دوره 11، شماره 2 - ( 8-1395 )                   جلد 11 شماره 2 صفحات 131-137 | برگشت به فهرست نسخه ها


XML Print


چکیده:  

Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual products of operators in both directions.

نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي