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1. INTRODUCTION

Let (92, A, 1) be a measurable space consisting of a set , a o — algebra A of
parts of Q and a countably additive and positive measure p on A with values
in RU {oo}. Assume, for simplicity, that fQ dp = 1. Consider the Lebesgue
space

L(Qu):={f:Q—=R, fis p-measurable and /Q |f ()] dp(t) < oo}

For simplicity of notation we write everywhere in the sequel fQ wdp instead of
Jow () dpu(t).

In order to provide a reverse of the celebrated Jensen’s integral inequality
for convex functions, S.S. Dragomir obtained in 2002 [29] the following result:

Received 01 March 2015; Accepted 02 May 2016
(©2016 Academic Center for Education, Culture and Research TMU
1


http://dx.doi.org/10.7508/ijmsi.2016.02.001
http://ijmsi.ir/article-1-693-en.html

[ Downloaded from ijmsi.ir on 2026-02-14 ]

[ DOI: 10.7508/ijmsi.2016.02.001 ]

2 S. S. Dragomir

Theorem 1.1. Let @ : [m, M] C R — R be a differentiable convex function on
(m,M) and f : Q — [m, M] so that ®o f, f, ' o f, (P'of)-f € L(Qpu).
Then we have the inequality:

0§/<I>ofdu—¢>(/ﬂfdu> (1.1)
/f o fdn— [ @0 fd [ pa

<o on - m) [ ‘f -/ fdu‘ dn
Q Q
In the case of discrete measure, we have:

Corollary 1.2. Let ® : [m,M] — R be a differentiable convex function on
(m,M). If z; € [m,M] and w; >0 (i=1,....n) with W, := Y 1" jw; =1,
then one has the counterpart of Jensen’s weighted discrete inequality:

0< sz (x;) (Z wm) (1.2)
< ZM‘F (zi) xi — sz@/ (i) szzz
=1 =1 i=1
(@ (M) — ' (m)] Z w; |x; — Z w;z;] .

Remark 1.3. We notice that the inequality between the first and the second
term in (1.2) was proved in 1994 by Dragomir & Ionescu, see [36].

<

DN | =

If f,g: Q — R are u—measurable functions and f, g, fg € L(Q, ), then
we may consider the Cebysev functional

) =/Qfgdu—/gfdu/ﬂgdu- (1.3)

The following result is known in the literature as the Griss inequality

1
T (f,9)l <7 @ =7)(A=9), (1.4)
provided
—00 <Y< f(t)<T <00, —0<d<g(t) <A< (1.5)
for p —a.e. t € (L
The constant % is sharp in the sense that it cannot be replaced by a smaller
quantity.
If we assume that —co < v < f(t) <T' < oo for p — a.e. t € Q, then by the
Griiss inequality for ¢ = f and by the Schwarz’s integral inequality, we have

/ f—/ﬁfdu‘dué VQdeu— (/Qfdu)T <lr-y. e

[\
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New Jensen and Ostrowski Type Inequalities 3

On making use of the results (1.1) and (1.6), we can state the following string
of reverse inequalities

0</Q<I)Ofd,u—<1>(/ﬂfdu) (1.7)

< [r-@ondu= | @i | fau

san-—e oy [ |- [ fdu‘du

L1 (a1) — @ (m) [ | san- ( / fdu) ] :

1
< 7 [@1 (M) = & (m)] (M —m),
provided that ® : [m, M] C R — R s a differentiable convex function on (m, M)
and f : Q — [m, M]so that ®of, f, ®'of, f-(' o f) € L(Qp), with [, dp=1.
The following reverse of the Jensen’s inequality also holds [33]:

IN

IN

Theorem 1.4. Let ® : I — R be a continuous conver function on the interval
of real numbers I and m,M € R, m < M with [m,M] C I, where I is the
interior of I. If f : Q) — R is u-measurable, satisfies the bounds

—co<m< f(t) <M < oo for p-a.e. t €Q

and such that f, ®o f € L(Q,u), then

OS/Q@ofdu—<I></QfdM) .
(3= [ san) ([ saw—m) =ED =20

< 3 (M —m) [2 (M)~ @, (m)],

IN

where ®'_is the left and ®', is the right derivative of the convex function ®.

For other reverse of Jensen inequality and applications to divergence mea-
sures see [33].

In 1938, A. Ostrowski [55], proved the following inequality concerning the
distance between the integral mean ;1 f:@ (t)dt and the value @ (z), =z €
[a, b].

For various results related to Ostrowski’s inequality see [6]-[9], [15]-[41], [43]
and the references therein.

Theorem 1.5. Let @ : [a,b] — R be continuous on [a,b] and differentiable on

(a,b) such that ®' : (a,b) — R is bounded on (a,b), i.e., [|®'|  := sup [P (t)] <
te(a,b)
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0o. Then

b o atb\?
e RICL E i+< — ) |9 (b-a),  (19)

for all x € [a,b] and the constant % is the best possible.

Now, for v,T' € C and [a, b] an interval of real numbers, define the sets of
complex-valued functions [34]

U[a,b] (v,T)
= {f : [a,b] = C|Re [(F —f() (mf 7)} > 0 for almost every t € [a,b}}
and

Ay (1) = {f b = C] ]f (- 2+L

2

The following representation result may be stated [34].

