
Iranian Journal of Mathematical Sciences and Informatics

Vol. 12, No. 1 (2017), pp 47-67

DOI: 10.7508/ijmsi.2017.01.005

Integrating Differential Evolution Algorithm with Modified
Hybrid GA for Solving Nonlinear Optimal Control Problems

Saeed Nezhadhoseina,∗, Aghile Heydaria, Reza Ghanbarib

aDepartment of Applied Mathematics, Payame Noor University, Tehran, Iran.
bDepartment of Applied Mathematics, Faculty of Mathematical science,

Ferdowsi University of Mashhad, Mashhad, Iran.

E-mail: s nejhadhosein@pnu.ac.ir

E-mail: a heidari@pnu.ac.ir

Abstract. Here, we give a two-phase algorithm based on integrating dif-

ferential evolution (DE) algorithm with modified hybrid genetic algorithm

(MHGA) for solving the associated nonlinear programming problem of a

nonlinear optimal control problem. In the first phase, DE starts with a

completely random initial population where each individual, or solution,

is a random matrix of control input values in time steps. After phase

1, to achieve more accurate solutions, we increase the number of time

steps. The values of the associated new control inputs are estimated by

linear or spline interpolations using the curves computed in the phase 1.

In addition, to maintain the diversity in the population, some additional

individuals are added randomly. Next, in the second phase, MHGA starts

by the new population constructed by the above procedure and tries to

improve the obtained solutions at the end of phase 1. The numerical re-

sults showed that the proposed algorithm will find almost better solution

than other proposed algorithms.

Keywords: Nonlinear optimal control problem, Differential evolution, Modified hybrid genetic

algorithm, Successive quadratic programming.

2000 Mathematics subject classification: 49J15.

∗Corresponding Author

Received 26 June 2014; Accepted 03 May 2015

c©2017 Academic Center for Education, Culture and Research TMU

47

48 S. Nezhadhosein, A. Heydari, R. Ghanbari

1. Introduction

Nonlinear optimal control problems (NOCP) are dynamic optimization prob-

lems with many applications in industrial processes such as airplane [19], robotic

arm [8], bio-process system, sequencing batch reactor [21], biomedicine [24],

chemical processes [25, 34], electric power systems [28] and etc., [16].

NOCPs are formulated as optimization problems by the performance index as

the objective function and differentiate equations as constraints that called dy-

namic optimizations. There are different types of these problems e.g. tracking

problem, terminal control problem and minimize time problem [16]. We con-

sider bounded continuous-time continuous control problem in which a control

function, u, is exerted over the planning horizon [t0, tf]. The particular prob-

lem considered is that of finding the control input u(.) ∈ Rm that minimize the

cost functional:

min J(u(t)) = φ(x(tf), tf) +

∫ tf

t0

g(x(t), u(t), t)dt (1.1)

subject to:

ẋ(t) = f(x(t), u(t), t), t ∈ [t0, tf] (1.2)

ci(x(t), u(t), t) = 0, i = 1, . . . , nc, t ∈ [t0, tf] (1.3)

di(x(t), u(t), t) ≤ 0, i = 1, . . . , nd, t ∈ [t0, tf] (1.4)

x(t0) = x0, (1.5)

ψi(x(tf), tf) = 0, i = 1, . . . , nψ. (1.6)

where x(.) ∈ Rn denotes the state variables for the system. The performance

index (1.1) must be minimized subject to dynamic (1.2), control and state

equality constraints (1.3) and control and state inequality constraints (1.4),

the initial condition (1.5) and the final state constrains (1.6).

Many methods for solving NOCPs, eqns (1.1)-(1.6), either direct or indirect,

rely upon gradient information and therefore may converge to a local opti-

mum [1]. In direct methods [16, 29], the original continuous-time problem is

approximated by a finite-dimensional nonlinear programming problem using

discrete states and control variables. The major drawback of these methods is

the lack of accuracy. In indirect approaches, the problem through the use of

the Pontryagins minimum principle (PMP), is converted to two boundary value

problems (TBVP) that can be solved by numerical methods such as shooting

method [16]. These methods have two major disadvantages. First, they may

converge to a local optimum. Next, they require good initial guesses that lie

within the domain of convergence.

Metaheuristics as the global optimization methods can overcome these prob-

lems. They differ from classic methods. They don’t really need good initial

guesses and deterministic rules. Some of these methods are; Genetic Algorithm

Integrating Differential Evolution Algorithm ... 49

(GA), see [1, 30, 31], Genetic Programming (GP), see [17], Particle Swarm Op-

timization (PSO), see [3, 4, 23], Ant Colony Optimization (ACO), see [36] and

Differential Evolution (DE), see [7, 18, 37].

Many authors proposed many types of metaheuristics for solving NOCPs.

Wang and Chiou [37] proposed a DE to solve NOCPs described by differential-

algebraic systems with nonlinear constraints. Lee et al. [18] used a modified

DE algorithm for dynamic optimization of a continuous polymer reactor. Sim

et al. [31] combined a GA and the shooting method for solving optimal control

problems. Cruz et al. [7] used efficient DE algorithms for solving multi-modal

NOCPs. Firstly they used DE to approximate the global minimum. Next,

a classical local optimization algorithm was used to compute the global opti-

mum as accurate as possible. Arumugam and Rao [4] considered the popular

GA operators, cross-over and root mean square variants into PSO algorithm

to make a faster convergence. Arumugam et al. [3] used various optimiza-

tion algorithms, including PSO, with time varying inertia weight methods, and

PSO with globally and locally tuned parameters to solve the NOCPs for steel

annealing processes. van Ast et al. [36] proposed a novel ACO approach to

solve NOCP. Kumar and Balasubramaniam [17], using GA, solved NOCP for

a linear system with quadratic performance.

Shi et al. [30] presented an improved GA with variable population-size inspired

by the natural features of the variable size of the population used to contin-

uous optimization problems. Recently, Ghosh et al. [14] used an ecologically

inspired optimization technique for solving NOCPs. They used Bézier curves

to parameterize the control functions. Abo-Hammour et al. [1] applied the

continuous GA for solving NOCPs. They used smooth genetic operators to

solve NOCPs. Modares and Naghibi-Sistani [23] proposed a hybrid algorithm

by integrating an improved PSO with SQP [6]. Li et al. [20] used a PSO based

method to obtain the time-optimal bang-bang control law for both linear and

nonlinear systems.

Based on the success of the metaheuristics for solving NOCPs, mentioned

above, we propose a two-phase algorithm based on integrating DE with MHGA.

At first, to solve an NOCP, the time interval is uniformly divided by using a

constant number of time steps. Next, in each of these time steps, the control

variable is approximated by a scaler matrix of control input values. Thus, an

infinite dimensional NOCP is changed to a finite dimensional nonlinear pro-

gramming (NLP). Now, we encounter two conflict situations: the quality of

the global solution and the needed computational time. In other words, when

the number of time steps is increased then we expect the quality of the global

solution is also increased but we know that in this situation the computational

time is increased dramatically. In other situation, we consider less number of

time steps, then the computational time is decreased but we may find a poor

local solution. To conquer these problems, a two-phase algorithm is proposed.

50 S. Nezhadhosein, A. Heydari, R. Ghanbari

In the first phase of the proposed algorithm (exploration phase), to decrease

the computational time and to find a promising solution in the search space,

DE algorithm is applied with a less number of time steps. After phase 1, to

increase the quality of solutions obtained from phase 1, the number of time

steps is increased. Using the obtained solution in the phase 1, the values of the

new control inputs are estimated by linear or spline interpolations. Next, in the

second phase, MHGA (exploitation phase) is applied which uses the solutions

constructed by the above procedure, as an initial population.

In this algorithm, we give a MHGA which combines GA with SQP, see [6].

SQP is an iterative algorithm for solving NLP and uses gradient information.

Also, it can be used for solving NOCPs, see [12, 15, 35]. MHGA decreases

the number of iterations in GA, also may increase the quality of the obtained

solutions. Moreover, for decreasing the running time in the early generations

(iterations) of MHGA, a less number of iterations for SQP was used and then,

when the promising region of search space was found, we increase the number

of iterations of SQP gradually.

The paper is organized as follows: in Section 2, a description of DE algorithm

and our proposed MHGA are presented. In Section 3, we introduce an algo-

rithm for solving NOCP. In Section 4, we provide more than 25 NOCPs to

examine our proposed algorithm. Results are compared with some numerical

and heuristic methods. Also, a statistical approach is done for the proposed

algorithm. We conclude in Section 5.

2. Overview of DE and MHGA

Here, we introduce DE algorithm and our proposed MHGA as subprocedures

for the main algorithm. First, the control variables are parametrized. Next,

NOCP is changed into a finite dimensional NLP, (See [12]).

2.1. DE algorithm. DE algorithm introduced by Storn and Price in 1996 [33],

is a population based algorithm which has three main operators; mutation,

crossover and selection [7].

The underlying DE has the following steps:

Initialization: The time interval is divided into Nt− 1 equidistant subintervals

with time steps t0 < t1 < . . . < tNt−1 = tf and then control input values are

computed (or selected) randomly, by the following stages:

(1) Let tk = t0 + kh, where h =
tf−t0
Nt−1 , k = 0, 1, . . . , Nt − 1 and t0 and tf

are the initial and final times, respectively.

(2) The corresponding control input value at each time step tk is an m× 1

vector, uk. So, each individual of the population is an m×Nt matrix,

with following components:

uij = uleft,i + (uright,i − uleft,i).rij , i = 1, 2, . . . ,m, j = 1, . . . , Nt (2.1)

Integrating Differential Evolution Algorithm ... 51

where rij is a random number in [0, 1] with a uniform distribution and

uleft, uright ∈ Rm are the lower and the upper bound vectors of control

input values, which can be given by the problem’s definition or the user

(e.g. see the NOCPs no. 5 and 6 in Appendix).

Next, we let U (k) = [u0, u1, . . . , uNt−1] = (uij)m×Nt , k = 1, 2, . . . , Np
as the k-th individual of the population, control input matrix, which

Np is the size of the population.

Evaluation: The corresponding state matrix with the position matrix, U (k), k =

1, 2, . . . , Np, is an n × Nt matrix, X(k) = [x0, x1, . . . , xNt−1], where xj , j =

0, 1, . . . , Nt − 1, is an n × 1 vector as the (j + 1)-th column of state matrix,

and can approximately be computed by the forth Runge-Kutta method on

dynamic system (1.2) with the initial condition (1.5). Then, the performance

index, J(U (k)), is approximated by a numerical method, J̃ . If NOCP includes

equality or inequality constraints (1.3) or (1.4), then we add some penalty terms

to the corresponding fitness value of the solution. Finally, we assign I(U (k)) to

U (k) as the fitness value as follows:

I(U (k)) = J̃ +

nd∑
i=1

Nt−1∑
j=0

M1imax{0, di(xj , uj , tj)}+

nc∑
i=1

Nt−1∑
j=0

M2ic
2
i (xj , uj , tj)

+

nψ∑
i=1

M3iψ
2
i (xNt−1, tNt−1) (2.2)

whereM1i, M2i andM3i are big numbers, and ci(., .), i = 1, 2, . . . , nc, di(., .), i =

1, 2, . . . , nd and ψi(., .), i = 1, 2, . . . , nψ are defined in (1.3), (1.4) and (1.6),

respectively.

Mutation: The mutation operation of DE, which expands the search space,

applies the vector differentials between the existing population members for

determining both the degree and direction of perturbation applied to the indi-

vidual. The mutation process at each generation begins by randomly selecting

three individuals in the population and then generate a new solution as follow-

ing:

Ū = U (α) + F.(U (β) − U (γ)) (2.3)

where α, β, γ ∈ {1, 2, . . . , Np} are integer distinct random numbers and mu-

tation factor F ∈ [0, 2] is a real constant parameter which affects differential

variation between two vectors, proposed by Storn and Price [32].

Crossover: Using a parent solution, called target matrix, U (l), l ∈ {1, 2, . . . , Np},
and previous perturbed individual, Ū , the new individual matrix, of , called

trial matrix, is generated by the following components:

(of)ij =

{
(Ū)ij , rj < CR or j = R

(U (l))ij , rj > CR and j 6= R
(2.4)

52 S. Nezhadhosein, A. Heydari, R. Ghanbari

where i = 1, 2, . . . ,m, j = 1, 2, . . . , Nt, R is a random chosen index in {1, 2, . . . , Nt},
CR ∈ [0, 1] is the crossover constant as a parameter, which increases the diver-

sity of the individuals in the population, and rj is a random number in [0, 1].

Selection: The better individual between target matrix and trial matrix is re-

placed by the worst individual in the population.

Stopping criteria: The algorithm is terminate when the number of iteration is

equal to Maxiter or running time is equal to CPUTIME.

DE algorithm is given in Algorithm 1.

Algorithm 1 DE algorithm

{Initialization} Input the number of time steps, Nt, the size of population,

Np, the maximum number of iteration Maxiter, the mutation factor, F , the

crossover constant, CR and the maximum running time CPUTIME.

Let iter = 0.

while stopping criteria are not satisfied do

Let iter := iter + 1.

for i = 1 to Np do

{Mutation} Perturb the current individual to generate Ū by (2.3).

{Crossover} Generate the trial matrix, of , using (2.4).

{Selection} Select the better individual between target and trial

matrices for next generation and replace it by the worst individual in the

current population.

end for

end while

Return the best individual in the final population as an approximate solu-

tion of NOCP.

2.2. GA. GAs introduced by Holland in 1975, are a class of heuristics and

probabilistic methods. These algorithms start with an initial population of

solutions. This population is evaluated by using genetic operators that include

selection, crossover and mutation. In the following, we introduce GA operators.

2.2.1. GA operators. Here, in MHGA, the underling GA has the following

steps:

Initialization: The initial population is sequence random input matrices, simi-

lar to initialization in DE, from previous Section.

Evaluation: The fitness of each individual is calculated similar to (2.2).

Selection: To select two parents, we use a tournament operator with size 8 [10].

Crossover: When two parents U (1) and U (2) are selected, we use the following

stages to construct an offspring:

Integrating Differential Evolution Algorithm ... 53

(1) Select the following numbers

λ1 ∈ [0, 1], λ2 ∈ [−λmax, 0], λ3 ∈ [1, 1 + λmax] (2.5)

randomly, where λmax is a random number in [0, 1].

(2) Let

ofk = λkU
(1) + (1− λk)U (2), k = 1, 2, 3 (2.6)

where λk, k = 1, 2, 3 is defined in (2.5). For i = 1, 2, . . . ,m and

j = 1, . . . , Nt, if (ofk)ij > uright,i, then let (ofk)ij = uright,i and if

(ofk)ij < uleft,i, then let (ofk)ij = uleft,i.

(3) Let of = of∗, where of∗ is the best of i, i = 1, 2, 3 constructed by (2.6).

Mutation: We apply a perturbation on each component of the offspring as

follows:

(of)ij = (of)ij + rij .α, i = 1, 2, . . . ,m, j = 1, 2, . . . , Nt (2.7)

where rij is selected randomly in {−1, 1} and α is a random number in [0, 1].

If (of)ij > uright,i, then let (of)ij = uright,i and if (of)ij < uleft,i, then let

(of)ij = uleft,i.

Replacement: Here, in the underling GA, we use a traditional replacement

strategy. The replacement is done, if the new offspring has two properties:

First, it is better than the worst person in the population. Second, it isn’t very

similar to a person in the population.

Stopping criteria: Underlying GA is terminated when at least one of the fol-

lowing conditions is occurred: over a specified number of generations, Ni, we

don’t have any improvement (the best individual is not changed), the max-

imum number of generations, Ng, is reached, or a predefined running time,

CPUTIME, is achieved.

2.3. MHGA. In MHGA, GA uses a local search method to improve solutions.

Here, we use SQP as a local search [6]. Using SQP as a local search in the hy-

brid metaheuristic is common for example see [23].

In the beginning of our MHGA, a less number of iterations for SQP was used.

Then, when the promising regions of search space were found, we increase the

number of iterations of SQP gradually. Using this approach, we may decrease

the needed running time (in [5] the philosophy of this approach is discussed).

Finally, we give our MHGA, in Algorithm 2.

3. Our Proposed Algorithm

Here, we give a two-phase algorithm, which is a direct approach, based on

integrating DE with MHGA, for solving NOCPs, defined in Section 1. The

main idea of our algorithm is to find promising regions of search space with

a few number of time steps, using DE. Then, after finding good solutions, we

54 S. Nezhadhosein, A. Heydari, R. Ghanbari

Algorithm 2 MHGA

{Initialization} Input the number of time steps Nt, the size of population

Np, the maximum number of generations without improvement Ni, the max-

imum number of generations Ng, the maximum running time CPUTIME,

the mutation implementation probability Pm, the initial value of the maxi-

mum number of iterations in SQP, sqpmaxiter and an initial population.

{Evaluation} Evaluate the fitness of each individual by (2.2).

{Local search} Perform SQP on each individual of the population when

the maximum number of iteration is sqpmaxiter.

while stopping criteria are not satisfied do

{Selection} Select two parents U (1) and U (2) by using an eight tourna-

ment from the population.

{Crossover} Construct a new offspring, of , from U (1) and U (2) by using

(2.5) and (2.6).

{Mutation} Apply (2.7) on of with probability Pm.

{Local search} Perform SQP on of when the maximum number of

iteration is sqpmaxiter.

{Replacement}
if replacement conditions are satisfied (see Section 2.2.1) then replace

of with the worst individual of the population.

end if

Let: sqpmaxiter := sqpmaxiter + 1

end while

Return the best individual in the final population as an approximate solu-

tion of NOCP.

increase the number of time steps to improve the approximation of the optimal

solution.

In the first phase, we perform DE (Algorithm 1) with a completely random

initial population constructed by (2.1). Since the main goal in the first phase

is to find the promising regions of the search space in a less running time, we

use a few numbers of time steps, here. Also, to have a faster converged DE,

the size of the population in the first phase is usually less than the size of the

population in the second phase.

After phase 1, to maintain the property of individuals in the last population of

the phase 1 and to increase the accurately of solutions, we add some additional

time steps. Thus, we increase time steps from Nt1 in the phase 1 to Nt2 in

the phase 2. The corresponding control input values of the new time steps are

added to individuals. To use the information of the obtained solutions from

phase 1 in the construction of the initial population of the phase 2, we use either

linear or spline interpolations to estimate the value of the control inputs in the

Integrating Differential Evolution Algorithm ... 55

new time steps in each individual of the last population of phase 1. Moreover,

to maintain the diversity in the initial population of the phase 2, we add new

random individuals to the population using (2.1). In the second phase, MHGA

(Algorithm 2) starts with the new population.

Finally, our proposed algorithm is given in Algorithm 3.

Algorithm 3 Our proposed algorithm

{Initialization} Input CPUTIME and let CPUTTIME1 := CPUTIME
2

{Phase 1} Perform DE (Algorithm 1) with a random population and

Nt1 , Np1 , Maxiter, F, CR and CPUTIME1.

{Construction of the initial population of the phase 2} Increase time

steps uniformly to Nt2 and estimate the corresponding control input values

of the new time steps in each individual obtained from phase 1, using either

linear or spline interpolations.

Create Np2 −Np1 new different individuals with Nt2 time steps, randomly.

Let CPUTIME2 := CPUTIME - the running time of the Phase 1.

{ Phase 2 } Perform MHGA (Algorithm 2) with the constructed random

population and Nt2 , Np2 , Ni, Ng, CPUTIME2, Pm and sqpmaxiter.

4. Numerical Experiments

In this Section, 26 well-known NOCPs are considered to show the feasibil-

ity and the efficiency of the proposed algorithm. Firstly, in subsection 4.1, a

chemical process which described by an NOCP, is considered, as a real world

problem. In subsection 4.2, we perform our proposed algorithm on a high di-

mensional problem. Next, in subsection 4.3, in order to compare the proposed

algorithm with other methods, 24 benchmarks are solved. Finally, in subsec-

tion 4.4, a statistical approach is done for the proposed algorithm. To set the

parameters of our proposed algorithm, we ran them with different values of

parameters and selected the best of them. Also, because of the stochastic na-

ture of the proposed algorithm, 100 different runs were made and the results,

contain best and mean, are reported.

The numerical behaviour of the algorithms can be studied from three points of

view: the performance index, J , the final state constraints, ψ = [ψ1, . . . , ψnψ]T ,

defined in (1.6), and the running time, Time.

The algorithm was implemented in Matlab R2011a environment on a Notebook

with Windows 7 Ultimate, CPU 2.53 GHz and 4.00 GB RAM. Furthermore, to

implement SQP in our proposed algorithm, we used ‘fmincon’ in Matlab when

the ‘Algorithm’ was set to ‘SQP’.

