Ω

|g − x|
∣∣∣∣g − ∫

Ω

gdµ

∣∣∣∣ dµ]
≤ 1

2
K

[∣∣∣∣x− ∫
Ω

gdµ

∣∣∣∣+

∥∥∥∥g − ∫
Ω

gdµ

∥∥∥∥
Ω,∞

]∫
Ω

|g − x| dµ

for any x ∈ [a, b], where

∥∥∥∥g − ∫
Ω

gdµ

∥∥∥∥
Ω,∞

:= ess sup
t∈Ω

∣∣∣∣g (t)−
∫

Ω

gdµ

∣∣∣∣ <∞.

In particular, we have

∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ

(
a+ b

2

)
− Φ′

(∫
Ω

gdµ

)(∫
Ω

gdµ− a+ b

2

)∣∣∣∣ (4.14)

≤ 1

2
K

[∣∣∣∣a+ b

2
−
∫

Ω

gdµ

∣∣∣∣ ∫
Ω

∣∣∣∣g − a+ b

2

∣∣∣∣ dµ
+

∫
Ω

∣∣∣∣g − a+ b

2

∣∣∣∣ ∣∣∣∣g − ∫
Ω

gdµ

∣∣∣∣ dµ]
≤ 1

2
K

[∣∣∣∣a+ b

2
−
∫

Ω

gdµ

∣∣∣∣+

∥∥∥∥g − ∫
Ω

gdµ

∥∥∥∥
Ω,∞

]∫
Ω

∣∣∣∣g − a+ b

2

∣∣∣∣ dµ.
Proof. From the identity (2.1) we have for λ = Φ′

(∫
Ω
gdµ

)
that

∫
Ω

Φ ◦ gdµ− Φ (x)− Φ′
(∫

Ω

gdµ

)(∫
Ω

gdµ− x
)

(4.15)

=

∫
Ω

[
(g − x)

∫ 1

0

(
Φ′ ((1− s)x+ sg)− Φ′

(∫
Ω

gdµ

))
ds

]
dµ

for any x ∈ [a, b].
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New Jensen and Ostrowski Type Inequalities 15

Taking the modulus in (4.15) we get∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ (x)− Φ′
(∫

Ω

gdµ

)(∫
Ω

gdµ− x
)∣∣∣∣ (4.16)

≤
∫

Ω

|g − x|
∣∣∣∣∫ 1

0

(
Φ′ ((1− s)x+ sg)− Φ′

(∫
Ω

gdµ

))
ds

∣∣∣∣ dµ
≤
∫

Ω

[
|g − x|

∫ 1

0

∣∣∣∣(Φ′ ((1− s)x+ sg)− Φ′
(∫

Ω

gdµ

))∣∣∣∣ ds] dµ
≤ K

∫
Ω

[
|g − x|

∫ 1

0

∣∣∣∣(1− s)x+ sg −
∫

Ω

gdµ

∣∣∣∣ ds] dµ
= K

∫
Ω

[
|g − x|

∫ 1

0

∣∣∣∣(1− s)x+ sg − (1− s)
∫

Ω

gdµ− s
∫

Ω

gdµ

∣∣∣∣ ds] dµ
:= B.

Using the triangle inequality we have for any t ∈ Ω∫ 1

0

∣∣∣∣(1− s)x+ sg (t)− (1− s)
∫

Ω

gdµ− s
∫

Ω

gdµ

∣∣∣∣ ds
≤
∫ 1

0

(1− s)
∣∣∣∣x− ∫

Ω

gdµ

∣∣∣∣ ds+

∫ 1

0

s

∣∣∣∣g (t)−
∫

Ω

gdµ

∣∣∣∣ ds
=

1

2

[∣∣∣∣x− ∫
Ω

gdµ

∣∣∣∣+

∣∣∣∣g (t)−
∫

Ω

gdµ

∣∣∣∣]
and then

B ≤ 1

2
K

∫
Ω

|g − x|
[∣∣∣∣x− ∫

Ω

gdµ

∣∣∣∣+

∣∣∣∣g (t)−
∫

Ω

gdµ

∣∣∣∣] dµ (4.17)

=
1

2
K

[∣∣∣∣x− ∫
Ω

gdµ

∣∣∣∣ ∫
Ω

|g − x| dµ+

∫
Ω

|g − x|
∣∣∣∣g − ∫

Ω

gdµ

∣∣∣∣ dµ] .
Making use of (4.16) and (4.17) we deduce the desired result (4.13). �

Corollary 4.10. Let Φ : I → R be an absolutely continuous functions on

[a, b] ⊂ I̊, with the property that the derivative Φ′ is (l, L)-Lipschitzian on

[a, b] , where l, L ∈ R with L > l. If g : Ω → [a, b] is Lebesgue µ-measurable on

Ω and such that Φ ◦ g, g ∈ L (Ω, µ) , then we have∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ (x)− Φ′
(∫

Ω

gdµ

)(∫
Ω

gdµ− x
)

(4.18)