1
< §‘F_7‘ for a.e. t € [a,b}}.

Proposition 1.6. For any v,I' € C, v # T, we have that Uy (7,T) and
A[mb] (7,T) are nonempty, convex and closed sets and

U[a,b] (P)/a F) = A[a,b] (’Yar) . (110)

On making use of the complex numbers field properties we can also state
that:

Corollary 1.7. For any v,I" € C, v # I',we have that
Ulap) (v, T) ={f : [a,8] = C | (ReT' = Re f (t)) (Re f (t) — Re7) (1.11)
+(ImT —Im f (¢)) (Im f (t) — Im~y) > 0 for a.e. t € [a,b]}.

Now, if we assume that Re (I') > Re () and Im (I') > Im (v), then we can
define the following set of functions as well:

Sia (7:1) = {f : [a,0] = C | Re(T') = Re f (t) > Re(v) (1.12)
and Im (I") > Im f (¢) > Im () for a.e. t € [a,b]}.

One can easily observe that S[G,b] (v,T) is closed, convex and

0 7é g[a,b] (FV’F) c ﬁ[a,b] (’Y)F) . (113)
The following result holds [34]:

Theorem 1.8. Let ® : I — C be an absolutely continuous functions on
[a,b] C I, the interior of I. For some v, ' € C, v # T, assume that &' €
U[a,b] (v,T) (: A[a,b] (’y,F)). If g : Q — [a,b] is Lebesgue p-measurable on
and such that ®o g, g € L (Q, u), then we have the inequality

L@ogdu@(x)?(/ﬂgdum)

1
<50l [lg-aldu (119)
Q
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for any x € [a,b)].
In particular, we have

@ogdu—@(a;b> V‘LF(/d “+b>’ (1.15)
Q

1 a+b
<-Ir— - du < =(b—a)|l —
_2| ’Y|/Q‘g 5 ’u_4( a)|T'— 1|

/Q<I>ogd/~t—<1></ﬂgdu)‘ fll“ vl/‘ gdu’ (1.16)
o\ 1/2
1 2
<5 =1l </9du—</gdu) )
Q Q

< B-a)T -1l

and

Motivated by the above results, in this paper we provide more upper bounds
for the quantity

‘L@ogdu—@(x)—A(/ﬂgdu—x)

under various assumptions on the absolutely continuous function ®, which in
the particular case of x = fQ gdp provides some results connected with Jensen’s

, € [a,b],

inequality while in the case A = 0 provides some generalizations of Ostrowski’s
inequality. Applications for divergence measures are provided as well.

2. SOME IDENTITIES

The following result holds [34]:

Lemma 2.1. Let ® : I — C be an absolutely continuous functions on [a,b] C I,
the interior of I. If g : Q — [a, b] is Lebesgue p-measurable on  and such that
bog, ge L(Q,u), then we have the equality

/beogdu—q)(w)—)\(/ﬂgdu—x) (2.1)
:/Q[@—x)/gl@'((l—s)wsg)—A)ds]du

for any A € C and x € [a,b].
In particular, we have

/Q¢ogd,u—<I>(x):/Q[(g—x)/olfb'((l—s)x—ksg)ds] du, (2.2)

for any x € [a,b].
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Remark 2.2. With the assumptions of Lemma 2.1 we have

/Q@ogdu—@(a—;b> (2.3)
L[ [l

Corollary 2.3. With the assumptions of Lemma 2.1 we have

/Q@ogd,u—@(/ggdu) (2.4)
-l ) (0= )

Proof. We observe that since g : Q@ — [a,b] and [, du = 1 then [, gdu € [a, b]
and by taking « = [, gdp in (2.2) we get (2.4). O

Corollary 2.4. With the assumptions of Lemma 2.1 we have

/Q@ogd/i—b_la/ab@(x)dx—)\</ﬂgd,u—a;_b> (2.5)
:/Q{bia/: [(g—x)/ol(fI)'((l—s)x—ksg)—)\)ds] dm}du.

Proof. Follows by integrating the identity (2.1) over x € [a,b], dividing by
b — a > 0 and using Fubini’s theorem. O

Corollary 2.5. Let @ : I — C be an absolutely continuous functions on [a,b] C
1, the interior of I. If g,h : Q — [a,b] are Lebesgue u-measurable on Q and
such that ® o g, ®oh, g, h € L(Q,u), then we have the equality

/@ogdu—/ o hdp — )\(/gdu /hdu> (2.6)
//[ ))/0 (@’((l—s)h()+Sg(t))_>\)d5]

x dyu (t) dp (1)

for any A € C and x € [a,b].
In particular, we have

/@ogdu—/fbohdu (2.7

Q Q

= (g (t) = h(r)) 1q"((l—S)h(T)JFSQ(t))dS dp (t) dp (1) ,
~/Q/Q|: /0

for any x € [a,b].
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Remark 2.6. The above inequality (2.6) can be extended for two measures as
follows

/Ql<1>ogdul—/92<I>ohdu2—)\</ﬂlgdul—/92hdu2> (2.8)
[ ] [a@-ren [ @ @-an@+se-nal

X dpy (t) dpg (1),
for any A € C and = € [a,b] and provided that ® o g, g € L (4, ) while
Doh,heL(Qgus).
Remark 2.7. If w > 0 p-almost everywhere (p-a.e.) on Q with [, wdy > 0,

wdp
Jo wdn

then by replacing du with in (2.1) we have the weighted equality

jélmL/S)w(q>og)du_q>(x)—A(W/ngdu—x> (2.9)

- o [<gz>/01<<1>’<<1s>x+sg>A)ds} au

for any A € C and « € [a,b], provided ® o g, g € L,, (2, ) where

Lo @)= {ol [ wlldn <ocf.