Remark 4.1. We use the following abbreviations to show the used interpolation

method in our proposed algorithm:

56 S. Nezhadhosein, A. Heydari, R. Ghanbari

(1) LI: linear interpolation.

(2) SI: spline interpolation.

Remark 4.2. In Algorithm 3, we let CPUTIME = 400 s. Also, in the first

phase of Algorithm 3, in DE algorithm (Algorithm 1), we let Maxiter = 1000,

CR and F are selected randomly, separately in each problem. In second phase,

in MHGA, we let sqpmaxiter = 4, Pm = 0.8. Besides, we use the composite

Simpson method to approximate (1.1).

4.1. TCCR problem [34]. In this Section, the chemical process of Temper-

ature Control for Consecutive Reaction, TCCR, is considered, which is an

unconstrained two-state variable mathematical system. The objective is to

obtain the optimal temperature profile that maximizes the yield of the temper-

ature product B at the end of operation in a batch reactor, where the reaction

A→ B → C is occurred. The state variables, x1 and x2, are the concentration

of A and B, respectively, and the control variable u is the temperature. The

mathematical model of TCCR problem is

max J(u) = x2(tf)

s.t : ẋ1 = −4000exp(
−2500

u
x2

1),

ẋ2 = 4000exp(
−2500

u
)x2

1 − 620000exp(
−5000

u
)x2

where x(t0) = [1, 0]T and tf = 1. The problem solved by HIGA [34], which

was more accurate than ACO [27] and iterative ACO [40]. The optimal value

TCCR problem, for HIGA, was obtained as 0.61046. We used the proposed

algorithm for the problem with the parameters as Np1 = 12, Np2 = 15, Nt1 =

11, Nt2 = 15, Ng = 1000 and Ni = 600. In addition, from the definition of

model, uleft and uright are 298 and 398, respectively. The best obtained values

for J are 0.61067 and 0.61078, with the required running time 76.34 s and 87.65

s, for LI and SI respectively, which is better than HIGA. The optimal control

signal and the state trajectories, for SI method, are shown in Figure 1.

4.2. High dimensional problem. In this Section to check the proposed algo-

rithm for a special issue of high dimensional problem, we applied the algorithm

on a time-invariant, linear-quadratic dynamic system [39], which n = 1006

(the number of state variables) and m = 1 (the number of state variables).

The problem is

min J(u) =

∫ 1

0

u2(t)dt

s.t. ẋ = Ax(t) +Bu(t),

x(0) = 1

Integrating Differential Evolution Algorithm ... 57

Figure 1. The optimal control signal, (a), and the optimal

trajectories, x1 and x2, (b), for the TCCR problem, using SI

method.

with the following matrices, where, ei ∈ Ri is a vector each entry equal to 1:

A =


A1

A2

A3

A4

 , A1 =

[
−1 100

−100 −1

]
, A2 =

[
−1 200

−200 −1

]
,

A3 =

[
−1 400

−400 −1

]
, A4 = −diag{1, 2, . . . , 1000}, B =

[
10e6

e1000

]
The system was selected from [26], as a large dynamical system. The problem

was solved by the proposed algorithm with the parameters as Np1 = 12, Np2 =

15, Nt1 = 11, Nt2 = 51, Ng = 1000 and Ni = 600. The best and the mean

of performance index are 8.08× 10−17 and 1.53× 10−17, respectively, using SI

method. Also, these values for Time are 253.73 s and 303.12 s, respectively.

4.3. Comparison with some algorithms. Here, 24 NOCPs, which are de-

scribed in Appendix in terms of eqns (1.1)-(1.6), are considered. These NOCPs

are selected with single control signal and multi control signals, which will be

demonstrated in a general manner.

In Table 1, comparisons are made with some metaheuristic algorithms and

some numerical methods. The numerical results for the NOCPs no. 1-3, in

Appendix, are compared with a continuous GA, CGA, proposed in [1]. For

the NOCPs no. 4-5, the results are compared with IPSO, proposed in [23], as

metaheuristics. Similarly, for the NOCPs no. 6-9 the results are compared with

some numerical methods. Moreover, for the NOCPs no. 10-24, in Appendix,

the numerical results of LI and SI methods are compared with two numerical

methods contain: SQP and SUMT, proposed in [12].

58 S. Nezhadhosein, A. Heydari, R. Ghanbari

The notation ϕf , in Table 1, shows the norm of error in the final state con-

straints, i.e. φf = ‖ψ‖2. To have a more careful comparison, we computed the

gap between the value of the performance index of the algorithms and the best

value of the obtained performance index. In other words, let J be the obtained

value of the performance index of an algorithm. Now, similar to [38], we define

the Gap as follows:

Gap(J) = |J − J
∗

J∗ | (4.1)

where J∗ is the best value of the obtained performance index. The applied

parameters of the proposed algorithm are reported in Table 2, for each problem.

Table 1, shows the best numerical results (the cost function, J , the norm of

error in the final state constraints, ϕf , the gap between performance indexes,

Gap, and the required running time, Time), in 100 independent runs (The mean

numerical results are reported in Table 3). The best value of each column is

shown in bold.

Table 1: The best numerical results for NOCPs described in Ap-

pendix, in 100 different runs.

Problem Algorithm J ϕf Time Gap

VDPO CGA [1] 1.7404 2.67E− 11 501.28 0.0346

LI 1.6822 2.71E − 10 270.97 0

SI 1.6822 5.30E − 10 316.38 0

CRP CGA [1] 0.0163 7.57E − 10 84.13 0.0724

LI 0.0152 3.59E− 10 34.71 0

SI 0.0152 2.01E − 9 43.60 0

FFRP CGA [1] 83.63 4.65E − 3 1413 4.1370

LI 16.28 2.70E− 5 151.61 0

SI 16.42 5.06E − 4 142.33 0.0086

CSTCR IPSO[23] 0.1354 — NRa 0.0360

[2] 0.135 — NR 0.0329

[7] 0.1358 — NR 0.0390

LI 0.1307 — 30.61 0

SI 0.1307 — 54.98 0

MSNIC IPSO[23] 0.1727 — NR 0.0135

[15] 0.1816 — NR 0.0657

[22] 0.1769 — NR 0.0381

LI 0.1704 — 39.87 0

SI 0.1704 — 32.76 0

No. 6 [41] 0.0266 — NR 0.7272

LI 0.0154 — 33.05 0

SI 0.0154 — 27.51 0

Continued on next page

Integrating Differential Evolution Algorithm ... 59

Table 1 – Continued from previous page

Problem Algorithm J ϕf Time Gap

No. 7 [13] -5.3898 — NR 0.0439

LI −5.6370 — 64.78 0

SI −5.6319 — 59.35 0.0009

No. 8 [13] 0.1713 — NR 0.0012

LI 0.1711 — 34.73 0

SI 0.1725 — 32.21 0.0082

No. 9 HPM [9] 0.2353 4.20− 6 NR 0.2042

LI 0.1954 9.09E− 13 60.97 0

SI 0.1954 1.91E − 12 47.92 0

No. 10 SUMT [12] 5.15E − 6 — NR 1.23E9

SQP [12] 6.57E − 6 — NR 1.33E9

LI 5.46E − 15 — 14.02 0.3

SI 4.20E− 15 — 14.49 0

No. 11 SUMT [12] 1.7980 — NR 0.1180

SQP [12] 1.7950 — NR 0.1162

LI 1.6082 — 74.01 0

SI 1.6083 — 91.16 6.21E − 5

No. 12 SUMT [12] 0.1703 — NR 0.2121

SQP [12] 0.2163 — NR 0.5395

LI 0.1406 — 27.48 0.0007

SI 0.1405 — 29.42 0

No. 13 SUMT [12] 3.2500 NR NR 0

SQP [12] 3.2500 NR NR 0

LI 3.2500 2.40E − 9 258.50 0

SI 3.2500 1.41E− 9 279.44 0

No. 14 SUMT [12] −0.2490 NR NR 0.0036

SQP [12] −0.2490 NR NR 0.0036

LI −0.2498 5.31E − 10 173.45 0.0004

SI −0.2499 8.85E− 14 132.86 0

No. 15 SUMT [12] 0.0167 NR NR 0.2462

SQP [12] 0.0168 NR NR 0.2537

LI 0.0134 4.04E − 8 72.52 0

SI 0.0134 9.48E− 10 50.04 0

No. 16 SUMT [12] 3.7700 NR NR 0.1406

SQP [12] 3.7220 NR NR 0.1261

LI 3.3052 7.05E− 8 176.63 0

SI 3.3052 1.19E − 7 165.36 0

No. 17 SUMT [12] 9.29E − 4 NR NR 0.0153

SQP [12] 1.01E − 3 NR NR 0.1038

Continued on next page

60 S. Nezhadhosein, A. Heydari, R. Ghanbari

Table 1 – Continued from previous page

Problem Algorithm J ϕf Time Gap

LI 9.55E− 4 1.20E − 9 112.58 0

SI 9.56E − 4 2.73E− 10 93.92 0.0120

No. 18 SUMT [12] 2.2080 NR NR 0.0725

SQP [12] 2.2120 NR NR 0.0745

LI 2.0587 5.91E− 11 69.24 0

SI 2.0587 7.13E − 11 28.65 0

No. 19 SUMT [12] −8.8690 NR NR 2.25− 5

SQP [12] −8.8690 NR NR 2.25E − 5

LI −8.8692 8.80E− 10 45.89 0

SI −8.8692 1.28E − 9 54.84 0

No. 20 SUMT [12] 0.0368 — NR 0.0575

SQP [12] 0.0368 — NR 0.0575

LI 0.0348 — 85.50 0

SI 0.0348 — 86.70 0

No. 21 SUMT [12] 76.83 NR NR 2.0344

SQP [12] 77.52 NR NR 2.0616

LI 25.34 1.20E− 5 398.98 0.0008

SI 25.32 1.40E − 5 402.20 0

No. 22 SUMT [12] 0.3428 NR NR 2.6160

SQP [12] 0.3439 NR NR 2.6276

LI 0.0948 8.82E− 4 131.46 0

SI 0.1179 2.67E − 3 128.43 0.2436

No. 23 SUMT [12] 5.27E − 3 NR NR 7.5831

SQP [12] 5.19E − 3 NR NR 7.4528

LI 1.59E − 3 0.8356 238.08 1.5896

SI 6.14E− 4 0.8688 220.61 0

No. 24 SUMT [12] 5.22E − 3 NR NR 0.0419

SQP [12] 5.19E − 3 NR NR 0.0359

LI 5.12E − 3 0.2885 261.86 0.0219

SI 5.01E− 3 0.2876 234.87 0
a Not reported.

From Table 1, the associated values of Gap for LI and SI methods are less

than other methods, for all test problems. It shows that the proposed algorithm

provides robust solutions with respect to other methods. The mean values

of Gap for the LI, SI, SQP and SUMT methods, on NOCPs no. 10-24, are

0.1276, 0.0170, 8.87e+ 7 and 8.20e+ 7, respectively. Thus, it is obvious that,

the proposed algorithm gave much better solutions in comparison with SQP

and SUMT. To compare with the CGA, on NOCPs no. 1-3, (as a global search

algorithm), as shown in Table 1, we see that the mean values of the Gap for

Integrating Differential Evolution Algorithm ... 61

CGA, LI and SI are 1.4147, 0 and 0.0029. Thus, we can see the LI and SI

methods are 100 percent better than CGA from Gap perspective. The result

shows that the proposed algorithm’s estimations of global minimal is better

than CGA’s estimation. Therefore, based on these numerical study, we can

conclude that the proposed algorithm outperforms CGA.

The mean values of violation of the norm of the final state constraints, φf ,

are 0.750 and 0.0773, for the LI and SI methods, respectively. Therefore, it is

evident that our method is more robust. In addition, the mean value of φf for

CGA, LI and SI methods are 0.0016, 9.0× 10−6 and 1.69× 10−4, respectively,

on NOCPs no. 1-3. Thus, we can say that the feasibility of the solutions given

by the proposed algorithm and CGA are competitive. Therefore, it is seen that

LI and SI methods could provide very suitable solutions with respect to the

optimality and feasibility criteria.

The required running time, Time, of the proposed algorithm, is reported in

Table 1, for each NOCP, separately. The mean values of the running time

for LI and SI methods are 119.23 and 115.42, on all NOCPs, respectively. To

compare with CGA, the mean of Time for LI, SI and CGA are 152.43, 167.43

and 666.14, respectively. Therefore, the required running time for the proposed

algorithm is less than CGA. The computational time of the proposed algorithm

is given in details as shown Table 3. We will discuss it in Section 4.3.

4.4. Comparing LI and SI. In this Section, a statistical analysis, based

on the one-way analysis of variance (ANOVA), used for comparing LI and SI

methods. It is done based on the statistical software IBM SPSS version 21.

For this purpose, initially, the absolute errors for J and φf are defined

EJ = |J − J∗|, Eψ = |φf − φ∗f | (4.2)

where J∗ and φ∗f = ‖ψ∗‖2 are the best obtained solutions in different runs.

In order to investigate the algorithm more precisely, we now present a new

criterion, called factor, defined as follows:

Kψ = EJ + Eψ (4.3)

where EJ and Eψ are defined in (4.2). Note that Kψ shows the summation of

two important errors. Thus, based on Kψ, we can study the behaviour of LI

and SI methods on the quality and feasibility of given solutions, simultaneously.

Table 3 shows the mean values of the numerical results, containing J, Kψ and

Time, for NOCPs in Appendix, in 100 different runs for LI and SI methods,

separately. Table 4 summarizes the statistical data, including the test statistics

(F) and p-values, of ANOVA tests. As shown in Table 4, the significant level or

p-value, for J, Kψ and Time are equal to 0.754, 0.508 and 0.920, respectively,

which are greater than 0.05. Thus, considering ANOVA, LI and SI methods

have no significant difference on the outputs.

62 S. Nezhadhosein, A. Heydari, R. Ghanbari

Table 2. The parameters of the proposed algorithm for the

NOCPs in Appendix.

