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ABSTRACT. The Harmonic index H(G) of a graph G is defined as the

sum of the weights —————— of all edges wv of G, where d(u) denotes
d(u) + d(v)
the degree of the vertex u in G. In this work, we prove the conjecture
H(G 1
(@) > -+ given by Jianxi Liu in 2013 when G is a unicyclic
DG) — 2 3(n-1)
H(G) 1 2

graph and give a better bound ﬁ > 3 m
order and D(G) is the diameter of the graph G.

, where n is the
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1. INTRODUCTION

Let G = (V, E) be a simple connected graph with vertex set V(G) and edge
set E(G). The degree of a vertex v of G is denoted by d(v). If u,v € V(G),
then the distance between u and v is the length of a shortest u — v path in
G. The eccentricity of a vertex v is the greatest distance from v to any other
vertex of G. The diameter of a graph is the maximum over eccentricities
of all vertices of the graph and it is denoted by D(G). For a graph G, the

2
harmonic index H(G) is defined as H(G) = ——— . As far as
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we know, this index first appeared in [4]. Zhong found the minimum and
maximum values of the harmonic index for simple connected graphs, trees and
unicyclic graphs and characterized the corresponding extremal graphs[8][9]. Wu
et al. gave a best possible lower bound for the harmonic index of a triangle-
free graph with minimum degree at least two and characterized the extremal
graphs[7]. Deng et al. considered the relation connecting the harmonic index
H(G) and the chromatic number x(G)and proved that x(G) < 2H(G) by using
the effect of removal of a minimum degree vertex on the harmonic index[3].
Mehdi Sabzevari et al. gave the exact formula for Merrifield Simmons and
Hosoya indices of some special graphs namely ladder graph, prism graph and
book graph[6]. Zohreh Bagheria et al. computed the edge-Szeged and vertex-

PI indices of some important classes of benzenoid systems[10]. Liu proved
5 n HT) _ 1 1

that H(T) —D(T) > = — — and ———~ > = + ————

at H(I) = D(T) = 5 =5 and 7 = 54 30775

with equality for path and proposed it as a conjecture for any connected graph

for n-vertex tree T

of order n [5]. The first part of the above conjecture was proved in [1] for

unicyclic graphs. In this work, we prove the second part of the conjecture viz.
I;Eg; > % + ﬁ for n > 7, when G is a unicyclic graph.

We conclude this section with some notations and terminology. Let G =
(V, E) be a simple connected graph with vertex set V(G) and edge set E(G).
If d(v) = 1, then v is said to be a pendant vertex of G. The edge incident
with v is referred to as pendant edge and the vertex adjacent to v is referred
as the support vertex of v. The set of neighbours of v is denoted by N(v).
A diametrical path of a graph is a shortest path whose length is equal to the
diameter of the graph. As usual, C,, and P, denote the cycle and the path on
n vertices, respectively. In a cycle C,,, two vertices, say u and v are said to be

n—1

diametrically opposite, if d(u,v) = %, when n is even and d(u,v) = "=, when

n is odd. Let U:;ly be a unicyclic graph obtained from a cycle C; by attaching

two paths P, and P, to two diametrically opposite vertices of C; such that
n =14 x + y. For other notations in graph theory, may be consulted [2].

2. BAsic REsuULTS

1 1
Lemma 1. The function f(x) = — is an increasing function

ut+xr u+tz-—1
onx forx>1 andu > 0.

Lemma 2. Let v be a pendant vertex of a connected graph G. Then H(G) >
H(G —v).
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Proof. Let u be the support vertex of v. Then

2 1 1
IHT(G)*JLIT(G*U):W+2 > (d(u)+d(w)d(u)+d(w>—1>

) weN (w)—{v}
2 1 1
> FTOES] +2(d(u) — 1) (d(u)—i—l - d(u)) by lemma 1
2
 d(u)(d(u) +1)
>0
Hence H(G) > H(G —v). O

Analysing the unicyclic graphs and its diametrical path, we have the follow-
ing observation.
Observation:
If G 2 C,, is a unicyclic graph on n vertices, then at least one of the end vertices
of the diametrical path of G must be a pendant vertex.

3. MAIN RESULT

In this section, we give the sharp lower bound of the relationship involving
the harmonic index and diameter of connected unicyclic graphs.

Theorem 3.1. Let G be a unicyclic graph of order n > 7 and diameter D(G).

H 1 2
Then DE% > 3 m, where equality holds if and only if G = Uijzﬁr’,
Proof. Case 1: Let G = C,,. Then H(G) = g If n is even, then D(G) = g
H(G 1 2 —
Hence D§G§ =1> 3 + m If n is odd, then D(G) = i . Hence
HG) . 1 1, 2
DG) ~ ' n—-172 3(n-2)

Case 2: Let G 2 C,. Then G has at least one pendant vertex. Also by
the observation, at least one of the end vertices of the diametrical path of
G is a pendant vertex. Let P be a diametrical path of G. Now continue to
remove pendant vertices from G so that P remains its diametrical path. Let
the resulting graph be G’ and vy, vs,..., v be the vertices in the order they
were deleted. Then we have,

k
H(G)>H(G—v1)>-->H(G - | Jv) = HG)

=1

~

by lemma 2 and

k
D(G)=D(G —v)=---=D(G — U v;) = D(GQ).
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Clearly G’ is also a unicyclic graph consisting of a cycle of length | together
with at most two pendant paths, say P, and P, incident with two vertices of
Cy, say u and v, such that n =k + 1+ x +y.

