Local Cohomology with Respect to a Cohomologically Complete Intersection Pair of Ideals

A. Pour Eshmanan Talemi^{a*}, A. Tehranian^b

^aDepartment of Mathematics, Rasht Branch, Islamic Azad university, Rasht, Iran.

^bDepartment of Mathematics, Science and Research Branch, Islamic Azad university, Tehran, Iran.

E-mail: poureshmanan@iaurasht.ac.ir
E-mail: tehranian@srbiau.ac.ir

ABSTRACT. Let (R,\mathfrak{m},k) be a local Gorenstein ring of dimension n. Let $\mathrm{H}^i_{I,J}(R)$ be the local cohomology with respect to a pair of ideals I,J and c be the $\inf\{i|\mathrm{H}^i_{I,J}(R)\neq 0\}$. A pair of ideals I,J is called cohomologically complete intersection if $\mathrm{H}^i_{I,J}(R)=0$ for all $i\neq c$. It is shown that, when $\mathrm{H}^i_{I,J}(R)=0$ for all $i\neq c$, (i) a minimal injective resolution of $\mathrm{H}^c_{I,J}(R)$ presents like that of a Gorenstein ring; (ii) $\mathrm{Hom}_R(\mathrm{H}^c_{I,J}(R),\mathrm{H}^c_{I,J}(R))\simeq R$, where (R,\mathfrak{m}) is a complete ring. Also we get an estimate of the dimension of $\mathrm{H}^i_{I,J}(R)$.

Keywords: Vanishing, Local cohomology, Gorenstein ring.

2000 Mathematics subject classification: 13E10, 13D45.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring and I, J are ideals of R. The generalized local cohomology module with respect to a pair of ideals I, J of R was introduced by Takahashi–Yoshino–Yoshizawa [6].

Received 17 July 2011; Accepted 14 September 2012 © 2014 Academic Center for Education, Culture and Research TMU

^{*}Corresponding Author

We are concerned with the subsets

$$W(I,J) = \{ \mathfrak{p} \in \operatorname{Spec}(R) | I^n \subseteq \mathfrak{p} + J \text{ for an integer } n \gg 1 \}$$

of Spec (R) and $\tilde{W}(I,J) = \{\mathfrak{a} \leq R | I^n \subseteq \mathfrak{a} + J \text{ for an integer } n \gg 1\}$. In general, W(I,J) is closed under specialization, but not necessarily a closed subset of Spec(R). For an R-module M, we consider the (I,J)-torsion submodule $\Gamma_{I,J}(M)$ of M which consists of all elements x of M with Supp $(Rx) \subseteq W(I,J)$. Furthermore, for an integer i, we define the local cohomology functor $H^i_{I,J}(-)$ with respect to (I,J) to be the i-th right derived functor of $\Gamma_{I,J}(-)$. Note that if J=0 then $H^i_{I,J}(-)$ coincides with the ordinary local cohomology functor $H^i_I(-)$ with the support in the closed subset V(I). On the other hand, if J contains I then $\Gamma_{I,J}$ is the identity functor and $H^i_{I,J}(-)=0$ for all i>0. Recently some interesting results for ideals with c= ht I= cd I, the so called cohomologically complete intersections have been proved. Hellus–Stückrad [3] have shown that if (R,\mathfrak{m}) is a complete local ring, then the endomorphism ring $\operatorname{Hom}_R(H^c_I(R), H^c_I(R))$ is isomorphic to R. In [2, 5], Schenzel by a functorial proof and a slight extension, proved that $\operatorname{Hom}_R(H^c_I(R), H^c_I(R)) \simeq R$ if and only if $H^i_I(R) = 0$, i = n, n - 1.

The endomorphism ring $\operatorname{Hom}_{R}(\operatorname{H}_{I,J}^{c}(R), \operatorname{H}_{I,J}^{c}(R))$, when $c = \inf\{i | \operatorname{H}_{I,J}^{i}(R)\}$ $\neq 0$ and (R, \mathfrak{m}) is a Gorenstein ring, is the main subject of our investigation. First as a generalization of the concept of cohomologically complete intersection, a pair of ideals I, J is called cohomologically complete intersection whenever $c = \inf\{i|\mathcal{H}_{I,J}^i(R) \neq 0\} = \operatorname{cd}(I,J)$, in which $\operatorname{cd}(I,J) = \sup\{i|\mathcal{H}_{I,J}^i(R) \neq 0\}$ 0. Then we show that for this certain class of ideals, $H_{\mathfrak{m}}^d(H_{I,I}^c(R)) \cong E$ and $H^i_{\mathfrak{m}}(H^c_{I,J}(R)) = 0$ for all $i \neq d$, where E denotes the injective hull of the residue field R/\mathfrak{m} . Next by this fact, we prove that $\operatorname{Hom}_{R}(\operatorname{H}^{c}_{I,J}(R),\operatorname{H}^{c}_{I,J}(R))$ is isomorphic to R provided R is a complete local ring. Moreover we show that the natural homomorphism $\operatorname{Hom}_R(\operatorname{H}^c_{I,J}(R),\operatorname{H}^c_{I,J}(R))\longrightarrow \operatorname{Hom}_R(\operatorname{H}^c_{I',J}(R),\operatorname{H}^c_{I',J}(R))$ is a monomorphism when R is a complete ring and $I\subseteq I'$ with $c=\inf\{i|\mathcal{H}^{\imath}_{I,J}(R)$ $\neq 0$ } = inf $\{i|H^{i}_{I',J}(R)\neq 0\}$. As a consequence, if $H^{i}_{I',J}(R)=0$ for all $i\neq c$, then there exists the natural monomorphism $\operatorname{Hom}_R(\operatorname{H}^c_{I,I}(R),\operatorname{H}^c_{I,I}(R))\longrightarrow R$. In this paper we shall use the notion of the dimension $\dim X$ for R-modules X which are not necessarily finitely generated. This is defined by $\dim X =$ $\dim \operatorname{Supp}_{R}X$, where the dimension of the support is understood in the Zariski topology of Spec R. In particular, dim X < 0 means X = 0. We prove that $\dim H_{I,J}^i(R) \leq n-i$ for all $i \geq c$ and $\dim H_{I,J}^c(R) = n-c$, when $n = \dim R$ and I, J are proper ideals of R with $c = \inf\{i | H_{I,I}^i(R) \neq 0\}$.

2. Main Results

Let (R,\mathfrak{m}) be a local Gorenstein ring and $n=\dim R$. Let $R\stackrel{\sim}{\longrightarrow}\dot{E}$ denote a minimal injective resolution of R as an R-module. Let $I,J\subset R$ be two ideals and $c=\inf\{i|\mathrm{H}^i_{I,J}(R)\neq 0\}$ and d=n-c. The local cohomology

modules $H_{I,J}^i(R)$, $i \in \mathbb{Z}$, are—by definition— the cohomology modules of the complex $\Gamma_{I,J}(\dot{E})$. Because of $\Gamma_{I,J}(E(R/\mathfrak{p}))=0$ for all $\mathfrak{p} \notin W(I,J)$, it follows that $\Gamma_{I,J}(E^i)=0$ for all i < c. Therefore $H_{I,J}^c(R)=\mathrm{Ker}\,(\Gamma_{I,J}(\dot{E})^c\longrightarrow \Gamma_{I,J}(\dot{E})^{c+1})$. This observation provides an embedding $H_{I,J}^c(R)[-c]\longrightarrow \Gamma_{I,J}(\dot{E})$ of complexes of R-modules.

Definition 2.1. The cokernel of the embedding $\mathrm{H}^c_{I,J}(R)[-c] \longrightarrow \Gamma_{I,J}(\dot{E})$ is defined as $\dot{C}(I,J)$, the generalized truncation complex. So there is a short exact sequence of complexes of R-modules

$$(*) 0 \longrightarrow \mathrm{H}^{c}_{I,J}(R)[-c] \longrightarrow \Gamma_{I,J}(\dot{E}) \longrightarrow \dot{C}(I,J) \longrightarrow 0.$$

In particular it follows that $\mathrm{H}^i(\dot{C}(I,J)) = 0$ for $i \leq c$ or i > n and $\mathrm{H}^i(\dot{C}(I,J)) \cong \mathrm{H}^i_{I,J}(R)$ for $c < i \leq n$.

Next Lemma is a generalization of [2, Lemma 2.2].

Lemma 2.2. With the previous notation there are an exact sequence

$$0 \longrightarrow H^{n-1}_{\mathfrak{m}}(\dot{C}(I,J)) \longrightarrow H^{d}_{\mathfrak{m}}(H^{c}_{I,J}(R)) \longrightarrow E \longrightarrow H^{n}_{\mathfrak{m}}(\dot{C}(I,J)) \longrightarrow 0,$$

isomorphisms $H^{i-c}_{\mathfrak{m}}(H^{c}_{I,J}(R)) \cong H^{i-1}_{\mathfrak{m}}(\dot{C}(I,J))$ for i < n and the vanishing $H^{i-c}_{\mathfrak{m}}(H^{c}_{I,J}(R)) = 0$ for i > n.

Proof. Take the short exact sequence of the generalized truncation complex and apply the derived functor $R\Gamma_{\mathfrak{m}}(-)$. In the derived category this provides a short exact sequence of complexes

$$0 \longrightarrow R\Gamma_{\mathfrak{m}}(\mathrm{H}^{c}_{I,J}(R))[-c] \longrightarrow R\Gamma_{\mathfrak{m}}(\Gamma_{I,J}(\dot{E})) \longrightarrow R\Gamma_{\mathfrak{m}}(\dot{C}(I,J)) \longrightarrow 0.$$

We know that $\mathrm{H}^i(\Gamma_{\mathfrak{m}}(\mathrm{H}^c_{I,J}(R)))[-c] = \mathrm{H}^{i-c}(\Gamma_{\mathfrak{m}}(\mathrm{H}^c_{I,J}(R)).$ Since $\Gamma_{I,J}(\dot{E})$ is a complex of injective R-modules we might use $\Gamma_{\mathfrak{m}}(\Gamma_{I,J}(\dot{E}))$ as a representative of $R\Gamma_{\mathfrak{m}}(\Gamma_{I,J}(\dot{E})).$ But there is an equality for the composite of section functors $\Gamma_{\mathfrak{m}}(\Gamma_{I,J}(-)) = \Gamma_{\mathfrak{m}}(-).$ Now $\Gamma_{\mathfrak{m}}(E(R/\mathfrak{p})) = 0$ for any prime ideal $\mathfrak{p} \neq \mathfrak{m}$ while $\Gamma_{\mathfrak{m}}(E) = E.$ So there is an isomorphism of complexes $\Gamma_{\mathfrak{m}}(\dot{E}) \cong E[-n].$ With these observation, the above short exact sequence induces the exact sequence of the statement and the isomorphisms $\mathrm{H}^{i-c}_{\mathfrak{m}}(\mathrm{H}^c_{I,J}(R)) \cong \mathrm{H}^{i-1}_{\mathfrak{m}}(\dot{C}(I,J))$ for i < n by view of the corresponding long exact cohomology sequence. Moreover by [2, Lemma 1.2] we obtain the vanishing of $\mathrm{H}^i_{\mathfrak{m}}(\mathrm{H}^c_{I,J}(R))$ for all i > n.

As a consequence there is the following necessary condition for a pair of ideals I,J to be a cohomologically complete intersection.

Corollary 2.3. Let (R, \mathfrak{m}) be a local Gorenstein ring and $n = \dim R$. Let $I, J \subset R$ be two ideals with $c = \inf\{i | H^i_{I,J}(R) \neq 0\}$ and d = n - c. Suppose that $H^i_{I,J}(R) = 0$ for all $i \neq c$. Then $H^d_{\mathfrak{m}}(H^c_{I,J}(R)) \cong E$ and $H^i_{\mathfrak{m}}(H^c_{I,J}(R)) = 0$ for all $i \neq d$, where E denotes the injective hull of the residue field R/\mathfrak{m} .

Proof. By the assumption we have the vanishing of $H_{I,J}^i(R)$ for all $i \neq c$. Therefore the generalized truncation complex $\dot{C}(I,J)$ is a bounded exact complex. In order to compute the $H_{\mathfrak{m}}^i(\dot{C}(I,J))$ consider the following spectral sequence

$$E_2^{p,q} = \mathrm{H}^p_{\mathfrak{m}}(H^q(\dot{C}(I,J)) \Longrightarrow E_{\infty}^{p+q} = \mathrm{H}^{p+q}_{\mathfrak{m}}(\dot{C}(I,J)).$$

Hence, by the exactness of the truncation complex and because of the vanishing of the initial terms, we have $\mathrm{H}^i_{\mathfrak{m}}(\dot{C}(I,J))=0$ for all $i\in\mathbb{Z}$. Hence the claim is true by Lemma 2.2.