Problem Parameters

Np1 Np2 Nt1 Nt2 Ng Ni uleft uright
1 12 15 91 171 8000 6500 -0.5 2

2 9 12 21 31 5000 3000 -1.5 2

3 9 15 11 15 5000 2600 -15 10

4 12 15 31 171 5000 3700 -7 7

5 12 15 41 51 3000 2200 -20 20

6 12 15 41 51 2000 1200 -1 1

7 12 15 51 191 2000 1200 -2 2

8 11 15 31 131 3000 2200 -5 15

9 9 12 31 51 2000 1000 0 1

10 9 15 21 51 5000 3600 0 2

11 9 15 51 71 5000 3600 -1 1

12 12 15 91 111 5000 3600 −20 20

13 9 15 31 91 5000 3600 −3 3

14 12 15 51 71 5000 3600 −1 1

15 11 15 31 71 5000 3600 −1.5 2

16 9 12 21 51 8000 6700 −π π

17 11 15 9 11 5000 3600 −1 1

18 9 15 31 91 7000 5700 −3 3

19 9 15 31 131 7000 5700 −30 30

20 9 15 31 91 7000 5700 −3 3

21 9 12 11 15 5000 2600 -15 10

22 9 15 11 15 5000 2600 -2 2

23 9 12 15 21 5000 3600

[
−2.8

−0.8

] [
2.8

0.7

]
24 9 15 11 21 6000 4600

[
−2.8

−0.8

] [
2.8

0.7

]

5. Conclusions

In this paper, we gave a two-phase algorithm based on integrating DE algo-

rithm with MHGA for solving the associated nonlinear programming problem

of an NOCP. In the first phase, DE started with a completely random initial

population where each individual, or solution, is a random matrix of control in-

put values in time steps. After phase 1, to achieve more accurate solutions, we

increased the number of time steps. The values of the associated new control

inputs were estimated by linear or spline interpolations using the curves com-

puted in the phase 1. In addition, to maintain the diversity in the population,

Integrating Differential Evolution Algorithm ... 63

Table 3. The mean values of numerical results for NOCPs in

Appendix, using LI and SI methods, in 100 different runs.

SI LI

Problem J Kψ Time J Kψ Time

VDPO 1.6822 2.58 − 7 321.92 1.6822 2.29E − 7 324.50

CRP 0.0152 2.05E − 8 45.89 0.0152 2.14E − 8 28.12

FFRP 32.30 15.88 154.89 35.03 18.75 159.32

CSTCR 0.1307 0.0488 41.25 0.1307 0.0471 31.50

MSNIC 0.1704 1.98E − 6 32.17 0.1671 2.52E − 6 31.78

No. 6 0.0221 0.0066 11.62 0.0219 0.0064 12.32

No. 7 −5.6132 0.0238 66.46 −5.6370 0.0187 62.18

No. 8 0.1720 0.0005 33.42 0.1712 0.0001 35.02

No. 9 0.1954 1.55E − 9 79.74 0.1954 2.05E − 9 84.37

No. 10 1.38E − 14 9.60E − 15 15.30 1.30E − 14 7.57E − 15 14.70

No. 11 1.6092 0.0010 86.33 1.6091 0.0008 83.78

No. 12 0.1431 0.0026 27.56 0.1429 0.0024 34.74

No. 13 2.8540 2.28E − 6 272.97 2.8540 2.42E − 6 280.24

No. 14 −0.2491 0.0007 127.17 −0.2490 0.0008 130.14

No. 15 0.0134 5.23E − 6 69.11 0.0134 6.35E − 6 70.82

No. 16 3.3362 0.0310 179.01 3.3944 0.0893 179.19

No. 17 9.68E − 4 1.22E − 5 88.70 9.68E − 4 1.31E − 5 93.41

No. 18 2.0587 5.21E − 7 92.95 2.0587 5.61E − 7 90.41

No. 19 −8.8692 3.85RE − 8 50.64 −8.8692 2.20E − 8 53.10

No. 20 0.0348 0.0001 101.61 0.0348 0.0002 99.50

No. 21 44.30 18.97 407.87 54.15 28.81 411.76

No. 22 0.3541 0.2389 124.65 0.3375 0.2462 129.23

No. 23 5.29E − 4 0.0293 204.65 5.46E − 4 0.0599 201.99

No. 24 5.21E − 3 0.0052 225.16 5.19E − 3 0.0083 227.63

Table 4. Summary of statistical data of ANOVA test for data

in Table 3.

J Kψ Time

Test statistic (F) 0.099 0.445 0.01

p-value 0.754 0.508 0.920

some additional individuals were added randomly. Next, in the second phase,

MHGA started by the new population constructed by the above procedure and

tries to improve the obtained solutions at the end of phase 1. Our proposed

MHGA combined a GA with a SQP, as a local search. In MHGA, to decrease

the running time in the early iterations, a less number of iterations of SQP

was used. Then, after finding the promising regions of the search space, we

increased the number of iterations for SQP gradually.

We implemented our proposed algorithm on more than 25 well-known NOCPs.

The numerical results showed the proposed algorithm could find almost better

solutions than other proposed algorithms.

Acknowledgements

Authors are grateful to there anonymous referee and editor for their con-

structive comments.

64 S. Nezhadhosein, A. Heydari, R. Ghanbari

References

1. Z.S. Abo-Hammour, A.Gh. Asasfeh, A.M. Al-Smadi, Othman M.K. Alsmadi, A novel

continuous genetic algorithm for the solution of optimal control problems,Optimal Con-

trol Applications and Methods 32(4), (2011), 414-432.

2. M.M. Ali, C. Storey, A. Törn, Application of stochastic global optimization algorithms

to practical problems,Journal of Optimization Theory and Applications, 95(3), (1997),

545-563.

3. M. Senthil Arumugam, G. Ramana Murthy, C. K. Loo, On the optimal control of the

steel annealing processes as a two stage hybrid systems via PSO algorithms, International

Journal Bio-Inspired Computing, 1(3), (2009), 198-209.

4. M. Senthil Arumugam, M. V. C. Rao, On the improved performances of the particle

swarm optimization algorithms with adaptive parameters, cross-over operators and root

mean square (RMS) variants for computing optimal control of a class of hybrid systems,

Application Soft Computing, 8(1), (2008), 324–336.

5. S. Babaie-Kafaki, R. Ghanbari, N. Mahdavi-Amiri, Two effective hybrid metaheuristic

algorithms for minimization of multimodal functions, International Journal Computing

Mathematics, 88(11), (2011), 2415–2428.

6. J.J.F. Bonnans, J.C. Gilbert, C. Lemaréchal, C.A. Sagastizábal, Numerical optimization:

Theoretical and practical aspects, Springer London, Limited, 2006.

7. I.L. Lopez Cruz, L.G. Van Willigenburg, G. Van Straten, Efficient differential evolu-

tion algorithms for multimodal optimal control problems, Applied Soft Computing, 3(2),

(2003), 97-122.

8. F. Dong, O. Petzold, W. Heinemann, R. Kasper, Time-optimal guidance control for an

agricultural robot with orientation constraints, Computers and Electronics in Agricul-

ture, 99(0), (2013), 124-131.

