دوره 4، شماره 1 - ( 2-1388 )                   جلد 4 شماره 1 صفحات 27-35 | برگشت به فهرست نسخه ها

BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

N. Eftekhari. The Basic Theorem and its Consequences. IJMSI. 2009; 4 (1) :27-35
URL: http://ijmsi.ir/article-1-62-fa.html
The Basic Theorem and its Consequences. مجله علوم ریاضی و انفورماتیک ایرانیان. 1388; 4 (1) :27-35

چکیده:

Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a new proof of the Basic Theorem. The significance of the Basic Theorem for us is that it reduces the characterization of a best approximation to f &epsilon C(T ) from M to the case of finite T , that is to the case of approximation in l^{&omega}(r). If one solves the problem for the finite case of T then one can deduce the solution to the general case. An immediate consequence of the Basic Theorem is that for a finite dimensional subspace M of C_{0}(T ) there exists a separating measure forMand f &epsilon C_{0}(T )M, the cardinality of whose support is not greater than dim M+1. This result is a special case of a more general abstract result due to Singer [5]. Then the Basic Theorem is used to obtain a general characterization theorem of a best approximation from M to f &epsilon C(T ). We also use the Basic Theorem to establish the sufficiency of Haar’s condition for a subspace M of C(T ) to be Chebyshev.

نوع مطالعه: پژوهشي | موضوع مقاله: عمومى

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:

کلیه حقوق این وب سایت متعلق به نشریه علوم ریاضی و انفورماتیک می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق