On the Means of the Values of Prime Counting Function

Mehdi Hassani
Department of Mathematics, University of Zanjan, University Blvd., 45371-38791, Zanjan, Iran.
E-mail: mehdi.hassani@znu.ac.ir

Abstract. In this paper, we investigate the means of the values of primes counting function $\pi(x)$. First, we compute the arithmetic, the geometric, and the harmonic means of the values of this function, and then we study the limit value of their ratio.

Keywords: Prime number, Prime counting function, Means of the values of function.

2000 Mathematics subject classification: 11N05, 26E60.

1. Introduction and Summary of the Results

1.1. Means of the values of primes counting function. Assume that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a strictly positive real sequence. The arithmetic mean of the numbers $a_{1}, a_{2}, \ldots, a_{n}$ is defined by

$$
A\left(a_{1}, \ldots, a_{n}\right)=\frac{1}{n} \sum_{k=1}^{n} a_{k}
$$

The geometric and harmonic means of the these numbers, defined in terms of arithmetic mean, respectively, by

$$
G\left(a_{1}, \ldots, a_{n}\right)=\mathrm{e}^{A\left(\log a_{1}, \ldots, \log a_{n}\right)},
$$

and

$$
H\left(a_{1}, \ldots, a_{n}\right)=\frac{1}{A\left(\frac{1}{a_{1}}, \ldots, \frac{1}{a_{n}}\right)}
$$

All of the above means are special cases of the so-called generalized mean with parameter $r \in \mathbb{R}$, defined by

$$
M_{r}\left(a_{1}, \ldots, a_{n}\right)=\left(A\left(a_{1}^{r}, \ldots, a_{n}^{r}\right)\right)^{\frac{1}{r}}
$$

We note that $M_{1}=A, M_{0}=\lim _{r \rightarrow 0} M_{r}=G$, and $M_{-1}=H$.
Analogue to the above discrete case, we assume that for some fixed $a \in \mathbb{R}$ the functions f with $f:[a, \infty) \rightarrow(0, \infty)$ is an integrable function. For any real number $b>0$, we define the arithmetic, the geometric and the harmonic means of the values of f over the interval $[a, b+a]$ respectively by

$$
A_{b}(f)=\frac{1}{b} \int_{a}^{b+a} f(t) \mathrm{d} t, \quad G_{b}(f)=\mathrm{e}^{A_{b}(\log f)}, \quad \text { and } \quad H_{b}(f)=\frac{1}{A_{b}\left(\frac{1}{f}\right)} .
$$

More generally, we define the generalized mean with parameter $r \in \mathbb{R}$ by

$$
M_{b, r}(f)=A_{b}\left(f^{r}\right)^{\frac{1}{r}} .
$$

Our intention in writing this paper is to investigate means of the values of primes counting function $\pi(x)$, which denotes the number of primes not exceeding x. Since $\pi(t)=0$ for $t<2$, and $\pi(t)>0$ for $t \geqslant 2$, we take the mean values of this function over the interval $[2, b+2]$. We prove the following.

Theorem 1.1. Assume that $A_{b}(\pi), G_{b}(\pi)$, and $H_{b}(\pi)$ denote the arithmetic, the geometric and the harmonic means of the values of the prime counting function $\pi(x)$, over the interval $[2, b+2]$ with $b>5$, and p_{n} denotes the largest prime not exceeding $b+2$. Then, as $n \rightarrow \infty$ (and equivalently $b \rightarrow \infty$), we have

$$
\begin{gather*}
A_{b}(\pi)=\frac{n}{2}+O\left(\frac{\log n}{n}\right), \tag{1.1}\\
G_{b}(\pi)=\mathrm{e}^{\log n+O(1)} \tag{1.2}
\end{gather*}
$$

and

$$
\begin{equation*}
H_{b}(\pi)=\frac{2 n}{\log \log n}\left(1+O\left(\frac{1}{\log \log n}\right)\right) . \tag{1.3}
\end{equation*}
$$

To prove the above theorem, we need to compute $\int_{2}^{b+2} g(\pi(t)) \mathrm{d} t$ for $g(x)=$ $x, g(x)=\log x$, and $g(x)=\frac{1}{x}$. In Section 2 we give a result, which enables us to compute the above mentioned integral for a certain function g, covering the required cases.
1.2. The ratio of the arithmetic and geometric means. For the sequence consisting of positive integers, Stirling's approximation for n ! implies that

$$
\begin{equation*}
\frac{A(1, \ldots, n)}{G(1, \ldots, n)}=\frac{\mathrm{e}}{2}+O\left(\frac{\log n}{n}\right) \tag{1.4}
\end{equation*}
$$