Theorem 2.4. Let (R, \mathfrak{m}) be an n-dimensional local Gorenstein ring. Let I, J be two ideals of R. Let $c = \inf\{i | H^i_{I,J}(R) \neq 0\}$ and d = n - c. Then the following hold:

(a) There are natural isomorphisms,

$$\lim_{\stackrel{\leftarrow}{\mathfrak{a}}\in \overset{\leftarrow}{W}(I,J)} \operatorname{Ext}_R^c(H^c_{\mathfrak{a}}(R),R) \cong \operatorname{Ext}_R^c(H^c_{I,J}(R),R) \cong \operatorname{Hom}_R(H^c_{I,J}(R),H^c_{I,J}(R)).$$

(b) If in addition R is complete, then

$$\lim_{\mathfrak{a}\in \widetilde{W}(I,I)} \operatorname{Ext}_{R}^{c}(H_{\mathfrak{a}}^{c}(R),R) \cong \operatorname{Hom}_{R}(H_{\mathfrak{m}}^{d}(H_{I,J}^{c}(R),E).$$

Moreover if $H_{I,J}^i(R) = 0$ for all $i \neq c$, then the endomorphism ring $Hom_R(H_{I,J}^c(R), H_{I,J}^c(R))$ is isomorphic to R.

Proof. (a) Let $R \xrightarrow{\sim} \dot{E}$ be a minimal injective resolution of R as an R-module. Consider the exact sequence

$$0 \longrightarrow \mathrm{H}^{c}_{I,J}(R) \longrightarrow \Gamma_{I,J}(\dot{E})^{c} \longrightarrow \Gamma_{I,J}(\dot{E})^{c+1}.$$

Since $\Gamma_{I,J}(\dot{E})$ is a submodule of \dot{E} , it induces a natural commutative diagram with exact rows:

The last two vertical homomorphisms are isomorphisms, because $\operatorname{Hom}_R(\operatorname{H}_{I,J}^c(R), \operatorname{F}_{I,J}(\dot{E}))^c \to \operatorname{Hom}_R(\operatorname{H}_{I,J}^c(R), \operatorname{F}_{I,J}(\dot{E}))^{c+1}$.

The last two vertical homomorphisms are isomorphisms, because $\operatorname{Hom}_R(H_{I,J}^c(R), \dot{E})^{c+1}$.

Therefore the first vertical map is also an isomorphism. Moreover $\operatorname{Hom}_R(H_{I,J}^c(R), \dot{E})^c \to \operatorname{Hom}_R(H_{I,J}^c(R), \dot{E})^{c+1}$.

Therefore the first vertical map is also an isomorphism. Moreover $\operatorname{Hom}_R(H_{I,J}^c(R), \dot{H}_{I,J}^c(R), \dot{H}_{I,J}^c(R)) \cong \varprojlim_{\mathfrak{a} \in \dot{W}(I,J)} \operatorname{Hom}_R(H_{\mathfrak{a}}^c(R), H_{I,J}^c(R))$. Therefore we need only show

that $\lim_{\substack{\leftarrow \\ \mathfrak{a} \in \widetilde{W}(I,J)}} \operatorname{Ext}_R^c(\operatorname{H}^c_{\mathfrak{a}}(R),R) \cong \lim_{\substack{\leftarrow \\ \mathfrak{a} \in \widetilde{W}(I,J)}} \operatorname{Hom}_R(\operatorname{H}^c_{\mathfrak{a}}(R),\operatorname{H}^c_{I,J}(R)).$ Assume that

 $\mathfrak{a} \in \tilde{W}(I,J)$. Consider the following natural commutative diagram with exact rows:

homomorphisms are isomorphisms which implies that the first vertical map is also an isomorphism. Therefore their inverse limits are isomorphic and

$$\lim_{\mathfrak{a} \in \widetilde{W}(I,J)} \operatorname{Ext}_{R}^{c}(\operatorname{H}_{\mathfrak{a}}^{c}(R),R) \cong \operatorname{Ext}_{R}^{c}(\operatorname{H}_{I,J}^{c}(R),R).$$