−1

4
(L+ l)

[
σ2
µ (g)−

(
x−

∫
Ω

gdµ

)2
]∣∣∣∣∣

≤ 1

4
(L− l)

[∣∣∣∣x− ∫
Ω

gdµ

∣∣∣∣ ∫
Ω

|g − x| dµ+

∫
Ω

|g − x|
∣∣∣∣g − ∫

Ω

gdµ

∣∣∣∣ dµ]
≤ 1

4
(L− l)

[∣∣∣∣x− ∫
Ω

gdµ

∣∣∣∣+

∥∥∥∥g − ∫
Ω

gdµ

∥∥∥∥
Ω,∞

]∫
Ω

|g − x| dµ
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16 S. S. Dragomir

for any x ∈ [a, b].

In particular, we have∣∣∣∣∫
Ω

Φ ◦ gdµ− Φ

(
a+ b

2

)
− Φ′

(∫
Ω

gdµ

)(∫
Ω

gdµ− a+ b

2

)
(4.19)

−1

4
(L+ l)

[
σ2
µ (g)−

(
a+ b

2
−
∫

Ω

gdµ

)2
]∣∣∣∣∣

≤ 1

4
(L− l)

[∣∣∣∣a+ b

2
−
∫

Ω

gdµ

∣∣∣∣ ∫
Ω

∣∣∣∣g − a+ b

2

∣∣∣∣ dµ
+

∫
Ω

∣∣∣∣g − a+ b

2

∣∣∣∣ ∣∣∣∣g − ∫
Ω

gdµ

∣∣∣∣ dµ]
≤ 1

4
(L− l)

[∣∣∣∣a+ b

2
−
∫

Ω

gdµ

∣∣∣∣+

∥∥∥∥g − ∫
Ω

gdµ

∥∥∥∥
Ω,∞

]∫
Ω

∣∣∣∣g − a+ b

2

∣∣∣∣ dµ.
5. Applications for f-Divergence

One of the important issues in many applications of Probability Theory

is finding an appropriate measure of distance (or difference or discrimination

) between two probability distributions. A number of divergence measures

for this purpose have been proposed and extensively studied by Jeffreys [47],

Kullback and Leibler [52], Rényi [58], Havrda and Charvat [44], Kapur [50],

Sharma and Mittal [62], Burbea and Rao [5], Rao [57], Lin [53], Csiszár [12],

Ali and Silvey [1], Vajda [68], Shioya and Da-te [63] and others (see for example

[54] and the references therein).

These measures have been applied in a variety of fields such as: anthropol-

ogy [57], genetics [54], finance, economics, and political science [60], [66], [67],

biology [56], the analysis of contingency tables [42], approximation of probabil-

ity distributions [11], [51], signal processing [48], [49] and pattern recognition

[4], [10]. A number of these measures of distance are specific cases of Csiszár

f -divergence and so further exploration of this concept will have a flow on effect

to other measures of distance and to areas in which they are applied.

Assume that a set Ω and the σ-finite measure µ are given. Consider the set of

all probability densities on µ to be P :=
{
p|p : Ω→ R, p (t) ≥ 0,

∫
Ω
p (t) dµ (t) = 1

}
.

The Kullback-Leibler divergence [52] is well known among the information di-

vergences. It is defined as:

DKL (p, q) :=

∫
Ω

p (t) ln

[
p (t)

q (t)

]
dµ (t) , p, q ∈ P, (5.1)

where ln is to base e.

In Information Theory and Statistics, various divergences are applied in ad-

dition to the Kullback-Leibler divergence. These are the: variation distance

Dv, Hellinger distance DH [45], χ2-divergence Dχ2 , α-divergence Dα, Bhat-

tacharyya distance DB [3], Harmonic distance DHa, Jeffrey’s distance DJ [47],
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triangular discrimination D∆ [65], etc... They are defined as follows:

Dv (p, q) :=

∫
Ω

|p (t)− q (t)| dµ (t) , p, q ∈ P; (5.2)

DH (p, q) :=

∫
Ω

∣∣∣√p (t)−
√
q (t)

∣∣∣ dµ (t) , p, q ∈ P; (5.3)

Dχ2 (p, q) :=

∫
Ω

p (t)

[(
q (t)

p (t)

)2

− 1

]
dµ (t) , p, q ∈ P; (5.4)

Dα (p, q) :=
4

1− α2

[
1−

∫
Ω

[p (t)]
1−α

2 [q (t)]
1+α

2 dµ (t)

]
, p, q ∈ P; (5.5)

DB (p, q) :=

∫
Ω

√
p (t) q (t)dµ (t) , p, q ∈ P; (5.6)

DHa (p, q) :=

∫
Ω

2p (t) q (t)

p (t) + q (t)
dµ (t) , p, q ∈ P; (5.7)

DJ (p, q) :=

∫
Ω

[p (t)− q (t)] ln

[
p (t)

q (t)

]
dµ (t) , p, q ∈ P; (5.8)

D∆ (p, q) :=

∫
Ω

[p (t)− q (t)]
2

p (t) + q (t)
dµ (t) , p, q ∈ P. (5.9)

For other divergence measures, see the paper [50] by Kapur or the book on line

[64] by Taneja.

Csiszár f -divergence is defined as follows [13]

If (p, q) :=

∫
Ω

p (t) f

[
q (t)

p (t)

]
dµ (t) , p, q ∈ P, (5.10)

where f is convex on (0,∞). It is assumed that f (u) is zero and strictly convex

at u = 1. By appropriately defining this convex function, various divergences

are derived. Most of the above distances (5.1)-(5.9), are particular instances of

Csiszár f -divergence. There are also many others which are not in this class

(see for example [64]). For the basic properties of Csiszár f -divergence see [13],

[14] and [68].

The following result holds:

Proposition 5.1. Let f : (0,∞)→ R be a twice differentiable convex function

with the property that f (1) = 0 and there exists the constants γ,Γ so that

−∞ < γ ≤ f (t) ≤ Γ <∞.

Assume that p, q ∈ P and there exists the constants 0 < r < 1 < R < ∞ such

that

r ≤ q (t)

p (t)
≤ R for µ-a.e. t ∈ Ω. (5.11)
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18 S. S. Dragomir

If x ∈ [r,R] , then we have the inequality∣∣∣∣If (p, q)− f (x)− f ′ (x) (1− x)− 1

4
(L+ l)

[
Dχ2 (p, q) + (1− x)

2
]∣∣∣∣ (5.12)

≤ 1

4
(L− l)

[
Dχ2 (p, q) + (1− x)

2
]
.

In particular, we have∣∣∣∣If (p, q)− f
(
r +R

2

)
− f ′

(
r +R

2

)(
1− r +R

2

)
(5.13)

−1

4
(L+ l)

[
Dχ2 (p, q) +

(
1− r +R

2

)2
]∣∣∣∣∣

≤ 1

4
(L− l)

[
Dχ2 (p, q) +

(
1− r +R

2

)2
]

and ∣∣∣∣If (p, q)− 1

4
(L+ l)Dχ2 (p, q)

∣∣∣∣ ≤ 1

4
(L− l)Dχ2 (p, q) . (5.14)

Proof. From (4.9) we have∣∣∣∣∫
Ω

p (t) f

(
q (t)

p (t)

)
dµ (t)− f (x)− f ′ (x) (1− x)

−1

4
(L+ l)

[∫
Ω

p (t)

(
q (t)

p (t)

)2

dµ (t)− 1 + (1− x)
2

]∣∣∣∣∣
≤ 1

4
(L− l)

[∫
Ω

p (t)

(
q (t)

p (t)

)2

dµ (t)− 1 + (1− x)
2

]
for any x ∈ [r,R] , which is equivalent to (5.12). �

Utilising Corollary 4.10 we can state the following result as well:

Proposition 5.2. With the assumptions in Proposition 5.1, we have∣∣∣∣If (p, q)− f (x)− f ′ (1) (1− x)− 1

4
(L+ l)

[
Dχ2 (p, q)− (1− x)

2
]∣∣∣∣ (5.15)

≤ 1

4
(L− l)

[
|x− 1|

∫
Ω

|q − xp| dµ+

∫
Ω

|q − xp|
∣∣∣∣qp − 1

∣∣∣∣ dµ]
≤ 1

4
(L− l)

[
|x− 1|+

∥∥∥∥qp − 1

∥∥∥∥
Ω,∞

]∫
Ω

|q − xp| dµ

for any x ∈ [r,R] .

If we consider the convex function f : (0,∞)→ R, f (t) = t ln t then

If (p, q) :=

∫
Ω

p (t)
q (t)

p (t)
ln

[
q (t)

p (t)

]
dµ (t) =

∫
Ω

q (t) ln

[
q (t)

p (t)

]
dµ (t)

= DKL (q, p) .
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We have f ′ (t) = ln t + 1 and f ′′ (t) = 1
t and then we can choose l = 1

R and

L = 1
r . Applying the inequality (5.14) we get∣∣∣∣DKL (q, p)−

(
R+ r

4rR

)
Dχ2 (p, q)

∣∣∣∣ ≤ R− r
4rR

Dχ2 (p, q) . (5.16)

If we consider the convex function f : (0,∞)→ R, f (t) = − ln t then

If (p, q) := −
∫

Ω

p (t) ln

[
q (t)

p (t)

]
dµ (t) =

∫
Ω

p (t) ln

[
p (t)

q (t)

]
dµ (t)

= DKL (p, q) .

We have f ′ (t) = − 1
t and f ′′ (t) = 1

t2 and then we can choose l = 1
R2 and

L = 1
r2 . Applying the inequality (5.14) we get∣∣∣∣DKL (p, q)− R2 + r2

4R2r2
Dχ2 (p, q)

∣∣∣∣ ≤ R2 − r2

4R2r2
Dχ2 (p, q) . (5.17)
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