9. S. Effati, H. Saberi Nik, Solving a class of linear and non-linear optimal control problems

by homotopy perturbation method, IMA Journal of Mathematical Control and Infor-

mation, 28(4), (2011), 539-553.

10. A.P. Engelbrecht, Computational intelligence: An introduction, Wiley, 2007.

11. B.C. Fabien, Numerical solution of constrained optimal control problems with parame-

ters,Applied Mathematics and Computation, 80(1), (1996), 43-62.

12. B.C. Fabien, Some tools for the direct solution of optimal control problems, Advances

Engineering Software, 29(1), (1998), 45-61.

13. F. Ghomanjani, M.H Farahi, M Gachpazan, Bézier control points method to solve con-

strained quadratic optimal control of time varying linear systems, Computational and

Applied Mathematics, 31, (2012), 433-456.

14. A. Ghosh, S. Das, A. Chowdhury, R. Giri, An ecologically inspired direct search method

for solving optimal control problems with Bézier parameterization, Engineering Appli-

cations of Artificial Intelligence, 24(7), (2011), 1195-1203.

15. C.J. Goh, K.L. Teo, Control parametrization: A unified approach to optimal control

problems with general constraints, Automatica, 24(1), (1988), 3-18.

16. D.E. Kirk, Optimal control theory: An introduction, Dover Publications, 2004.

17. A. Vincent Antony Kumar, P. Balasubramaniam, Optimal control for linear system using

genetic programming, Optimal Control Applications and Methods 30(1), (2009), 47-60.

18. Moo Ho Lee, Ch. Han, K.S. Chang, Dynamic optimization of a continuous polymer

reactor using a modified differential evolution algorithm, Industrial and Engineering

Chemistry Research, 38(12), (1999), 4825-4831.

19. R. Li, Y.J. Shi, The fuel optimal control problem of a hypersonic aircraft with periodic

cruising mode, Mathematical and Computer Modelling, 55(11-12), (2012), 2141-2150.

Integrating Differential Evolution Algorithm ... 65

20. Y. Li, X. Zhang, Y. Chen, H. Zhou, Particle swarm optimization for time-optimal control

design, Journal of Control Theory and Applications, 10(3), (2012), 365–370.

21. J. Antonio Delgado San Martn, M. Nicols Cruz Bournazou, P. Neubauer, T. Barz, Mixed

integer optimal control of an intermittently aerated sequencing batch reactor for wastew-

ater treatment, Computers & Chemical Engineering, 71(0), (2014), 298-306.

22. W. Mekarapiruk, R. Luus, Optimal control of inequality state constrained systems, In-

dustrial and Engineering Chemistry Research, 36(5), (1997), 1686-1694.

23. H. Modares, M.B. Naghibi-Sistani, Solving nonlinear optimal control problems using a

hybrid IPSO - SQP algorithm, Engineering Applications of Artificial Intelligence, 24(3),

(2011), 476-484.

24. H. Moradi, Gh. Vossoughi, H. Salarieh, Optimal robust control of drug delivery in cancer

chemotherapy: A comparison between three control approaches, Computer Methods and

Programs in Biomedicine, 112(1), (2013), 69-83.

25. G.M. Ostrovsky, N.N. Ziyatdinov, T.V. Lapteva, Optimal design of chemical processes

with chance constraints, Computers & Chemical Engineering, 59(0), (2013), 74-88.

26. Th. Penzl, Algorithms for model reduction of large dynamical systems, Linear Algebra

and its Applications, 415(2-3), (2006), 322-343.

27. J. Rajesh, K. Gupta, H.Sh. Kusumakar, V.K. Jayaraman, B.D. Kulkarni, Dynamic op-

timization of chemical processes using ant colony framework, Computers & Chemistry,

25(6), (2001), 583-595.

28. A.F. Ribeiro, M.C.M. Guedes, G.V. Smirnov, S. Vilela, On the optimal control of a

cascade of hydro-electric power stations, Electric Power Systems Research, 88(0), (2012),

121-129.

29. S. Sedaghat, Y. Ordokhani, Stability and numerical solution of time variant linear sys-

tems with delay in both the state and control, Iranian Journal of Mathematical Sciences

and Informatics, 7(1), (2012), 43-57.

30. X. H. Shi, L. M. Wan, H. P. Lee, X. W. Yang, L. M. Wang, Y. C. Liang, An improved

genetic algorithm with variable population-size and a PSO-GA based hybrid evolutionary

algorithm, Machine Learning and Cybernetics, 2003 International Conference on, 3,

(2003), 1735-1740.

31. Y. C. Sim, S. B. Leng, V. Subramaniam, A combined genetic algorithms-shooting method

approach to solving optimal control problems, International Journal of Systems Science,

31(1), (2000), 83-89.

32. R. Storn, K. Price, Minimizing the real functions of the icec’96 contest by differential

evolution, Evolutionary Computation, Proceedings of IEEE International Conference

on, (1996), 842-844.

33. R. Storn, K. Price, Differential evolution - a simple and efficient heuristic for global

optimization over continuous spaces, Journal of Global Optimization, 11(4), (1997), 341-

359.

34. F. SUN, W. DU, R. QI, F. Qian, W. Zhong, A hybrid improved genetic algorithm and

its application in dynamic optimization problems of chemical processes, Chinese Journal

of Chemical Engineering, 21(2), (2013), 144-154.

35. K.L. Teo, C.J. Goh, K.H. Wong, A unified computational approach to optimal control

problems, Pitman monographs and surveys in pure and applied mathematics, Longman

Scientific and Technical, 1991.

36. J. M. van Ast, R. Babuška, B. De Schutter, Novel ant colony optimization approach to

optimal control, International Journal of Intelligent Computing and Cybernetics, 2(3),

(2009), 414-434.

66 S. Nezhadhosein, A. Heydari, R. Ghanbari

37. F.Sh. Wang, J.P. Chiou, Optimal control and optimal time location problems of

differential-algebraic systems by differential evolution, Industrial and Engineering Chem-

istry Research, 36(12), (1997), 5348-5357.

38. M. Yaghini, M. Karimi, M. Rahbar, A hybrid metaheuristic approach for the capacitated

p-median problem, Applied Soft Computing, 13(9), (2013), 3922-3930.

39. M. Yarahmadi, S. M. Karbassi, Design of robust controller by neuro-fuzzy system in

a prescribed region via state feedback, Iranian Journal of Mathematical Sciences and

Informatics, 4(1), (2009), 1-16.

40. B. Zhang, D. Chen, W. Zhao, Iterative ant-colony algorithm and its application to dy-

namic optimization of chemical process, Computers & Chemical Engineering 29(10),

(2005), 2078-2086.

41. W. Zhang, H.p. Ma, Chebyshev-legendre method for discretizing optimal control prob-

lems, Journal of Shanghai University, 13(2), (2009), 113-118.

Appendix

In this Section 24 NOCPs, as test problems, are considered. These problems

are represented as abbreviations form, eqns (1.1)-(1.6).

