On Tensor Product of Graphs, Girth and Triangles

\author{
H. P. Patil*, V. Raja
 Department of Mathematics Pondicherry University, Pondicherry, India.
 ```
E-mail: hpppondy@gmail.com
 E-mail: vraja.math@gmail.com

```
}

\begin{abstract}
The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph \(G \oplus K_{2}\) to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.
\end{abstract}

Keywords: Tensor product, Bipartite graph, Connected graph, Eulerian graph, Girth, Cycle, Path.

2000 Mathematics subject classification: 05C40.

\section*{1. Introduction}

We shall consider only finite, undirected graphs without loops or multiple edges. We follow the terminology of [1]. For a graph \(G, V(G)\) and \(E(G)\) denote the vertex set and edge set of \(G\), respectively. For a connected graph \(G, n G\) is the graph with \(n\) components, each being isomorphic to \(G\). It is well-known that a graph is bipartite if and only if it contains no odd cycle. We now define the tensor product of two graphs [8] as follows: The tensor product of two graphs \(G_{1}\) and \(G_{2}\) is the graph, denoted by \(G_{1} \oplus G_{2}\), with vertex set \(V\left(G_{1} \oplus G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)\), and any two of its vertices \(\left(u_{1}, v_{1}\right)\) and \(\left(u_{2}, v_{2}\right)\) are adjacent, whenever \(u_{1}\) is adjacent to \(u_{2}\) in \(G_{1}\) and \(v_{1}\) is adjacent to \(v_{2}\) in \(G_{2}\).

\footnotetext{
* Corresponding Author

Received 03 June 2014; Accepted 06 December 2014
(C)2015 Academic Center for Education, Culture and Research TMU
}

The graphs \(G_{1}\) and \(G_{2}\) are called factors of the product \(G_{1} \oplus G_{2}\). Other popular names for tensor product that have appeared in the literature are Kronecker product, cross product, direct product, conjenction product. Sampathkumar [6] defines the tensor product of a graph \(G\) by \(K_{2}\) as the duplicate graph of \(G\), and studied its properties and a characterization in great detail. This product is also studied in [5]. Now, we define the two special type of tensor products: \(G \oplus n K_{2}\) and \(G \oplus\left[\oplus_{i=1}^{n} K_{2}\right]\) as the generalized duplicate graphs of a graph \(G\), for any integer \(n \geq 2\), and study their structural properties for our later use.

\section*{2. Structural Properties of the Generalized Duplicate Graphs}

The following theorem of Weichsel [8] will be useful in the proof of our results.

Theorem 2.1. If the connected graphs \(G\) and \(H\) are bipartite, then \(G \oplus H\) has exactly two components.

Next, we present some elementary results of the generalized duplicate graphs for our immediate use.

Theorem 2.2. For any connected, bipartite graph \(G, G \oplus n K_{2}=2 n G\) for \(n \geq 1\).

Proof. For \(n=1\), Theorem 2.1 implies that \(G \oplus K_{2}\) has exactly two components. Furthermore, by using the definition of tensor product, we see that each component of \(G \oplus K_{2}\) is isomorphic to \(G\). Therefore, \(G \oplus K_{2}=2 G\). Moreover, corresponding to \(n \geq 1\) copies of \(K_{2}, G \oplus n K_{2}\) certainly contains exactly \(2 n\) copies of \(G\). Thus, \(G \oplus n K_{2}=2 n G\).

Theorem 2.3. For any connected graph \(G, G \oplus n K_{2}\) for \(n \geq 1\), is bipartite.
Proof. We discuss two cases depending on \(G\).
Case 1. Suppose \(G\) is bipartite. By Theorem 2.2, \(G \oplus n K_{2}=2 n G\). Since \(G\) is bipartite, it follows immediately that \(G \oplus n K_{2}\) is bipartite.
Case 2. Suppose \(G\) is non-bipartite. Certainly, \(G\) contains a cycle \(C_{m}\) for odd \(m \geq 3\). Corresponding to each copy of \(K_{2}\) in \(G \oplus n K_{2}\), there are exactly \(n\) distinct subgraphs in \(G \oplus n K_{2}\), each is isomorphic to \(C_{m} \oplus K_{2}\). It is shown in [2] that \(C_{m} \oplus K_{2}\) is isomorphic to \(C_{2 m}\). For even \(m \geq 4\), it is also shown in [2] that \(C_{m} \oplus K_{2}=C_{m} \cup C_{m}\). This proves that \(G \oplus n K_{2}\) has no odd cycles. Hence, \(G \oplus n K_{2}\) is bipartite.