Motivated by this fact, recently we obtained similar asymptotic result concerning the sequence of prime numbers, by proving

$$
\begin{equation*}
\frac{A\left(p_{1}, \ldots, p_{n}\right)}{G\left(p_{1}, \ldots, p_{n}\right)}=\frac{\mathrm{e}}{2}+O\left(\frac{1}{\log n}\right) \tag{1.5}
\end{equation*}
$$

where as usual p_{n} denotes the nth prime number (see [2]).
Similar to the above, we denote

$$
\frac{A}{G}(f)=\lim _{b \rightarrow \infty} \frac{A_{b}(f)}{G_{b}(f)}
$$

provided the above limit exits. For instance, if we let $f(x)=[x]$, the integer part of real x, then over the interval $[1, b+1]$ we have

$$
A_{b}(f)=\frac{1}{n} \int_{1}^{n+1}[t] \mathrm{d} t=\frac{1}{n} \sum_{k=1}^{n} \int_{k}^{k+1}[t] \mathrm{d} t=\frac{1}{n} \sum_{k=1}^{n} k=A(1,2, \ldots, n)
$$

and $G_{b}(f)=G(1,2, \ldots, n)$, which gives the limit relation (1.4) for $\frac{A}{G}(f)$. Moreover, analogously to (1.4), one may consider $\frac{A}{G}(f)$ for $f(x)=x$. For the case of prime numbers, the prime number theorem asserts that $p_{n} \sim n \log n$ as $n \rightarrow \infty$. Thus, analogously to the limit relation (1.5), one may consider $\frac{A}{G}(f)$ for $f(x)=x \log x$. Straightforward computations imply that $\frac{A}{G}(f)=\frac{\mathrm{e}}{2}$ for $f(x)=x$ and $f(x)=x \log x$. We note that the appearance of the similar limit value $\frac{e}{2}$ is not a global property. For example, a similar computation as the above implies that $\frac{A}{G}(f)=1$ for $f(x)=\log x$. In general, $A_{b}(f) \geqslant G_{b}(f)$, and we observe that the limit value of the ratio $\frac{A}{G}$ could be any arbitrary real number $\beta \geqslant 1$, as the following constructive result confirms.

Theorem 1.2. For any real number $\beta \geqslant 1$ there exists a real positive function f such that

$$
\frac{A}{G}(f)=\beta
$$

Remark 1.3. One may ask about existence and the value of $\lim _{b \rightarrow \infty} \frac{A_{b}(f)}{G_{b}(f)}$, for $f(x)=\pi(x)$. The prime number theorem asserts that $\pi(x) \sim \frac{x}{\log x}$, as $x \rightarrow \infty$. For the function $f(x)=\frac{x}{\log x}$, straightforward computation implies that $\frac{A}{G}(f)=\frac{\mathrm{e}}{2}$. But, our computations in (1.1) and (1.2), mainly those of geometric mean values, is not enough strong to get similar result for $\pi(x)$. Our argument in the next section, supports that the value of $\lim _{b \rightarrow \infty} \frac{A_{b}(f)}{G_{b}(f)}$ for $f(x)=\pi(x)$, if exists, is closely related to the value of the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S(n)-\frac{1}{2} n p_{n}}{n^{2}} \tag{1.6}
\end{equation*}
$$

provided it exists, where $S(n)=\sum_{k=1}^{n} p_{k}$. In [2] we prove that

$$
\frac{n}{2} p_{n}-\frac{9}{4} n^{2}<S(n)<\frac{n}{2} p_{n}-\frac{1}{12} n^{2}
$$

where the left hand side inequality is valid for any integer $n \geqslant 2$, and the right hand side inequality is valid for any integer $n \geqslant 10$. Thus, the value of the limit (1.6) lies in the interval $\left[-\frac{9}{4},-\frac{1}{12}\right]$. We guess that its true value is $-\frac{1}{4}$, and consequently, we conjecture that the true value of $O(1)$ in (1.2) is also $-\frac{1}{4}$, and hence, $\frac{A}{G}(f)=\frac{\sqrt[4]{e}}{2}$ for $f(x)=\pi(x)$.

2. An Auxiliary General Result

The following results prepare the main tool of explicit and approximate computing several means of the values of $\pi(x)$.