(1) [1, 11] (Van Der Pol oscillator problem (VDPO)) g = (x2
1 + x2

2 +

u2)/2, t0 = 0, tf = 5, f = [x2,−x2 + (1− x2
1)x2 + u]T , x0 = [1, 0]T , ψ =

x1 − x2 + 1.

(2) [1, 16] (Chemical reactor problem (CRP)) g = (x2
1 +x2

2 +0.1u2)/2, t0 =

0, tf = 0.78, f = [x1−2(x1+0.25)+(x2+0.5)exp(25x1/(x1+2))−(x1+

0.25)u, 0.5 − x2 − (x2 + 0.5)exp(25x1/(x1 + 2))]T , x0 = [0.05, 0]T , ψ =

[x1, x2]T .

(3) [1, 12] (Free floating robot problem (FFRP)) g = (u2
1 + u2

2 + u2
3 +

u2
4)/2, t0 = 0, tf = 5, f = [x2, ((u1+u2) cosx5−(u2+u4) sinx5)/M, x4,

((u1+u3) sinx5+(u2+u4) cosx5)/M, x6, (D(u1+u3)−Le(u2+u4))/I]T ,

x0 = [0, 0, 0, 0, 0, 0]T , ψ = [x1 − 4, x2, x3 − 4, x4, x5, x6]T ,M = 10, D =

5, I = 12, Le = 5.

(4) [23] (Continuous stirred-tank chemical reactor (CSTCR)) g = x2
1+x2

2+

0.1u2, t0 = 0, tf = 0.78, f = [−(2+u)(x1+0.25)+(x2+0.5)exp(25x1/(x1+

2)), 0.5− x2 − (x2 + 0.5)exp(25x1/(x1 + 2))]T , x0 = [0.09, 0.09]T .

(5) [23] (Mathematical system with nonlinear inequality constraint (MSNIC))

φ = x3, t0 = 0, tf = 1, f = [x2,−x2 + u, x2
1 + x2

2 + 0.005u2]T , d =

[−(20− u)(20 + u), x2 + 0.5− 8(t− 0.5)2]T , x0 = [0,−1, 0]T .

(6) [41] g = 0.39(x2
1 + x2

2 + 0.1u2), t0 = −1, tf = 1, f = [0.39(−2(x1 +

0.25) + (x2 + 0.5)exp(25x1/(x1 + 2)) − (x1 + 0.25)u), 0.39(0.5 − x2 −
(x2 + 0.5)exp(25x1/(x1 + 2)))]T , x0 = [0.05, 0]T .

(7) [13] g = 2x1, t0 = 0, tf = 3, f = [x2, u]T , d = [−(2 − u)(2 + u),−6 −
x1]T , x0 = [2, 0]T .

(8) [13] g = x2
1 + x2

2 + 0.005u2, t0 = 0, tf = 1, f = [x2,−x2 + u]T , d =

x2 + 0.5− 8(t− 0.5)2, x0 = [0,−1]T .

(9) [9] g = u2, t0 = 0, tf = 1, f = 1
2x

2 sinx+ u, x0 = 0, ψ = x− 0.5.

(10) [12] g = x2 cos2 u, t0 = 0, tf = π, f = sinu/2, x0 = π/2.

Integrating Differential Evolution Algorithm ... 67

(11) [12] g = (x2
1 + x2

2 + u2)/2, t0 = 0, tf = 5, f = [x2,−x1 + (1 − x2
1)x2 +

u]T , d = −(x2 + 0.25), x0 = [1, 0]T .

(12) [12] g = x2
1 + x2

2 + 0.005u2, t0 = 0, tf = 1, f = [x2,−x2 + u]T , d =

[−(20− u)(20 + u), 0.5 + x2 − (8(t− 0.5)2]T , x0 = [0,−1]T .

(13) [12] g = u2/2, t0 = 0, tf = 2, f = [x2, u]T , x0 = [1, 1]T , ψ = [x1, x2]T .

(14) [12] g = −x2, t0 = 0, tf = 1, f = [x2, u]T , d = −(1 − u)(1 + u), x0 =

[0, 0]T , ψ = x2.

(15) [12] g = (x2
1+x2

2+0.1u2)/2, t0 = 0, tf = 0.78, f = [−2(x1+0.25)+(x2+

0.5)exp(25x1/(x1+2))−(x1+0.25)u, 0.5−x2−(x2+0.5)exp(25x1/(x1+

2))]T , x0 = [0.05, 0]T , ψ = [x1, x2]T .

(16) [12] g = u2/2, t0 = 0, tf = 10, f = [cosu−x2, sinu]T , d = −(π−u)(π+

u), x0 = [3.66,−1.86]T , ψ = [x1, x2]T .

(17) [12] g = (x2
1 + x2

2)/2, t0 = 0, tf = 0.78, f = [−2(x1 + 0.25) + (x2 +

0.5)exp(25x1/(x1+2))−(x1+0.25)u, 0.5−x2−(x2+0.5)exp(25x1/(x1+

2))]T , d = −(1− u)(1 + u), x0 = [0.05, 0]T , ψ = [x1, x2]T .

(18) [12] φ = x3, t0 = 0, tf = 1, f = [x2, u, u
2/2]T , d = x1 − 1.9, x0 =

[0, 0, 0]T , ψ = [x1, x2 + 1]T .

(19) [12] φ = −x3, t0 = 0, tf = 5, f = [x2,−2 + u/x3,−0.01u]T , d = −(30−
u)(30 + u), x0 = [10,−2, 10]T , ψ = [x1, x2]T .

(20) [12] φ = (x1 − 1)2 + x2
2 + x2

3, g = 1
2u

2, t0 = 0, tf = 5, f = [x3 cosu, x3

sinu, sinu]T , x0 = [0, 0, 0]T .

(21) [12] g = (u2
1 +u2

2 +u2
3 +u2

4)/2, t0 = 0, tf = 5, f = [x2, ((u1 +u3) cosx5−
(u2+u4) sinx5)/M, x4, ((u1+u3) sinx5+(u2+u4) cosx5)/M, x6, (D(u1+

u3) − Le(u2 + u4))/I]T , x0 = [0, 0, 0, 0, 0, 0]T , ψ = [x1 − 4, x2, x3 −
4, x4, x5 − π/4, x6]T ,M = 10, D = 5, I = 12, Le = 5.

(22) [12] g = 4.5(x2
3+x2

6)+0.5(u2
1+u2

2), t0 = 0, tf = 1, f = [9x4, 9x5, 9x6, 9(u1+

17.25x3), 9u2,−9(u1−27.0756x3+2x5x6)/x2]T , x0 = [0, 22, 0, 0,−1, 0]T , ψ =

[x1 − 10, x2 − 14, x3, x4 − 2.5, x5, x6]T .

(23) [12] Same as problem 21 with d = [−(2.83374−u1)(2.83374+u1),−(0.71265−
u2)(0.80865 + u2)]T .

(24) [12] Same as problem 21 with d = [−(2.83374−u1)(2.83374+u1),−(0.71265−
u2)(0.80865 + u2),−(2.5− x4)(2.5 + x4),−(1− x5)(1 + x5)]T .