The other equalities have similar weighted versions. However the details are
omitted.

3. INEQUALITIES FOR DERIVATIVES OF BOUNDED VARIATION

The following result holds:

Theorem 3.1. Let @ : I — C be an absolutely continuous functions on [a,b] C
12, the interior of I and with the property that the derivative ®' is of bounded
variation on [a,b]. If g : Q — [a,b] is Lebesgue p-measurable on Q0 and such
that ®og, g € L(Q, ), then we have

/@ogdu—‘I’(:ﬁ)—W(/ﬂgdu—x)’ (3.1)

1b
<5 V(@ /Ig—wldu
a Q

for any x € [a,b].
In particular, we have

oo o((5) £ ([ 23]

;\b/ / a;b' ba\:/

a
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1
/@ogdu—@(/gdu)‘g
Q Q 2

1
2

and

IN

b

V(@)

b

V(@)
1 a b

< Z(b—a)\/(qf).

Proof. From the identity (2.1) we have

A@ogdu—@(x)—W(égdu—x) (3.4)

[oa [ (#@-9er s - TEETOY ],

for any « € [a, b].
Taking the modulus in (3.4) we get

/Q@ogdu—q)(x)—W(/ﬂgdu—x> (3.5)
< (g—x>/1(¢>’<<1—s>x+sg> W) dsdp
/\g—x|/ O ((1—s)z+sg)— <I>()—2HI>’(b) dsdp

for any « € [a, b].
Since @’ is of bounded variation on [a,b], then for any s € [0,1], = € [a, b]
and t € 2 we have
P’ (a) + D' (b)
2

@ (1= s) 2+ 59 (t)) = @ (a) + " ((1 = s) x + 59 (t)) — ' ()]

O ((1=s)w+sg(t) —

(197 ((1 = s) 2+ sg (£)) = @ (a)| + @ (b) = " (1 — 5) = + 59 (1))}

@' (a) + @' (b)

<I>’ (1—s)x+sg)— 5

dsd (3.6)
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for any x € [a, b)].
Making use of (3.5) and (3.6) we deduce the desired result (3.1). O

Remark 3.2. Let ® : I — C be an absolutely continuous functions on [a, b] C I ,
the interior of I and with the property that the derivative @’ is of bounded
variation on [a,b]. If 2; € [m,M] and w; > 0 (i=1,...,n) with W,
>, w; =1, then one has the weighted discrete inequality:

Z;wz@ (z;) — D (x) — w (Z wx; — x) | (3.7)

b
%\/((I)’)Zwl |z; —x
a i=1

for any z € [a, b].
In particular, we have

Zwiq)(xi) —® <a—2i—b) - @' (a )+(I)/ <Zwm a—l—b)’ (3.8)

IN

b b b
S;\a/(fbl);uh :ci—a;r ‘ iba\a/
and
n n b n n
Z wz(I) (xz) - <Z w'Ll'z) < % \/ ((I)/) Z Ww; | — Z W;x; (39)
=1 i=1 a =1 i=1
1/2

IN
DN | =
D<c-

El
[

g

G

|
-~
[

S

o

8

ko
N——
N

b
<< (b-a)\/(@).

4. INEQUALITIES FOR LIPSCHITZIAN DERIVATIVES
The following result holds:

Theorem 4.1. Let ® : I — C be an absolutely continuous functions on [a,b] C
Io, the interior of I and with the property that the derivative ®' is Lipschitzian
with the constant K >0 on [a,b]. If g : Q — [a,b] is Lebesque p-measurable on
Q and such that ®og, g € L (Q, 1), then we have

/gzéogdué(x)fp’(x)(/ﬂgdu:rﬂ (4.1)
K[ai(g)+</ﬁgdum>2]

<

N |
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for any x € [a,b], where o, (g) is the dispersion or the standard variation,

namely

1/2

v = (o o) ) = (e (o))

In particular, we have

a+b a+b a+b
‘I’C’gd"‘q’( )‘q’/( )</gd“‘ )‘
/Q 2 2 Q 2
1 a+b\?
< -K |02 -
<3 [Uu(g)Jr(/diu 5 )

and

Proof. From the identity (2.1) we have for A = &' (z) that

/beogdu—@(x)—@’(x) (/diﬂ—x)

—/Q[<g—x>/01(@’((1—s>z+sg>—<1>’<x>>ds]du

for any x € [a, b)].
Taking the modulus in (4.4) we get

/Slq)ogdu—q)(z)ffb’(x) </diﬂz>‘

< [ lo=al /01<<1>'<<1—s>x+sg>—@'(x))ds
</ [|g—x|/01|<<1>'<<1—s>m+sg>—¢'<x>>|ds} du

dp

1
SK/ {Ig—va/ SIQ—wdS]du=1K/(g—x)2du
Q 0 2 Q

for any x € [a, b].

1 1
/@ogd,u—q) /gd,u §7K02L(g)§fK(b—a)2.
Q Q 2 ! 8

(4.2)

(4.3)

(4.4)
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However,

[ ta=a)?a
:/Q<g—/ggdu+/ggdu—m>2du
Lo e o) (-
| (/diu—x>2dﬂ
AGIROREIVESS

for any x € [a,b], and by (4.5) we get the desired result (4.1). O

2

Corollary 4.2. Let ® : I — C be a twice differentiable functions on [a,b] C I
with |||, .00 = €SSSUPse[a ) [P ()] < 00. Then the inequalities (4.1)-(4.3)
hold for K = ||<I>”||[a7b]7oo.

Remark 4.3. Let ® : I — C be an absolutely continuous functions on [a,b] C I
and with the property that the derivative ®' is Lipschitzian with the con-
stant K > 0 on [a,b]. If x; € [m,M] and w; > 0 (i=1,...,n) with W,, :=
>, w; =1, then one has the weighted discrete inequality:

Z w;® (x;) — @ (z) — ' (x) (Z w;T; — x) ‘ (4.6)

i=1

2
1 n
< §K o2 (x) + (; wiT; — .TJ)

for any x € [a, b], where

n n 2
ow (X) 1= Zwi T; — Zwkxk
i=1 k=1

The following lemma may be stated:

1/2 1/2

n n 2
_ 2 : 2 2 :
= w;T; — WE L
i=1 k=1

Lemma 4.4. Let u : [a,b] — R and I, L € R with L > 1. The following
statements are equivalent:

(i) The functionu—"5E e, wheree (t) =t,t € [a,b] is 3 (L — I) —Lipschitzian;
(ii) We have the inequalities

u(t) —u(s)

t—s

1 <

< <L foreach t,s € [a,b with t# s; (4.7
(iii) We have the inequalities

lt—s)<u(t)—u(s) < L(t—s) foreach t,s€ la,b with t>s. (4.8)
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Following [53], we can introduce the definition of (I, L)-Lipschitzian func-
tions:

Definition 4.5. The function u : [a,b] — R which satisfies one of the equiv-
alent conditions (i) — (iii) from Lemma 4.4 is said to be (I, L)-Lipschitzian on
[a, b] .

If L >0and! = —L, then (—L, L) —Lipschitzian means L-Lipschitzian in
the classical sense.

Utilising Lagrange’s mean value theorem, we can state the following result
that provides examples of (I, L)-Lipschitzian functions.

Proposition 4.6. Let u : [a,b] — R be continuous on [a,b] and differentiable
n (a,b). If —oo <l =infieqp v (t) and sup,ep, v (t) = L < oo, then u is
(1, L)-Lipschitzian on [a,b].

The following result holds.

Corollary 4.7. Let ® : I — R be an absolutely continuous functions on [a,b] C
I, with the property that the derivative ® is (I, L)-Lipschitzian on [a,b], where
I,LeR with L >1. If g: Q — [a,b] is Lebesgue p-measurable on Q and such
that ®og, g € L(Q, ), then we have

/Q(I>ogd,u—<I>(x)—<I>'(a:) (/diu—x> (4.9)

o2 (9) + (/diu—xY]
<ty [oi<g>+ (/diuI)Z]

for any x € [a,b].
In particular, we have

/chogdﬂq>(a2+b>q>’(a;b> (/diu“;b) (4.10)
Ui(gH(/ﬂgdua;b)Q

1
—;(L+D)

(L+1)

1
4

Q
and
2 1 2
[ wosdu—a( [ oin) - 0ot < @-noile) @)
1 2
<L) b-a?.
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Proof. Consider the auxiliary function ¥ : [a,b] — R given by

1
U(x)=o(z)— E(L—&—Z)xz.
We observe that ¥ is differentiable and
1
V' (z) =9 (x) — 5 (L+1)x.

Since @’ is (I, L)-Lipschitzian on [a,b] it follows that U’ is Lipschitzian with
the constant % (L —1), so we can apply Theorem 4.1 for ¥, i.e. we have the
inequality

/Q\Ifogdu—\ll(x)—\ll/(x) (/di,u:c)‘ (4.12)

Si(L*l) [Gi(QH(/diux)Z}.

However
/Q\I/ogd,u—\ll(x)—‘lf’(x) (/diu—x)
:/Q(I)ogdu—@(x)—@’(x) (/diﬂ—x>
—i(L—&—l) :/QQZdM—xQ—Zx (/diu—xﬂ
:/Q@ogdu—@(x)—@'(x) (/diu—x>
L |+ (/diu—xﬂ

and by (4.12) we get the desired resul (4.9). 0

Remark 4.8. We observe that if the function ® is twice differentiable on I and
for [a,b] C I we have

—00 <1< ®"(x) <L < oo for any x € [a,b],
then @’ is (I, L)-Lipschitzian on [a, b] and the inequalities (4.9)-(4.11) hold true.
The following result also holds:

Theorem 4.9. Let & : I — C be an absolutely continuous functions on [a,b] C
1, the interior of I and with the property that the derivative ® is Lipschitzian
with the constant K > 0 on [a,b]. If g : & — [a,b] is Lebesgue p-measurable on
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Q and such that ®og, g € L (Q, ), then we have

/Q@ogdu—fb(m)—fb'(/ﬂgdu) (/di,u—xﬂ (4.13)

1
§2K{x—/gdu‘/Ig—xldu+/|g—»’c g—/gdu‘du]
Q Q Q Q
1
< K ||z~ [ gdp|+)lg— | gdp lg — x| dp
Q Q Q00| /O

for any x € [a,b], where

Hg - / gdp
Q

In particular, we have

/Q(bogd,u—(l)(a;—b>—<l>/(/ﬂgdu> (/diﬂ—a;bﬂ (4.14)

1= esssup
Q,00 teQ

g9(t) —/diu‘ < oo0.

1 a+b a+b
< Z _ I
_QK[ 5 /diu‘/ﬂg 5 |
a+b
+/ 9= Hg—/gdu‘du}
Q Q
1 a+b a+b
<< —/gdu’ﬂtHg—/Qdu /g— ‘du-
2 2 o o 000 | Jo 2

Proof. From the identity (2.1) we have for A = @’ ([, gdp) that

/Q@ogd,uffl)(x)f@' (/diu) (/di,ux) (4.15)
=/Q[<g—x>/ol (=950~ @ ([ adu) ) as| au

for any x € [a, b].
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Taking the modulus in (4.15) we get

/@ogdu—@(m)—@’(/gdu) (/gdu—m)
Q Q Q
1
S/|g—x|/ (‘I"((l—s)x—l—sg)—@’(/gd,u))ds
Q
/{L‘J (<I>' (1—-s)z+sg)— P (/ gdu>)‘ds} du
Q
<K/ {|g (1—s)x+sg— /gdu ds}d,u,
Q
ZK/ [Ig
Q
= B.
Using the triangle inequality we have for any ¢ € 2
1
[la=9evsaw-a-9 [gan-s [ g
0 Q Q
1 1
S/ (1—23s) x—/gdu ds+/ sg(t)—/gdu
0 Q 0 Q

1
=3 {x—/gdu‘+’g(t)—/gduu
Q Q
and then

B < %K/ng—w\ {w—/ggdu‘Jr’g(t)—/diuH du (4.17)

1
=K[x—/gdu/lg—xldu+/lg—xl g—/gdu‘du}
Q Q Q Q

2
Making use of (4.16) and (4.17) we deduce the desired result (4.13). O

(4.16)

dp

(1—8)x+sg—(1—8)/99du—s/ﬂgdu

ds} dp

ds

Corollary 4.10. Let ® : I — R be an absolutely continuous functions on
[a,b] C I, with the property that the derivative ® is (I, L)-Lipschitzian on
[a,b], where I,L € R with L > 1. If g : Q — [a,b] is Lebesgue p-measurable on
Q and such that ® og, g € L (Q, ), then we have

/Qq)ogd,u—‘l)(x)—(l)’ (/diu> (/diu—:z:) (4.18)

Lin|ee- <x/9gdu)2]
Si(Ll)[z/diu /ngffvldwr/ﬂlg*wl g/gzgdu‘du}
Si(Ll)[x/ﬂgdu‘+Hg/diu Q700]/Q|9:v|du
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for any x € [a,b].
In particular, we have

oo () (o) (fprst) o
S ai<g>(a§b/gdu)2
i(Ll)[

o= /di“!dﬂ]
5 fol o [, |

5. APPLICATIONS FOR f-DIVERGENCE

gdu 977

One of the important issues in many applications of Probability Theory
is finding an appropriate measure of distance (or difference or discrimination
) between two probability distributions. A number of divergence measures
for this purpose have been proposed and extensively studied by Jeffreys [47],
Kullback and Leibler [52], Rényi [58], Havrda and Charvat [44], Kapur [50],
Sharma and Mittal [62], Burbea and Rao [5], Rao [57], Lin [53], Csiszar [12],
Ali and Silvey [1], Vajda [68], Shioya and Da-te [63] and others (see for example
[54] and the references therein).

These measures have been applied in a variety of fields such as: anthropol-
ogy [57], genetics [54], finance, economics, and political science [60], [66], [67],
biology [56], the analysis of contingency tables [42], approximation of probabil-
ity distributions [11], [51], signal processing [48], [49] and pattern recognition
[4], [10]. A number of these measures of distance are specific cases of Csiszdr
f-divergence and so further exploration of this concept will have a flow on effect
to other measures of distance and to areas in which they are applied.

Assume that a set Q2 and the o-finite measure p are given. Consider the set of

all probability densities on i tobe P := {p[p: Q@ = R, p(t) > 0, [,p(t)du(t) =1}.