Lemma 2.1. For $S(n)=\sum_{k=1}^{n} p_{k}$ and g be continuously differentiable on [$1, n-1$], we have

$$
\begin{aligned}
I: & =\int_{\mathrm{e}}^{n-1} S([t]+1)\left(g^{\prime}(t+1)-g^{\prime}(t)\right) \mathrm{d} t \\
& =S(n)(g(n)-g(n-1))+2 g(1)-c_{g}-\sum_{k=1}^{n-1}(g(k+1)-g(k)) p_{k+1}
\end{aligned}
$$

where c_{g} is a constant defined in terms of g.
Proof. We let $I=\int_{1}^{n-1}-\int_{1}^{\mathrm{e}}:=I_{3}-\int_{1}^{\mathrm{e}}$ with

$$
\begin{aligned}
I_{3}: & =\int_{1}^{n-1} S([t]+1)\left(g^{\prime}(t+1)-g^{\prime}(t)\right) \mathrm{d} t \\
& =\sum_{k=1}^{n-2} \int_{k}^{k+1} S(k+1)\left(g^{\prime}(t+1)-g^{\prime}(t)\right) \mathrm{d} t \\
& =\sum_{k=1}^{n-2} S(k+1)(g(k+2)-g(k+1))-\sum_{k=1}^{n-2} S(k+1)(g(k+1)-g(k)) \\
& =\sum_{k=2}^{n-1} S(k)(g(k+1)-g(k))-\sum_{k=1}^{n-2} S(k+1)(g(k+1)-g(k)) \\
& =S(n)(g(n)-g(n-1))-2 g(2)+2 g(1)-\sum_{k=1}^{n-1} p_{k+1}(g(k+1)-g(k))
\end{aligned}
$$

This completes the proof.
Theorem 2.2. Assume that $b>0$ is a real number, and p_{n} denotes the largest prime not exceeding $b+2$. Also, assume that $g:(0,+\infty) \rightarrow \mathbb{R}$ is a continuous function. Then, we have

$$
\begin{align*}
\int_{2}^{b+2} g(\pi(t)) \mathrm{d} t & =g(n)\left(b+2-p_{n}\right)+\sum_{k=1}^{n-1}\left(p_{k+1}-p_{k}\right) g(k) \tag{2.1}\\
& =g(n)(b+2)-2 g(1)-\sum_{k=1}^{n-1}(g(k+1)-g(k)) p_{k+1}
\end{align*}
$$

Moreover, if g is continuously differentiable on the interval $[1, n-1]$ and $g^{\prime}(t)=$ $\frac{\mathrm{d}}{\mathrm{d} t} g(t)$, then for any $b>5$ we have

$$
\begin{align*}
\int_{2}^{b+2} g(\pi(t)) \mathrm{d} t=(b+2) g(n) & -S(n)(g(n)-g(n-1)) \tag{2.2}\\
& +c_{g}+\int_{\mathrm{e}}^{n-1} S([t]+1) \Delta(t) \mathrm{d} t
\end{align*}
$$

where $S(n)=\sum_{k=1}^{n} p_{k}, c_{g}=10 g(\mathrm{e}+1)-10 g(\mathrm{e})-5 g(3)+2 g(2)+g(1)$, and $\Delta(t):=g^{\prime}(t+1)-g^{\prime}(t)$. Also, as $n \rightarrow \infty$ (and equivalently $b \rightarrow \infty$), we have

$$
\begin{equation*}
\int_{2}^{b+2} g(\pi(t)) \mathrm{d} t=G(n)+O(R(n)) \tag{2.3}
\end{equation*}
$$

where

$$
G(n)=\left(g(n)-\frac{n}{2}(g(n)-g(n-1))\right) n \ell(n)+c_{g}+\frac{1}{2} \int_{\mathrm{e}}^{n-1} t^{2} \ell(t) \Delta(t) \mathrm{d} t
$$

with $\ell(t)=\log t+\log \log t$, and

$$
R(n)=(g(n)+n(g(n)-g(n-1))) n+\int_{\mathrm{e}}^{n-1} t^{2} \Delta(t) \mathrm{d} t .
$$

As more as, we have

$$
\begin{align*}
\frac{1}{b} \int_{2}^{b+2} g(\pi(t)) \mathrm{d} t & =\frac{1}{2 n \ell(n)} \int_{\mathrm{e}}^{n-1} t^{2} \ell(t) \Delta(t) \mathrm{d} t+\frac{c_{g}}{n \ell(n)} \tag{2.4}\\
& +\left(g(n)-\frac{n}{2}(g(n)-g(n-1))\right)+O\left(\frac{\frac{G(n)}{\log n}+R(n)}{n \log n}\right)
\end{align*}
$$