Theorem 2.4. Let \(G\) be a connected, bipartite graph and let \(H=\oplus_{i=1}^{n} K_{2}\). Then \(G \oplus H=2^{n} G\) for \(n \geq 1\).

Proof. We proceed by induction on \(n\). If \(n=1\), then by Theorem \(2.2, G \oplus H=\) \(2 G\). Assume the result holds with at most \(n-1\). Consider \(G \oplus H=G \oplus\left[\oplus_{i=1}^{n} K_{2}\right]\)
\(=G \oplus\left[\oplus_{i=1}^{n-1} K_{2} \oplus K_{2}\right]=\left[G \oplus\left(\oplus_{i=1}^{n-1} K_{2}\right)\right] \oplus K_{2}\). By induction hypothesis, we have \(G \oplus\left[\oplus_{i=1}^{n-1} K_{2}\right]=2^{n-1} G\). Hence,
\[
G \oplus\left[\oplus_{i=1}^{n} K_{2}\right]=2^{n-1} G \oplus K_{2} \cdots \cdots(2.1)
\]

In view of Theorem 2.2 (with \(n=1\) ), \(G \oplus K_{2}=2 G\). Using this in (2.1), we get \(G \oplus H=2^{n} G\).

\section*{3. Characterization of Connected Tensor Product of Graphs}

Now, we obtain a characterization of connected tensor product of arbitrarily many graphs. We see that Weichsel [6] studied the connectedness of the tensor product of two graphs as follows:
Theorem 3.1. Let \(G\) and \(H\) be connected graphs. Then \(G \oplus H\) is connected if and only if either \(G\) or \(H\) contains an odd cycle.

Now, we present the natural finite extension of Weichsel's Theorem as follows:

Theorem 3.2. Let \(G_{k}(1 \leq k \leq n ; n \geq 2)\) be connected graph, and let \(G=\oplus_{k=1}^{n} G_{k}\). Then \(G\) is connected if and only if at most one of \(G_{k}\) 's is bipartite.

Proof. Assume that \(G\) is connected. We prove by contradiction. If possible, assume that there are at least two distinct graphs \(G_{i}\) and \(G_{j}(1 \leq i, j \leq n)\), which are bipartite. By Theorem \(2.1, G_{i} \oplus G_{j}\) contains exactly two components say, \(F\) and \(H\). Now, we have \(G=\oplus_{k=1}^{n} G_{k}=(F \oplus M) \cup(H \oplus M)\), where \(M=\oplus_{k=1}^{n} G_{k}(k \neq i, j)\). This shows that \(G\) is certainly disconnected, and hence we immediately arrive at a contradiction. Thus, it proves that at most one of \(G_{k}\) 's is bipartite.
Conversely, assume that at most one of \(G_{k}\) 's is bipartite.
We discuss two cases.
Case 1. None of \(G_{k}\) 's is bipartite. Immediately, it follows that each \(G_{k}\) contains an odd cycle.
Case 2. Exactly one of \(G_{k}\) 's is bipartite. Without loss of generality, we assume that \(G_{1}\) is bipartite. The remaining \(G_{i}(2 \leq i \leq n)\) is non-bipartite, and hence each such \(G_{i}\) contains an odd cycle.

In either case, by applying Theorem 3.1 and the mathematical induction on the number of factors, the result follows.

\section*{4. Characterization of Bipartite Tensor Product of Graphs}

Now, we shall obtain a necessary and sufficient condition for the tensor product of two or more graphs to be bipartite, (which is proposed in [3]).
Theorem 4.1. Let \(G_{1}\) and \(G_{2}\) be two connected graphs. Then \(G_{1} \oplus G_{2}\) is bipartite if and only if at least one of \(G_{1}\) and \(G_{2}\) is bipartite.

Proof. Suppose \(G_{1} \oplus G_{2}\) is bipartite. We claim that at least one of \(G_{1}\) and \(G_{2}\) is bipartite. If this is not so, then both \(G_{1}\) and \(G_{2}\) are non-bipartite. Consequently, there exist two odd cycles \(C_{m}\) (for \(m \geq 3\) ) and \(C_{n}\) (for \(n \geq 3\) ) in \(G_{1}\) and \(G_{2}\), respectively. Without loss of generality, we consider \(m \leq n\). Let \(C_{m}: u_{1}, u_{2}, \ldots, u_{m}, u_{1}\) and let \(C_{n}: v_{1}, v_{2}, \ldots, v_{m}, v_{m+1}, \ldots, v_{n}, v_{1}\). Then \(C_{m} \oplus C_{n}\) contains the cycle \(Z\) of length \(n\) as follows:
\(Z:\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{m}, v_{m}\right),\left(u_{m-1}, v_{m+1}\right),\left(u_{m}, v_{m+2}\right),\left(u_{m-1}, v_{m+3}\right)\), \(\left(u_{m}, v_{m+4}\right), \ldots,\left(u_{m-1}, v_{n-1}\right),\left(u_{m}, v_{n}\right),\left(u_{1}, v_{1}\right)\).
So, \(G_{1} \oplus G_{2}\) contains the odd cycle \(Z\). Hence, \(G_{1} \oplus G_{2}\) is non-bipartite. This is a contradiction.
Conversely, assume that at least one of \(G_{1}\) and \(G_{2}\) is bipartite.
We discuss two cases.
Case 1. Suppose both \(G_{1}\) and \(G_{2}\) are bipartite. Then by Theorem 2.1, \(G_{1} \oplus G_{2}\) contains exactly two components, say \(H_{1}\) and \(H_{2}\). Now, we claim that both \(H_{1}\) and \(H_{2}\) are bipartite. On contrary, if one of \(H_{i}^{\prime} s\) is non-bipartite. Without loss of generality, we assume that \(H_{1}\) is non-bipartite. Then \(H_{1}\) contains an odd cycle, say
\(C:\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{n}, v_{n}\right),\left(u_{1}, v_{1}\right)\) in \(G_{1} \oplus G_{2}\), where \(u_{i} \in V\left(G_{1}\right)(1 \leq\) \(i \leq n), v_{j} \in V\left(G_{2}\right)(1 \leq j \leq n)\). Certainly, the first co-ordinate vertices \(u_{1}, u_{2}, \ldots, u_{n}, u_{1}\) of the cycle \(C\) forms a closed odd walk \(W\) in \(G_{1}\). Since every closed odd walk in a graph contains an odd cycle, it follows that the walk \(W\) contains an odd cycle in \(G_{1}\). This shows that \(G_{1}\) is not bipartite. But this contradicts the hypothesis that \(G_{1}\) is bipartite. Since each \(H_{i}\) is bipartite, it follows that \(G_{1} \oplus G_{2}=H_{1} \cup H_{2}\) is also bipartite.
Case 2. Suppose one of \(G_{1}\) and \(G_{2}\) is bipartite, and the other is non-bipartite. Assume that \(G_{1}\) is bipartite. Since \(G_{2}\) is non-bipartite, \(G_{2}\) contains an odd cycle. From Theorem 3.1, \(G_{1} \oplus G_{2}\) is connected. Next, we claim that \(G_{1} \oplus G_{2}\) is bipartite. If this is not so, then \(G_{1} \oplus G_{2}\) is non-bipartite, and hence it contains an odd cycle \(Z\). By repeating the same argument as in Case 1, we obtain \(G_{1} \oplus G_{2}\) is bipartite.
In either case, we see that \(G_{1} \oplus G_{2}\) is bipartite.
Next, we obtain the finite extension of the above theorem, and its proof follows by the mathematical induction on the number of factors.

Corollary 4.2. Let \(G_{k}(1 \leq k \leq n ; n \geq 2)\) be a connected graph, and let \(G=\oplus_{k=1}^{n} G_{k}\). Then \(G\) is bipartite if and only if at least one of \(G_{k}\) 's is bipartite.

\section*{5. Characterization of Eulerian Tensor Product of Graphs}

An Euler tour of a graph \(G\) is a closed walk in \(G\) that traverses each edge of \(G\) exactly once. A graph is eulerian if it contains an Euler tour. It is wellknown that a connected graph \(G\) is eulerian if and only if every vertex in \(G\) has an even degree. For any vertex \((u, v)\) in a tensor product \((G \oplus H)\) of two graphs
\(G\) and \(H, \operatorname{deg}(u, v)=\operatorname{deg}(u) \bullet \operatorname{deg}(v)\). Now, we present a characterization of eulerian tensor product of two graphs.
Theorem 5.1. Let \(G\) and \(H\) be connected graphs such that at most one of them is bipartite. Then \(G \oplus H\) is eulerian if and only if at least one of \(G\) and \(H\) is eulerian.

Proof. Suppose \(G\) is eulerian, and it contains an odd cycle. Then by Theorem 4.1, \(G \oplus H\) is connected. Since \(G\) is eulerian, \(\operatorname{deg}(u)\) is even for all vertices \(u\) in \(G\). Consequently, for any vertex \(v\) of \(H\), the pair \((u, v)\) is a vertex in \(G \oplus H\), and \(\operatorname{deg}(u, v)=\operatorname{deg}(u) \bullet \operatorname{deg}(v)\), which is an even degree, because \(\operatorname{deg}(u)\) is even, and \(\operatorname{deg}(v) \geq 1\). This implies that \(G \oplus H\) is eulerian.
Conversely, assume that \(G \oplus H\) is eulerian. By definition, \(G \oplus H\) is certainly connected. Again by Theorem 4.1, one of \(G\) and \(H\) contains an odd cycle. To complete the proof, we claim that at least one of \(G\) and \(H\) is eulerian. On contrary, if possible assume that both \(G\) and \(H\) are not eulerian graphs. Immediately, there exist at least two odd degree vertices \(x\) and \(y\) in \(G\) and \(H\), respectively. Thus, \((x, y)\) is a vertex in \(G \oplus H\), and also \(\operatorname{deg}(x, y)=\operatorname{deg}(x) \bullet\) \(\operatorname{deg}(y)\), which is odd, because both \(\operatorname{deg}(x)\) and \(\operatorname{deg}(y)\) are odd. This shows that \(G \oplus H\) is not eulerian, and it contradicts the hypothesis that \(G \oplus H\) is eulerian.

The finite extension of Theorem 5.1 is the following result, and its proof directly follows by the induction on the number of factors.

Corollary 5.2. Let \(G_{k}(1 \leq k \leq n ; n \geq 2)\) be a connected graph such that at most one of \(G_{k}\) 's is bipartite, and let \(G=\oplus_{k=1}^{n} G_{k}\). Then \(G\) is eulerian if and only if at least one of \(G_{k}\) 's is eulerian.

\section*{6. Characterization of Unicyclic Duplicate Graph}

A unicyclic graph is a connected graph which contains exactly one cycle. Next, we obtain a characterization of unicyclic duplicate graph \(G \oplus K_{2}\).
Theorem 6.1. A non-bipartite graph \(G\) is unicyclic if and only if the duplicate graph \(G \oplus K_{2}\) is unicyclic.

Proof. Suppose a non-bipartite graph \(G\) is unicyclic. Then \(G\) contains exactly one odd cycle \(C\). Hence by Theorem 4.1, \(G \oplus K_{2}\) is connected. Let \(C\) : \(u_{1}, u_{2}, \ldots, u_{2 k+1}, u_{1}\) for \(k \geq 1\). Next, we show that \(G \oplus K_{2}\) is unicyclic. For this, let us consider \(V\left(K_{2}\right)=\left\{v_{1}, v_{2}\right\}\). It is easy to see that the subgraph induced by \(C \oplus K_{2}\) in \(G \oplus K_{2}\) is certainly isomorphic to an even cycle \(C_{2(2 k+1)}\), where \(C_{2(2 k+1)}:\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{1}\right), \ldots,\left(u_{2 k-1}, v_{1}\right),\left(u_{2 k}, v_{2}\right),\left(u_{2 k+1}, v_{1}\right)\), \(\left(u_{2 k}, v_{2}\right),\left(u_{2 k+1}, v_{1}\right),\left(u_{1}, v_{2}\right),\left(u_{2}, v_{1}\right),\left(u_{3}, v_{2}\right), \ldots,\left(u_{2 k-1}, v_{2}\right),\left(u_{2 k}, v_{1}\right)\), \(\left(u_{2 k+1}, v_{2}\right),\left(u_{1}, v_{1}\right)\). Since \(G\) is unicyclic, it follows that \(G \oplus K_{2}\) has no cycles other than \(C_{2(2 k+1)}\). If this is not so, then there exists another cycle \(J\) in \(G \oplus K_{2}\), which is different from \(C_{2(2 k+1)}\). Consequently, the first co-ordinates
of the vertices of the cycle \(J\), which are in pairs, will form another cycle \(C^{\prime}\) in \(G\). Since \(J \neq C_{2(2 k+1)}\) in \(G \oplus K_{2}\), it follows \(C \neq C^{\prime}\) in \(G\). This is a contradiction to the fact that \(G\) is unicyclic. Therefore, \(G \oplus K_{2}\) is unicyclic.

Conversely, suppose that \(G \oplus K_{2}\) is unicyclic. Let \(Z\) be the only one cycle in \(G \oplus K_{2}\). By Theorem 2.3 (with \(n=1\) ), \(G \oplus K_{2}\) is bipartite. Hence, \(Z\) is a unique even cycle. Clearly, we notice that the first co-ordinate vertices of \(G\) in \(Z\) forms an odd cycle \(C\) in \(G\). Since \(G \oplus K_{2}\) is unicyclic, it follows that \(C\) is the unique cycle in \(G\). Moreover, since \(G \oplus K_{2}\) is connected, it implies that \(G\) is connected. Therefore, \(G\) is unicyclic.

\section*{7. The Girth and Triangles in Tensor Product Graphs}

The girth of a graph \(G\), denoted by \(g(G)\), is the length of a shortest cycle in \(G\), if any. Otherwise, it is undefined if \(G\) is a forest. It is clear that the girth of a graph \(G\) is the minimum of the girths of its components. Firstly, we determine the girth of the generalized duplicate graphs.
Theorem 7.1. Let \(G\) be a connected graph with \(g(G)=k\). For any positive integer \(n \geq 1\), we have
\[
g\left(G \oplus n K_{2}\right)=g\left(G \oplus\left[\oplus_{i=1}^{n} K_{2}\right]\right)= \begin{cases}k & \text { if } G \text { is bipartite } \\ \min \{2 p, q\} & \text { otherwise }\end{cases}
\]
where \(C_{p}\) and \(C_{q}\) are the minimal odd and even cycles in a non-bipartite graph \(G\), respectively.

Proof. First, we discuss the result when \(n=1\).
Case 1. Assume \(G\) is bipartite. From Theorem 2.2 (with \(n=1\) ), we have for the duplicate graph \(G \oplus K_{2}=2 G\). Consequently, \(g\left(G \oplus K_{2}\right)=k\).
Case 2. Suppose \(G\) is not bipartite. Then \(G\) contains an odd cycle. Let \(C_{p}\) for \(p \geq 3\), be a minimal odd cycle in \(G\).

Now, there are two possibilities to discuss:
2.1. If \(G\) is free-from even cycles, then \(C_{p} \oplus K_{2}\) contains an even cycle \(C_{2 p}\) in \(G \oplus K_{2}\).
2.2. If \(G\) contains a minimal even cycle \(C_{q}, q \geq 4\), then \(C_{q} \oplus K_{2}=2 C_{q}\) appears in \(G \oplus K_{2}\).
From the above possibilities, it follows that \(g\left(G \oplus K_{2}\right)\) is the minimum of \(2 p\) and \(q\). Thus, \(g\left(G \oplus K_{2}\right)=\min \{2 p, q\}\).
Finally, consider the result when \(n \geq 2\). The result follows immediately if we proceed as above by applying Theorem 2.2 or 2.4 repeatedly.

Next, we derive a formula (which is proposed in [4]) for computing the number of triangles in the tensor product of two graphs. For this, firstly we establish the following lemma.

Lemma 7.2. Let \(G_{k}(1 \leq k \leq n ; n \geq 2)\) be a connected graph. Then the product \(\oplus_{k=1}^{n} G_{k}\) contains a triangle if and only if each \(G_{k}\) contains a triangle.

Proof. Now, we discuss the case when \(n=2\). Suppose \(G_{1} \oplus G_{2}\) contains a triangle \(T\), and let \(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\) and \(\left(a_{3}, b_{3}\right)\) be any three vertices of \(T\). By definition, \(\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right),\left(a_{2}, b_{2}\right)\left(a_{3}, b_{3}\right)\) and \(\left(a_{3}, b_{3}\right)\left(a_{1}, b_{1}\right)\) are the edges of \(T\) in \(G_{1} \oplus G_{2}\) if and only if the edges: \(a_{1} a_{2}, a_{2} a_{3}\) and \(a_{3} a_{1}\) constitute a triangle \(T_{1}\) in \(G_{1}\) and also the edges : \(b_{1} b_{2}, b_{2} b_{3}\) and \(b_{3} b_{1}\) constitute a triangle \(T_{2}\) in \(G_{2}\). But this is so if and only if both \(G_{1}\) and \(G_{2}\) have triangles \(T_{1}\) and \(T_{2}\), respectively. Finally, we discuss the case when \(n \geq 3\). The result follows immediately if we proceed by applying induction on the number of factors.

Theorem 7.3. Let \(G_{i}(1 \leq i \leq 2)\) be a connected graph having the number of triangles \(n_{i}\). Then the product \(G_{1} \oplus G_{2}\) contains \(6 n_{1} n_{2}\) triangles.

Proof. First, let us compute the actual number of triangles in the product \(T_{1} \oplus T_{2}\), when \(T_{i}\) is any triangle in \(G_{i}\) (for \(i=1,2\) ). It is easy to see that there are exactly 6 distinct triangles in \(T_{1} \oplus T_{2}\). But each \(G_{i}\) contains \(n_{i}\) triangles. Consequently, the product \(G_{1} \oplus G_{2}\) contains \(6 n_{1} n_{2}\) triangles, and there are no more other triangles because of Lemma 7.2.

The immediate consequence of the above theorem is the following corollary.
Corollary 7.4. Let \(G_{k}(1 \leq k \leq n ; n \geq 2)\) be a connected graph having the number of triangles \(n_{k}\). Then the product \(\oplus_{k=1}^{n} G_{k}\) contains \(6^{n-1}\left(\Pi_{k=1}^{n} n_{k}\right)\) triangles.

Corollary 7.5. The number of triangles in \(K_{m} \oplus K_{n}\) is \(\frac{1}{6}[m n(m-1)(n-\) 1) \((m-2)(n-2)]\).

Proof. We know that the number of triangles in \(K_{p}=p C_{3}\). Therefore from Theorem 7.3, the number of triangles in \(K_{m} \oplus K_{n}\) is \(6\left(m C_{3}\right)\left(n C_{3}\right)=\frac{1}{6}[m n(m-\) \(1)(n-1)(m-2)(n-2)]\).

Finally to determine the girth of the tensor product of graphs, we need to establish the following lemma.

Lemma 7.6. Let \(G_{k}(1 \leq k \leq n ; n \geq 2)\) be a connected, triangle-free graph such that each \(G_{k}\) contains an induced subgraph isomorphic to \(P_{3}\). Then \(g\left(\oplus_{k=1}^{n} G_{k}\right)=4\).

Proof. We discuss the case when \(n=2\). Let \(a_{i}(1 \leq i \leq 3)\) and \(b_{i}(1 \leq i \leq 3)\) be the vertices of a subgraph isomorphic to \(P_{3}\) in \(G_{1}\) and \(G_{2}\), respectively. Then the subgraph \(<\left\{a_{1}, a_{2}, a_{3}\right\}>\oplus<\left\{b_{1}, b_{2}, b_{3}\right\}>\) is isomorphic to \(P_{3} \oplus P_{3}\) in \(G_{1} \oplus G_{2}\). It is easy to see that \(P_{3} \oplus P_{3}=K_{1,4} \cup C_{4}\). Immediately, a 4-cycle \(C_{4}\) appears as a subgraph in \(G_{1} \oplus G_{2}\). However from Lemma 7.2, there is no triangle in \(G_{1} \oplus G_{2}\). Consequently, \(C_{4}\) is the smallest cycle in \(G_{1} \oplus G_{2}\).

Therefore, \(g\left(G_{1} \oplus G_{2}\right)=4\).
When \(n \geq 3\), the result follows easily if we proceed by induction on the number of factors.

The following result gives the girth of tensor product of arbitrarily many graphs.

Theorem 7.7. Let \(G_{k}(1 \leq k \leq n ; n \geq 2)\) be a connected graph of order \(\geq 3\). Then \(g\left(\oplus_{k=1}^{n} G_{k}\right)\) is either 3 or 4 .

Proof. We discuss three cases when \(n=2\).
Case 1. Suppose both \(G_{1}\) and \(G_{2}\) have triangles. By Lemma 7.2, \(G_{1} \oplus G_{2}\) contains a triangle. Hence, \(g\left(G_{1} \oplus G_{2}\right)=3\).
Case 2. Suppose one of \(G_{1}\) and \(G_{2}\) is triangle-free. Without loss of generality, we assume that \(G_{1}\) contains a triangle, and \(G_{2}\) has an induced subgraph isomorphic to \(P_{3}\). It is easy to check that \(K_{3} \oplus P_{3}\) contains a 4-cycle \(C_{4}\). Consequently, this \(C_{4}\) appears in \(\left(G_{1} \oplus G_{2}\right)\). However again by Lemma 7.2, \(G_{1} \oplus G_{2}\) is triangle-free. This implies that \(C_{4}\) is the smallest cycle in \(G_{1} \oplus G_{2}\). Therefore, \(g\left(G_{1} \oplus G_{2}\right)=4\).
Case 3. Suppose \(G_{1}\) and \(G_{2}\) are triangle-free. Then each \(G_{1}\) and \(G_{2}\) contains an induced subgraph isomorphic to \(P_{3}\). From Lemma 7.6, \(g\left(G_{1} \oplus G_{2}\right)=4\). From the above cases, it follows that \(g\left(G_{1} \oplus G_{2}\right)=3\) or 4 .
When \(n \geq 3\), It is not difficult to prove the result if we proceed by induction on the number of factors.

\section*{Acknowledgments}

The authors are indebted to the referee for useful suggestions and comments. The first author research supported by SAP-UGC/ FIST-DST and the second author research was supported by UGC-BSR Research Fellowship, New Delhi, Government of India, India.

\section*{References}
1. J. A. Bondy, U. S. R. Murthy, Graph Theory with Applications, Macmillan Press Ltd, 1976.
2. M. Farzan, D. A. Waller, Kronecker Products and local joins of graphs, Canad. J. Math., 29 (2), 1977, 255-269.
3. G. H. Fath-Tabar, A. R. Ashrafi, The Hyper-Wiener Polynomial of Graphs, Iran. J. Math. Sci. Inf., 6 (2), (2011), 67-74.
4. R. Hammack, W. Imrich, S. Klavzar, Handbook of product graphs, Discrete Mathematics and its Applications, CRC-Press, New York, 2011.
5. H. P. Patil, Isomorphisms of duplicate graphs with some graph valued functions, Joul. of Combinatorics Inf. and System Sciences, 10 (1-2), (1985), 36-40.
6. E. Sampathkumar, On duplicate graphs, Joul. of Indian Math. Soc, (N.B.), 37, (1973), 285-293.
7. Sirous Moradi, A Note on Tensor Product of Graphs, Iran. J. Math. Sci. Inf., 7 (1), (2012), 73-81.
8. P. M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc., 13, (1962), 47-52.```