For the proof of (b) recall that the local cohomology commutes with direct limit. So, by the definition of $\mathrm{H}^c_{I,J}(R)$ and the Local Duality Theorem , we have the following isomorphisms;

$$\begin{split} & \lim_{\mathfrak{a} \in \overrightarrow{W}(I,J)} \operatorname{Ext}_{R}^{c}(\operatorname{H}^{c}_{\mathfrak{a}}(R),R) & \cong \lim_{\mathfrak{a} \in \overrightarrow{W}(I,J)} \lim_{\longleftarrow} \operatorname{Ext}_{R}^{c}(\operatorname{Ext}_{R}^{c}(R/\mathfrak{a}^{\alpha},R),R) \\ & \cong \lim_{\mathfrak{a} \in \overrightarrow{W}(I,J)} \operatorname{Hom}\left(\operatorname{H}^{d}_{\mathfrak{m}}(\operatorname{H}^{c}_{\mathfrak{a}}(R)),E\right) \\ & \cong \operatorname{Hom}_{R}(\lim_{\mathfrak{a} \in \overrightarrow{W}(I,J)} \operatorname{H}^{d}_{\mathfrak{m}}(\operatorname{H}^{c}_{\mathfrak{a}}(R)),E) \\ & \cong \operatorname{Hom}_{R}(\operatorname{H}^{d}_{\mathfrak{m}}(\operatorname{H}^{c}_{I,J}(R)),E). \end{split}$$

Note that $\operatorname{Hom}_R(E,E) \simeq R$ when (R,\mathfrak{m}) is a complete local ring. Now the last statement follows immediately by Corollary 2.3.

Remark 2.5. Let $c = \inf\{i | \mathcal{H}_{I,J}^i(R) \neq 0\}$. Since $V(\mathfrak{a}) \subseteq W(I,J)$, by [6, Theorem 4.1], grade $_R\mathfrak{a} = \inf\{\operatorname{depth} R_{\mathfrak{p}} | \mathfrak{p} \in V(\mathfrak{a})\} \geq \inf\{\operatorname{depth} R_{\mathfrak{p}} | \mathfrak{p} \in W(I,J)\} = c$. Now $\mathcal{H}_{\mathfrak{a}}^c(R) \neq 0$ implies that grade $_R\mathfrak{a} = c$. Therefore $\mathcal{H}_{I,J}^c(R) \cong \varinjlim_{\substack{\mathfrak{a} \in W(I,J) \\ \operatorname{grade}_R\mathfrak{a} = c}} \mathcal{H}_{\mathfrak{a}}^c(R)$

(R).

Theorem 2.6. Let (R, \mathfrak{m}) be a local Gorenstein ring and $\dim R = n$. Let I, I', J be proper ideals of R such that $I \subseteq I'$ and $c = \inf\{i | H^i_{I',J}(R) \neq 0\} = \inf\{i | H^i_{I',J}(R) \neq 0\}$. Then the following hold:

(a) There is a natural homomorphism

$$\operatorname{Hom}_R(H^c_{I,J}(R), H^c_{I,J}(R)) \longrightarrow \operatorname{Hom}_R(H^c_{I',J}(R), H^c_{I',J}(R)).$$

(b) Let R be in addition complete. Then the homomorphism in (a) is a monomorphism.

Proof. (a) Let $R \xrightarrow{\sim} \dot{E}$ be a minimal injective resolution of R as an R-module. Then from the exact sequence $0 \longrightarrow \mathrm{H}^c_{I,J}(R) \longrightarrow \Gamma_{I,J}(\dot{E})^c \longrightarrow \Gamma_{I,J}(\dot{E})^{c+1}$, we get the following natural commutative diagram with exact rows:

we get the following natural commutative diagram with exact rows;
$$0 \to \mathrm{H}^{c}_{I',J}(R) \to \Gamma_{I',J}(\dot{E})^{c} \to \Gamma_{I',J}(\dot{E})^{c+1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \to \mathrm{H}^{c}_{I,J}(R) \to \Gamma_{I,J}(\dot{E})^{c} \to \Gamma_{I,J}(\dot{E})^{c+1}.$$
Since the partial becomes the contribution of the following the