Proof. Since p_{n} is the largest prime not exceeding $b+2$, one may write

$$
\int_{2}^{b+2} g(\pi(t)) \mathrm{d} t=\int_{2}^{p_{n}} g(\pi(t)) \mathrm{d} t+\int_{p_{n}}^{b+2} g(\pi(t)) \mathrm{d} t:=I_{1}+I_{2}
$$

say, respectively. We note that $\pi(t)=k-1$ if and only if $p_{k-1} \leqslant t<p_{k}$. Thus, we obtain $I_{2}=g(n)\left(b+2-p_{n}\right)$, and

$$
I_{1}=\sum_{k=2}^{n} \int_{p_{k-1}}^{p_{k}^{-}} g(\pi(t)) \mathrm{d} t=\sum_{k=2}^{n} g(k-1)\left(p_{k}-p_{k-1}\right):=T_{g}(n-1),
$$

say. This implies validity of (2.1). Now, we apply the truth of Lemma 2.1 to (2.2). Note that we take $b>5$ to guarantee $n \geqslant 4$. Finally, we deduce (2.3) by applying the known approximations (see [2] and [1], respectively)

$$
\begin{equation*}
S(n)=\frac{1}{2} n p_{n}+O\left(n^{2}\right), \quad \text { as } n \rightarrow \infty \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{n}=n(\ell(n)+O(1)), \quad \text { as } n \rightarrow \infty \tag{2.6}
\end{equation*}
$$

from which we get $S([t]+1)=\frac{t^{2}}{2} \ell(t)+O\left(t^{2}\right)$, and so

$$
\int_{\mathrm{e}}^{n-1} S([t]+1) \Delta(t) \mathrm{d} t=\frac{1}{2} \int_{\mathrm{e}}^{n-1} t^{2} \ell(t) \Delta(t) \mathrm{d} t+O\left(\int_{\mathrm{e}}^{n-1} t^{2} \Delta(t) \mathrm{d} t\right)
$$

Moreover, the relations (2.5) and (2.6) yield

$$
S(n)=\frac{1}{2} n^{2} \ell(n)+O\left(n^{2}\right)
$$

Also, we have $p_{n} \leqslant b+2 \leqslant p_{n+1}$, from which by applying (2.6) we get

$$
b+2=n(\ell(n)+O(1))
$$

By applying the three last relations in (2.2), we obtain validity of (2.3). Also, we use $b=n(\ell(n)+O(1))$ to get

$$
\frac{1}{b}=\frac{1}{n \ell(n)}\left(1+O\left(\frac{1}{\log n}\right)\right)
$$

This implies validity of (2.4), and completes the proof.
Remark 2.3. The constants of O-terms in the relations (2.5) and (2.6) are known explicitly (see [2] and [3]). Thus, one may compute the constants of O-terms in the relations (2.3) and (2.4) for the given function g.

3. Proofs of the Other Results

We will need some integration formulas, recalled here briefly. We recall that Li is the logarithmic integral function defined by

$$
\operatorname{Li}(x)=\int_{0}^{x} \frac{1}{\log t} \mathrm{~d} t
$$

where we take the Cauchy principal value of the integral. Integration by parts implies that

$$
\begin{equation*}
\operatorname{Li}(x)=\frac{x}{\log x} \sum_{k=0}^{m} \frac{k!}{\log ^{k} x}+O\left(\frac{x}{\log ^{m+2} x}\right) \tag{3.1}
\end{equation*}
$$

for any integer $m \geqslant 0$. A simple computation verifies that

$$
\begin{equation*}
\int \log \log x \mathrm{~d} x=x \log \log x-\operatorname{Li}(x) \tag{3.2}
\end{equation*}
$$

and this gives

$$
\begin{equation*}
\int \ell(x) \mathrm{d} x=\int \log (x \log x) \mathrm{d} x=x \log x+x \log \log x-x-\operatorname{Li}(x) \tag{3.3}
\end{equation*}
$$

Moreover, by elementary computations, we have

$$
\begin{equation*}
\int \frac{\ell(x)}{x} \mathrm{~d} x=\frac{1}{2} \log ^{2} x+\log x \log \log x-\log x \tag{3.4}
\end{equation*}
$$