The Kullback-Leibler divergence [52] is well known among the information di-
vergences. It is defined as:

Dkt (p,q) :== /Qp(t) ln[

where In is to base e.

p (t)}
q(t) 2

In Information Theory and Statistics, various divergences are applied in ad-
dition to the Kullback-Leibler divergence. These are the: wariation distance
D, Hellinger distance Dy [45], x3-divergence Dy, a-divergence D, Bhat-
tacharyya distance Dp (3], Harmonic distance DHa, Jeffrey’s distance Dy [47],
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triangular discrimination Da [65], etc... They are defined as follows:

0= [ b®-a®ldu(0), paeP (5.2)
Dit (v, —/ﬂf Va@ldut), pacP, (3

Deta) = [ 90 [(Zg;) - 1] Q). pacP  (5.4)

Dalp) = =z 1= [ O W@ o), paeps 65)
Dy (p0) = [ Vo@adu(t). paeP (5.6)

Do ()= [ Z0L0au(0), pa e P, (5.7)

D) = [0 -a@m |20 au0. pacr 6s)
D) = | de), paeP. (59)

For other divergence measures, see the paper [50] by Kapur or the book on line
[64] by Taneja.
Csiszér f-divergence is defined as follows [13]

It (p,q) r=/Qp(t)f [28] du(t), p,q€P, (5.10)

where f is convex on (0, 00). It is assumed that f (u) is zero and strictly convex
at u = 1. By appropriately defining this convex function, various divergences
are derived. Most of the above distances (5.1)-(5.9), are particular instances of
Csiszar f-divergence. There are also many others which are not in this class
(see for example [64]). For the basic properties of Csiszér f-divergence see [13],
[14] and [68].

The following result holds:

Proposition 5.1. Let f: (0,00) = R be a twice differentiable convex function
with the property that f (1) = 0 and there exists the constants v,T so that

—c0o <y < f(t) <T < oc.

Assume that p,q € P and there exists the constants 0 <r <1 < R < 0o such
that
(t

t)

~

(=)

r < < R for p-a.e. t € Q. (5.11)

3
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If x € [r, R], then we have the inequality

I (p.0) ~ f @) = f @) (1) — 3 (L+D) [Dye r.a) + (1 —2)%] | (5.12)
< 1@ [De )+ (1 -2y,

In particular, we have

’If (pq) — f <TJ;R> —f (TJ;R) (1 - TJ;R) (5.13)
7"+R>2
2

—i(LH)

D,z (p,q) + (1 =

<

| =

(L-1) [sz (p,q) + (1 -

and

\If (0.0) 2L+ Dy (5. q>\ < nDema. G

4
Proof. From (4.9) we have

Q(t) ’
/Qp(t)f(p(t)> dp(t) — (@) — ' (2) (1 — )

[ (;8)2@@) 1+ —x)Q] ’

2
Si(L—l) l/ﬂp(t) (28) du(t)—1+(1—x)2]

for any x € [r, R], which is equivalent to (5.12). O

1

4(L+l)

Utilising Corollary 4.10 we can state the following result as well:

Proposition 5.2. With the assumptions in Proposition 5.1, we have

Iy (pg) = f(2) = f (D)1 —2) - i (L+1) [sz (p,q) — (1 — fﬂ)Q] (5.15)
1 q

<7E&-D [Ix—ll/glq—xpldw/ﬂq—xp‘p—l‘du}

1 q

<7E&-D x_lHHp_lgm Q\q—xp\du

for any x € [r, R].
If we consider the convex function f : (0,00) = R, f(¢) = ¢Int then
Iy (p,q) := /Qp(t) 5)23 In BEE;] du(t) = /Qq(t) In Bgﬂ dp (t)
= Dkr (¢,p) -
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We have f'(t) = Int+ 1 and f”(t) = L and then we can choose | = & and

L

t R

= % Applying the inequality (5.14) we get
R+r R—r
D - D < ——D,: . 1
‘ kL (a:p) ( T ) X2 (p,q)’ < R De 0 (5.16)
If we consider the convex function f : (0,00) = R, f () = —Int then

1o)== [ pom |22 e = [ peym 23] duto

p(t) q(t)
= Dkr (p,q) -
We have f'(t) = —1 and f”(t) = % and then we can choose | = 4 and
L= %2 Applying the inequality (5.14) we get
R2 + 7,.2 R2 _ ?,.2
‘DKL (p,q) — WDXZ (p,g)| < WDXZ (p,q) - (5.17)
ACKNOWLEDGMENTS

10.

11.

12.

The author would like to thank the referees for giving fruitful advices.

REFERENCES

. S. M. Ali, S. D. Silvey, A general class of coefficients of divergence of one distribution
from another, J. Roy. Statist. Soc. Sec B,28, (1966), 131-142.

. G. A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math., 135(3),
(2002), 175-189.

. A. Bhattacharyya, On a measure of divergence between two statistical populations de-
fined by their probability distributions, Bull. Calcutta Math. Soc.,35, (1943), 99-109.

. M. Beth Bassat, f-entropies, probability of error and feature selection, Inform. Control,
39, (1978), 227-242.

. I. Burbea, C. R. Rao, On the convexity of some divergence measures based on entropy
function, IEEE Trans. Inf. Th., 28(3), (1982), 489-495.

. P. Cerone, S. S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed. G.
A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathematics,
(2000), 135-200.

. P. Cerone, S. S. Dragomir, New bounds for the three-point rule involving the Riemann-
Stieltjes integrals, Advances in Statistics Combinatorics and Related Areas, (2002), 53-
62.

. P. Cerone, S. S. Dragomir, C. E. M. Pearce, A generalised trapezoid inequality for func-
tions of bounded variation, Turkish J. Math.,24(2), (2000), 147-163.