Since the vertical homomorphisms are monomorphism, it follows that the natural homomorphism $H^c_{I',J}(R) \longrightarrow H^c_{I,J}(R)$ is a monomorphism. Therefore

by applying the $\operatorname{Ext}_R^c(-,R)$ to the short exact sequence $0 \longrightarrow \operatorname{H}^c_{I',J}(R) \longrightarrow \operatorname{H}^c_{I,J}(R) \longrightarrow X \longrightarrow 0$ we obtain the natural homomorphism

$$\operatorname{Ext}_R^c(\operatorname{H}^c_{I,J}(R),R) \longrightarrow \operatorname{Ext}_R^c(\operatorname{H}^c_{I',J}(R),R).$$

Now by Theorem 2.4 (a) this proves the statement.

In order to prove (b) we claim that $\dim X \leq d-1$. Consider the short exact sequence (†) $0 \longrightarrow \mathrm{H}^c_{I',J}(R) \longrightarrow \mathrm{H}^c_{I,J}(R) \longrightarrow X \longrightarrow 0$ in which $X \cong \mathrm{H}^c_{I,J}(R)/\mathrm{H}^c_{I',J}(R)$. Let $\mathfrak{p} \in W(I,J)$ be such that $\mathfrak{ht} \mathfrak{p} = c$. Then by remark 2.5,

$$(\mathcal{H}^{c}_{I,J}(R))_{\mathfrak{p}} = (\varinjlim_{\substack{\mathfrak{a} \in \overline{W}(I,J) \\ \operatorname{ht}_{\mathfrak{a}=c}}} \mathcal{H}^{c}_{\mathfrak{a}}(R))_{\mathfrak{p}} = \varinjlim_{\substack{\mathfrak{a} \in \overline{W}(I,J) \\ \operatorname{ht}_{\mathfrak{a}=c}}} \mathcal{H}^{c}_{\mathfrak{a}R_{\mathfrak{p}}}(R_{\mathfrak{p}}) = \varinjlim_{\substack{\mathfrak{a} \subseteq \mathfrak{p} \\ \operatorname{ht}_{\mathfrak{a}=c}}} \mathcal{H}^{c}_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}}).$$

Similarly
$$(H^c_{I',J}(R))_{\mathfrak{p}} = \underset{\substack{\mathfrak{a} \subseteq \mathfrak{p}, \mathfrak{a} \in \tilde{W}(I',J) \\ \text{ht } \mathfrak{a} = c}}{\varinjlim} H^c_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}})$$
. Therefore $X_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \mathbb{R}$

W(I,J) with ht $\mathfrak{p}=c$, which implies that dim $X\leq d-1$. Now by applying the local cohomology with respect to the maximal ideal to the short exact sequence (†) and the fact that dim $X\leq d-1$ we obtain that the natural homomorphism $\mathrm{H}^d_{\mathfrak{m}}(\mathrm{H}^c_{I',J}(R))\longrightarrow \mathrm{H}^d_{\mathfrak{m}}(\mathrm{H}^c_{I,J}(R))$ is an epimorphism. Therefore the natural homomorphism $\mathrm{Hom}_R(\mathrm{H}^d_{\mathfrak{m}}(\mathrm{H}^c_{I,J}(R)),E)\longrightarrow \mathrm{Hom}_R(\mathrm{H}^d_{\mathfrak{m}}(\mathrm{H}^c_{I',J}(R)),E)$ is a monomorphism which by Theorem 2.4 (b), this proves the statement in (b).

The following result is another necessary condition for a pair of ideals I, J to be a cohomologically complete intersection.

Corollary 2.7. With the assumptions of Theorem 2.6. Assume in addition that R is complete and $H^{i}_{I',J}(R) = 0$ for all $i \neq c$. Then there is a natural monomorphism

$$\operatorname{Hom}_R(H^c_{I,J}(R),H^c_{I,J}(R)) \longrightarrow \ R.$$

Proof. The result follows by Theorem 2.4 and Theorem 2.6. \Box

The following result is a generalization of Schenzel [5].