Proof of Theorem 1.1. We utilize the statement of Theorem 2.2 with $g(x)=x$. We have $c_{g}=0$, and $\Delta(t)=0$. Thus, we get $G(n)=\frac{1}{2} n^{2} \ell(n)$, and $R(n)=2 n^{2}$, and these imply (1.1).
To compute the geometric mean, we apply the statement of Theorem 2.2 with $g(x)=\log x$. We have

$$
\Delta(t)=\frac{1}{t^{2}}\left(-1+\frac{1}{t}-\frac{1}{t(t+1)}\right) .
$$

Hence, we obtain

$$
\int_{\mathrm{e}}^{n-1} t^{2} \Delta(t) \mathrm{d} t=-n+\log n+\mathrm{e}+1-\log (\mathrm{e}+1)=O(n)
$$

and

$$
t^{2} \ell(t) \Delta(t)=-\ell(t)+\frac{\ell(t)}{t}-\frac{\ell(t)}{t(t+1)}
$$

from which by using the relations (3.3) and (3.4), together with the relation (3.1), we deduce that

$$
\int_{\mathrm{e}}^{n-1} t^{2} \ell(t) \Delta(t) \mathrm{d} t=-n \ell(n)+O(n)
$$

Also, (with $g(x)=\log x$) we have

$$
g(n)-\frac{n}{2}(g(n)-g(n-1))=\log n-\frac{1}{2}+O\left(\frac{1}{n}\right)
$$

and

$$
g(n)+n(g(n)-g(n-1))=\log n+1+O\left(\frac{1}{n}\right)
$$

Therefore $G(n)=\ell(n)(n \log n-n)+O(n)$, and $R(n)=n \log n+O(n)$. Thus, we obtain

$$
\frac{1}{b} \int_{2}^{b+2} \log \pi(t) \mathrm{d} t=\log n+O(1)
$$

and this gives (1.2).
Similarly, we compute the harmonic mean, by using Theorem 2.2 with $g(x)=\frac{1}{x}$. We have

$$
\Delta(t)=\frac{2 t+1}{(t(t+1))^{2}}=\frac{2}{t^{3}}+O\left(\frac{1}{t^{4}}\right)
$$

Thus, $\int_{\mathrm{e}}^{n-1} t^{2} \Delta(t) \mathrm{d} t=O(\log n)$, and $\int_{\mathrm{e}}^{n-1} t^{2} \ell(t) \Delta(t) \mathrm{d} t=\log ^{2} n+2 \log n \log \log n+$ $O(\log n)$. Also, $\left(\right.$ with $\left.g(x)=\frac{1}{x}\right)$ we have $g(n)-\frac{n}{2}(g(n)-g(n-1))=O\left(\frac{1}{n}\right)$ and $g(n)+n(g(n)-g(n-1))=O\left(\frac{1}{n}\right)$. So, $G(n)=\frac{1}{2} \log ^{2} n+\log n \log \log n+O(\log n)$, and $R(n)=O(\log n)$. By using the expansion

$$
\frac{1}{\ell(n)}=\frac{\log \log n}{\log ^{2} n}\left(1+O\left(\frac{\log \log n}{\log n}\right)\right)
$$

which is valid as $n \rightarrow \infty$, we obtain

$$
\frac{1}{b} \int_{2}^{b+2} \frac{1}{\pi(t)} \mathrm{d} t=\frac{\log \log n}{2 n}+O\left(\frac{1}{n}\right)
$$

and this gives (1.3). The proof is completed.
Proof of Theorem 1.2. For any real number $\eta \geqslant 0$, we set $f(x)=x^{\eta}$. We have
$A_{b}(f)=\frac{(b+1)^{\eta+1}-1}{b(\eta+1)}, \quad$ and $\quad G_{b}(f)=\exp \left(\eta\left(\frac{b+1}{b} \log (b+1)-1\right)\right)$.
Therefore, we obtain

$$
\frac{A}{G}(f)=\frac{\mathrm{e}^{\eta}}{\eta+1}:=v(\eta)
$$

say. We note that $\frac{\mathrm{d}}{\mathrm{d} \eta} v(\eta)=v(\eta) \frac{\eta}{\eta+1}$, hence $v(\eta)$ is strictly increasing for $\eta \geqslant 0$, as well as $v(0)=1$ and $\lim _{\eta \rightarrow \infty} v(\eta)=\infty$. Thus, for any real number $\beta \geqslant 1$ there exists a real number $\eta \geqslant 0$ such that $v(\eta)=\beta$, as desired.

Acknowledgments

I express my gratitude to the anonymous referee(s) for careful reading of the manuscript and giving the many valuable suggestions and corrections, which improved the presentation of the paper.

References

1. M. Cipolla, La determinazione assintotica dell'nimo numero primo (asymptotic determination of the n-th prime), Rendiconto dell'Accademia delle Scienze Fisiche e Matematiche, Series 3, 8, (1902), 132-166.
2. M. Hassani, On the ratio of the arithmetic and geometric means of the prime numbers and the number e, International Journal of Number Theory, 9(6), (2013), 1593-1603.
3. J. B. Rosser, L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois Journal of Mathematics, 6, (1962), 64-94.