Subcase 2.1: Let z = 0 and y = 1. In this case, G/ = Ugfk’nfkfl. Then

H(G") = n—k_ % If I is even, then D(G') = n—Tk—i—l Hence
H(G')  5n—5k—2
D(G')  5(n—k+1)
T
0 B(n—k+1)
>1+L ; k>5
=5 32y since n > 5.
. n—k
If [ is odd, then D(G') = . Hence
H(G')  5n—5k—2
D(G")  5(n—k)
2
=1-
5(n — k)
1 2
> -+ — ; — k>4
_2+3(n—2)’ since n —k >

-k 2
Subcase 2.2: Let x = 0 and y > 2. In this case, H(G') = n T Iflis
—k
even, then D(G’) = %—Fy Hence
H(G')  15n— 15k —4
D(G")  15(n—k+y)
15y + 4
= 1 _—_—
15(n—k+vy)
1 151 — 8
=4 —
2 302(n—k)—1)
> 1 + 2 ' kE=1+ d 1>4
25 3o since n =l4+y an > 4.
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n—k+y—1

If I is odd, then D(G') = 5

. Hence
H(G")  15n— 15k —4
D(G")  15(n—k+y—1)
15y — 11
15(n—k+y—1)
1 150 + 7
2 * 302(n — k) —1—1)
1
2

=1-

2
+m7 since n—k=Il4+y and [>3.

Y

Subcase 2.3: Let x = 1,y = 1. If u and v are non adjacent, then G’ = U}Lka.

-k 2 -k
Clearly H(G') = z ~F If [ is even, then D(G') = L + 1. Hence
H(G)  5n—5k—4
D(G')  5(n—k+2)
_, 14
- 5(n—k+2)
:1—5(11_;4_4), since n—k=1+2
ST
=27 3(mn-2)
—k+1
If [ is odd, then D(G') = % Hence
H(G)  5n—5k—4
D(G")  5(n—k+1)
9
:1—7
5(n—k+1)
:1—75(13_3), since n—k=101+4+2
1,2
—2 3(n-2)

Subcase 2.4: Let x =1 and y > 2. If v and v are adjacent, the only possible
graph is shown in figure 1.

VAN B

FiGUure 1. ¢
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— 3
n-k_3 and D(G') = y + 2. Hence

Clearly H(G') = 5 10

H(G') 5n—5k—3
D(G")  10(y +2)

5n — bk — 3
10(n — 2)
5n + bk — 17
_1_7
10(n — 2)
1,2
—2 3n-2)

n—k+y+1

. H
5 ence

[ is even, then D(G’) =

H(G')  3n—3k—2

D(G")  3(n—k+y+1)
3y+5

3(n—k+y+1)
2

3(n—2)

> -+

1
2

—k
If [ is odd, then D(G') = %ﬂ Hence

H(G')  3n—3k—2
D(G")  3(n—k+y)

- 3y + 2
3(n—k+y)

>,z

=27 3h-2)

If v and v are non adjacent, then G’ = Ulf’w. Clearly H(G') = n-r

2

k

1
—-. If
3

Subcase 2.5: Let > 2 and y > 2. If u and v are adjacent, then H(G') =

—k
'I’l2 _%andD(G/):x+y+1:n—k—l+1Hence

H(G)  15n—15k—7

D(G")  30(n—k—1+1)
S, 2

=2 3(n-2)
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—k 4
If w and v are non adjacent, then H(G') = H(U,"Y ;) = nT T and
—k
D(G') < DY, ). Ti Lis even, D(G) < "f”“’ Hence
H(G') . 15n—15k -8
DG) = 15(n—k+ta+y)
 15n— 15k —8
~15(2(n— k) — 1)
1, 1516
2 30(2(n—k)—1)
1,2
—2 3n-2)
If [ is odd, D(G') < nikJr;iji 1. Hence
H(G') | 15n—15k—8
D(G) ~ 15(n—k+z+y—1)
_ 15n— 15k -8
C15(2(n—k)—1-1)
1 150 -1
=<+
2 7302 —k) —1—1)
12
=27 3n-2)
H(G 1 2
For proving the equality, assume that DEG; =3 + m Since D(G) <
H H
, (G2> < Eg;, for all G. So our search is to find that G, for which
n—
H 1 2 5
D(G) = n—2and (G) Uns ™, Uyt uryTt U,

DG 2 3m-2)
U;:Z_5 and Uizz_ﬁ are the unicyclic graphs with D(G) = n—2. But Ui:Z_E’
is the only graph that satisfies the equality. Hence G = U 1”275 and it is easy

n

HUY) 1, o
to check ————> = = 4 — |
DUYT™) 2 3(n-2)
O
Remark 3.1. If n < 6, this lower bound is not true. One such graph is shown
H(G 13 2 1 2
in figure 2. For this graph, Q = < — +

DG) 20-3 2 3mn-2)

This result seems true for any connected graph of order n, that is not a tree,
and we propose it as a conjecture as follows.
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FIGURE 2. G

Conjecture 1. Let G be a simple connected graph, that is not a tree, of order

H
n > 7 and diameter D(G). Then H(G) — D(G) > g — g and DE(C;; >
% + ﬁ, where equality holds if and only if G = Uijzfg‘,
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