Theorem 2.8. Let (R, \mathfrak{m}) be a local Gorenstein ring with $n = \dim R$. Let I, J be proper ideals of R such that $c = \inf\{i | H^i_{I,J}(R) \neq 0\}$. Then the following results hold:

- (i) $dim H_{I,J}^i(R) \leq n i$ for all $i \geq c$.
- (ii) $dim H_{I,J}^c(R) = n c$.

Proof. (i) Let $R \xrightarrow{\sim} \dot{E}$ be a minimal injective resolution of R as an Rmodule. Then it is known that $E^i = \bigoplus_{\mathfrak{p} \in \operatorname{Spec}(R)} E(R/\mathfrak{p})$, hence $\Gamma_{I,J}(E^i) = \bigoplus_{\mathfrak{p} \in \operatorname{Spec}(R)} E(R/\mathfrak{p})$

 $\bigoplus_{\substack{\text{ht$}\mathfrak{p}=i\\\mathfrak{p}\in W(I,J)}}E(R/\mathfrak{p}).\quad\text{Therefore $$Supp$}\,\mathrm{H}^{i}_{I,J}(R)\ \subseteq\ \mathrm{Supp}\,(\bigoplus_{\substack{\text{ht$}\mathfrak{p}=i\\\mathfrak{p}\in W(I,J)}}E(R/\mathfrak{p}))\ =\ \{\mathfrak{q}\ \in\ \mathrm{Supp}\,(\mathbb{Q})\}$

Spec $(R)|\mathfrak{q} \supseteq \mathfrak{p}$ for all $i \geq c$. Let $\mathfrak{p} \in \operatorname{Supp} H^i_{I,J}(R)$ be a prime ideal, so $\operatorname{ht} \mathfrak{p} \geq i$ which implies that $\dim R/\mathfrak{p} \leq n-i$. Therefore $\dim H^i_{I,J}(R) \leq n-i$. (ii) Consider the exact sequence

$$0 \longrightarrow \mathrm{H}^{c}_{I,J}(R) \longrightarrow \bigoplus_{\substack{\text{$\mathfrak{p}} \in W(I,J)\\ \mathfrak{p} \in W(I,J)}} E(R/\mathfrak{p}) \longrightarrow \bigoplus_{\substack{\text{$\mathfrak{p}} \in c+1\\ \mathfrak{p} \in W(I,J)}} E(R/\mathfrak{p}).$$

This implies that Ass $(H_{I,J}^c(R)) \subseteq \{ \mathfrak{p} \in W(I,J) | \text{ht } \mathfrak{p} = c \}$. Now let $\mathfrak{p} \in W(I,J)$ be a prime ideal with ht $\mathfrak{p} = c$. Then by above exact sequence, we have

$$(\mathrm{H}_{I,J}^c(R))_{\mathfrak{p}} = E_{R_{\mathfrak{p}}}(k(\mathfrak{p})) \supseteq k(\mathfrak{p}).$$

Therefore $\mathfrak{p} \in \operatorname{Ass} H^c_{I,J}(R)$ which implies that $\dim H^c_{I,J}(R) \geq n-c$. Now by part (i) we can conclude the statement.

Acknowledgments

The authors would like to thank the referee for his/her useful suggestions.

References

- M. P. Brodmann, R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, 60. Cambridge University Press, Cambridge, 1998.
- M. Hellus, P. Schenzel, On cohomologically complete intersections, *Journal of Algebra*, 320, (2008), 3733-3748.
- M. Hellus, J. Stückrad, On endomorphism rings of local cohomology modules, Proc. Amer. Math. Soc., 136, (2008), 2333-2341.
- 4. H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, 1986.
- P. Schenzel, On Endomorphisms rings and dimensions of local cohomology modules, Proc. Amer. Math. Soc., 137, (2009), 1315-1322.
- R. Takahashi, Y. Yoshino, T. Yoshizawa, Local cohomology based on a non-closed support defined by a pair of ideals, J. Pure Appl. Algebra, 213(4), (2009), 582-600.
- A. Tehranian, A. Poureshmanan Talemi, Cofiniteness of local cohomology modules with respect to a pair of ideals, Bulletin of the Iranian Mathematical Society, 36(2), (2010), 145-155.
- 8. C. Weibel, An introduction to homological algebra, Cambridge Univ. Press, 1994.