. P. Cerone, S. S. Dragomir, J. Roumeliotis, Some Ostrowski type inequalities for n-time

differentiable mappings and applications, Demonstratio Mathematica, 32(2), (1999),

697—712.

C. H. Chen, L. F. Pau, P. S. P. Wang Statistical Pattern Recognition,Rocelle Park, New

York, Hoyderc Book Co., 1973.

C. K. Chow, C .N. Lin, Approximating discrete probability distributions with dependence

trees, IEEE Trans. Inf. Th., 14(3), (1968), 462-467.

I. Csiszar, Information-type measures of difference of probability distributions and indi-

rect observations, Studia Math. Hungarica,2, (1967), 299-318.


http://dx.doi.org/10.7508/ijmsi.2016.02.001
http://ijmsi.ir/article-1-693-en.html

[ Downloaded from ijmsi.ir on 2026-02-14 ]

[ DOI: 10.7508/ijmsi.2016.02.001 ]

20

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

S. S. Dragomir

. I. I. Csiszar, On topological properties of f—divergences, Studia Math. Hungarica,2,
(1967), 329-339.

I. 1. Csiszéar, J. Korner, Information Theory: Coding Theorem for Discrete Memoryless
Systems,Academic Press, New York, 1981.

S. S. Dragomir, Ostrowski’s inequality for monotonous mappings and applications, J.
KSIAM,3(1), (1999), 127-135.

S. S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and ap-
plications, Comp. Math. Appl., 38, (1999), 33-37.

S. S. Dragomir, A converse result for Jensen’s discrete inequality via Gruss’ inequality
and applications in information theory. An. Univ. Oradea Fasc. Mat., 7, (1999), 178-189.
S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation,
Bull. Austral. Math. Soc., 60(1), (1999), 495-508.

S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded varia-
tion and applications, Kragujevac J. Math.,22, (2000), 13-18.

S. S. Dragomir, On the Ostrowski’s inequality for Riemann-Stieltjes integral, Korean J.
Appl. Math., 7, (2000), 477-485.

S. S. Dragomir, On the Ostrowski’s integral inequality for mappings with bounded vari-
ation and applications, Math. Ineq. & Appl.,4(1), (2001), 33-40.

S. S. Dragomir, On a reverse of Jessen’s inequality for isotonic linear functionals, J. Ineq.
Pure € Appl. Math., 2(3), (2001), Article 36.

S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral f: f(t)du(t)
where f is of Holder type and w is of bounded variation and applications, J. KSIAM,5(1),
(2001), 35-45.

S. S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal.
Pure € Appl. Math., 3(5), (2002), Art. 68.

S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for con-
vex functions defined on linear spaces and applications for semi-inner products, J. In-
equal. Pure Appl. Math., 3(2), (2002), Article 31, 8 pp.

S. S. Dragomir, A refinement of Ostrowski’s inequality for absolutely continuous functions
whose derivatives belong to Lo and applications, Libertas Math., 22, (2002), 49-63.

S. S. Dragomir, Some companions of Ostrowski’s inequality for absolutely continuous
functions and applications, Bull. Korean Math. Soc., 42(2), (2005), 213-230.

S. S. Dragomir, An Ostrowski like inequality for convex functions and applications, Re-
vista Math. Complutense, 16(2), (2003), 373-382.

S. S. Dragomir, A Griiss type inequality for isotonic linear functionals and applications,
Demonstratio Math., 36(3), (2003), 551-562.

S. S. Dragomir, Bounds for the deviation of a function from the chord generated by its
extremities, Bull. Aust. Math. Soc., T8(2), (2008), 225-248.

S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type., Springer Briefs
in Mathematics, Springer, New York, 2012.

S. S. Dragomir, Perturbed companions of Ostrowski’s inequality for absolutely continuous
functions (I), Preprint RGMIA Res. Rep. Coll., 17 Art 7 , (2014), 15 pp.

S. S. Dragomir, Reverses of the Jensen inequality in terms of first derivative and appli-
cations,Acta Math. Vietnam, 38(3), (2013), 429-446.

S. S. Dragomir, Jensen and Ostrowski type inequalities for general Lebesgue integral
with applications (I), RGMIA Res. Rep. Coll., 17, (2014).

S. S. Dragomir, P. Cerone, J. Roumeliotis, S. Wang, A weighted version of Ostrowski
inequality for mappings of Holder type and applications in numerical analysis, Bull.
Math. Soc. Sci. Math. Romanie, 42(90) (4), (1999), 301-314.


http://dx.doi.org/10.7508/ijmsi.2016.02.001
http://ijmsi.ir/article-1-693-en.html

[ Downloaded from ijmsi.ir on 2026-02-14 ]

[ DOI: 10.7508/ijmsi.2016.02.001 ]

New Jensen and Ostrowski Type Inequalities 21

36. S. S. Dragomir, N. M. Ionescu, Some converse of Jensen’s inequality and applications,
Rev. Anal. Numér. Théor. Approz. , 23(1), (1994), 71-78.

37. S. S. Dragomir, Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in
Numerical Integration, Kluwer Academic Publishers, Dordrecht/Boston/London, 2002.

38. S. S. Dragomir, S. Wang, A new inequality of Ostrowski’s type in Lj—norm and appli-
cations to some special means and to some numerical quadrature rules, Tamkang J. of
Math., 28 , (1997), 239-244.

39. S. S. Dragomir, S. Wang, Applications of Ostrowski’s inequality to the estimation of
error bounds for some special means and some numerical quadrature rules, Appl. Math.
Lett., 11 , (1998), 105-109.

40. S. S. Dragomir, S. Wang, A new inequality of Ostrowski’s type in Lp—norm and applica-
tions to some special means and to some numerical quadrature rules, Indian J. of Math.,
40(3),(1998), 245-304.

41. A. M. Fink, Bounds on the deviation of a function from its averages, Czechoslovak Math.
J., 42(117), (1992), 298-310.

42. D. V. Gokhale, S. Kullback, Information in Contingency Tables, New York, Marcel
Decker, 1978.

43. A. Guessab and G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard
type, J. Approx. Th., 115 , (2002), 260-288.

44. J. H. Havrda, F. Charvat, Quantification method classification process: concept of struc-
tural a-entropy, Kybernetika, 3, (1967), 30-35.

45. E. Hellinger, Neue Bergriiirdung du Theorie quadratisher Formerus von uneudlichvieleu
Veranderlicher, J. fir reine and Augeur. Math., 36, (1909), 210-271.

46. A. Sheikh Hossein, A generalized singular value inequality for Heinz means, [ranian
Journal of Mathematical Sciences and Informatics, 10(2), (2015), 23-27.

47. H. Jeffreys, An invariant form for the prior probability in estimating problems, Proc.
Roy. Soc. London, 186A, (1946), 453—461.

48. T. T. Kadota, L. A. Shepp, On the best finite set of linear observables for discriminating
two Gaussian signals, IEEE Trans. Inf. Th., 13, (1967), 288-294.

49. T. Kailath, The divergence and Bhattacharyya distance measures in signal selection,
IEEE Trans. Comm. Technology., COM-15, (1967), 52-60.

50. J. N. Kapur, A comparative assessment of various measures of directed divergence, Ad-
vances in Management Studies, 3, (1984), 1-16.

51. D. Kazakos, T. Cotsidas, A decision theory approach to the approximation of discrete
probability densities, IEEE Trans. Perform. Anal. Machine Intell., 1, (1980), 61-67.

52. S. Kullback, R. A. Leibler, On information and sufficiency, Annals Math. Statist., 22,
(1951), 79-86.

53. J. Lin, Divergence measures based on the Shannon entropy, IEEFE Trans. Inf. Th., 37
(1) (1991), 145-151.

54. M. Mei, The theory of genetic distance and evaluation of human races, Japan J. Human
Genetics, 23 (1978), 341-369.

55. A. Ostrowski, Uber die Absolutabweichung einer differentienbaren Funktionen von ihren
Integralmittelwert, Comment. Math. Hel, 10 (1938), 226-227.

56. E. C. Pielou, Ecological Diversity, Wiley, New York, 1975.

57. C. R. Rao, Diversity and dissimilarity coefficients: a unified approach, Theoretic Popu-
lation Biology, 21 , (1982), 24-43.

58. A. Rényi, On measures of entropy and information, Proc. Fourth Berkeley Symp. Math.
Stat. and Prob., University of California Press, 1, (1961), 547-561.

59. A. W. Roberts, D. E. Varberg, Convexr Functions, Academic Press, 1973.

60. A. Sen, On Economic Inequality, Oxford University Press, London, 1973.


http://dx.doi.org/10.7508/ijmsi.2016.02.001
http://ijmsi.ir/article-1-693-en.html

[ Downloaded from ijmsi.ir on 2026-02-14 ]

[ DOI: 10.7508/ijmsi.2016.02.001 ]

22

61

62.

63.

64.

65.

66.

67.
68.

S. S. Dragomir

. M. Z. Sarikaya, A. Saglamb and H. Yildirim, On generalization of Cebysev type inequal-
ities, Iranian Journal of Mathematical Sciences and Informatics, 5(1), (2010), 41-48.
B. D. Sharma, D. P. Mittal, New non-additive measures of relative information, Journ.
Comb. Inf. Sys. Sci., 2(4), (1977), 122-132.

H. Shioya, T. Da-Te, A generalisation of Lin divergence and the derivative of a new
information divergence, FElec. and Comm. in Japan, 78 (7), (1995), 37-40.

I. J. Taneja, Generalised Information Measures and their Applications,
(http://www.mtm.ufsc.br/ taneja/bhtml/bhtml.html).

F. Topsoe, Some inequalities for information divergence and related measures of discrim-
ination, Res. Rep. Coll., RGMIA, 2 (1), (1999), 85-98.

H. Theil, Economics and Information Theory, North-Holland, Amsterdam, 1967.

H. Theil, Statistical Decomposition Analysis, North-Holland, Amsterdam, 1972.

I. Vajda, Theory of Statistical Inference and Information, Dordrecht-Boston, Kluwer
Academic Publishers, 1989.


http://dx.doi.org/10.7508/ijmsi.2016.02.001
http://ijmsi.ir/article-1-693-en.html
http://www.tcpdf.org

