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Abstract. Suppose Mn is the vector space of all n-by-n real matrices,

and let Rn be the set of all n-by-1 real vectors. A matrix R ∈ Mn is

said to be row substochastic if it has nonnegative entries and each row

sum is at most 1. For x, y ∈ Rn, it is said that x is sut-majorized by

y (denoted by x ≺sut y) if there exists an n-by-n upper triangular row

substochastic matrix R such that x = Ry. In this note, we characterize

the linear functions T : Rn → Rn preserving (resp. strongly preserving)

≺sut with additional condition Te1 ̸= 0 (resp. no additional conditions).
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1. Introduction

Over the years, the theory of majorization as a powerful tool has widely

been applied to the related research areas of pure mathematics and the ap-

plied mathematics (see [19]). A good survey on the theory of majorization was

given by Marshall, Olkin, and Arnold [17]. Recently, the concept of gener-

alized stochastic matrices has been attended specially and many papers have

been published in this topic [1-8] and [10-15]. The triangular matrices play

an important role in the matrix analysis and its application. So, in this work,

we pay attention to a new kind of majorization which has been defined by a
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special type of the triangular matrices. Some kinds of majorization with theirs

linear preservers can be found in [9], [16], and [18].

Throughout the article,

Mn denotes the set of all n-by-n real matrices.

Rn denotes the set of all n-by-1 real vectors.

RSut
n denotes the collection of all n-by-n upper triangular row substochastic

matrices.

{e1, . . . , en} denotes the standard basis of Rn.

A(n1, . . . , nl|m1, . . . ,mk) denotes the submatrix of A obtained from A by delet-

ing rows n1, . . . , nl and columns m1, . . . ,mk.

A(n1, . . . , nl) denotes the abbreviation of A(n1, . . . , nl|n1, . . . , nl).

Nk denotes the set {1, . . . , k} ⊂ N.
At denotes the transpose of a given matrix A ∈ Mn.

[T ] denotes the matrix representation of a linear function T : Rn → Rn with

respect to the standard basis.

C(A) denotes the set {
∑m

i=1 λiai | m ∈ N, λi ≥ 0,
∑m

i=1 λi ≤ 1, ai ∈ A, ∀i ∈ Nm},
where A ⊆ Rn.

x↓ = (x↓
1, . . . , x

↓
n)

t denotes the decreasing rearrangment of a vector x = (x1, . . . , xn)
t

∈ Rn. This means x1 ≥ . . . ≥ xn.

x↑ = (x↑
1, . . . , x

↑
n)

t denotes the increasing rearrangment of a vector x = (x1, . . . , xn)
t ∈

Rn. This means x1 ≤ . . . ≤ xn.

Definition 1.1. Let R be a relation on Rn. A linear function T : Rn → Rn is

said to be a linear preserver of R if for all x, y ∈ Rn

xRy ⇒ TxRTy.

If T is a linear preserver of R and TxRTy implies that xRy, then T is called

a strong linear preserver of R.

A matrix R ∈ Mn with nonnegative entries is called row stochastic if Re = e,

where e = (1, . . . , 1)t ∈ Rn. Let x, y ∈ Rn. We say that x is ut-majorized by

y, written x ≺ut y, if x = Ry for some upper triangular row stochastic matrix

R. In [15], the authors found all linear functions T : Rn → Rn preserving

ut-majorization with additional condition Te1 ̸= 0 and strong preserving ut-

majorization as follow.
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Theorem 1.2. Let T : Rn → Rn be a linear function. Assume [T ] = [aij ],

and Te1 ̸= 0. Then T preserves ≺ut if and only if

[T ] =



a11 0 0 . . . 0 0 a1n
0 a22 0 . . . 0 0 a2n
0 0 a33 . . . 0 0 a3n
...

...
... . . .

...
...

...

0 0 0 . . . 0 an−1n−1 an−1n

0 0 0 . . . 0 0 ann


,

a11 + a1n = a22 + a2n = · · · = an−1n−1 + an−1n = ann, and

the finite sequence (0, a11, a22, . . . , an−1n−1)
t is monotone.

Theorem 1.3. A linear function T : Rn → Rn strongly preserves ≺ut if and

only if there exist a, b ∈ R such that a, a+ b ̸= 0, and

[T ] =



a 0 0 . . . 0 0 b

0 a 0 . . . 0 0 b

0 0 a . . . 0 0 b
...

...
... . . .

...
...

...

0 0 0 . . . 0 a b

0 0 0 . . . 0 0 a+ b


.

In this paper, we introduce the relation ≺sut on Rn and we obtain all linear

functions T : Rn → Rn preserving sut-majorization with additional condition

Te1 ̸= 0 and strongly preserving sut-majorization.

2. Sut-Majorization on Rn

In this section, we focus on the upper triangular row substochastic matrices

and introduce a new type of majorization. Then we characterize the structure of

(resp. strong) linear preservers of sut-majorization on Rn (resp. no additional

conditions) with additional condition Te1 ̸= 0.

Definition 2.1. AmatrixR with nonnegative entries is called row substochastic

if all its row sums is less than or equal to one.

Definition 2.2. Let x, y ∈ Rn. We say that x sut-majorized by y (in symbol

x ≺sut y) if x = Ry, for some R ∈ RSut
n .

Let x = Ry, for some R ∈ RSut
n . Then

R =


r11 r12 ... r1n−1 r1n
0 r22 ... r2n−1 r2n
...

... ...
...

...

0 ... 0 rn−1n−1 rn−1n

0 ... 0 0 rnn

 ,
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j=i rij ≤ 1, rij ≥ 0, and xi =

∑n
j=i rijyj , for each i ∈ Nn. So xi ∈

C{yi, . . . , yn}, for each i ∈ Nn.

Also, if xi ∈ C{yi, . . . , yn}, for each i ∈ Nn, then there exist rij ≥ 0 such that∑n
j=i rij ≤ 1 and xi =

∑n
j=i rijyj , for each i ∈ Nn and for each j ∈ Ni. Let

rij = 0 for each 1 ≤ i < j and put R = (rij) . It is clear that R ∈ RSut
n and

x = Ry. Therefore, x ≺sut y.

We summarize the foregoing discussion in the following proposition. This

proposition provides a criterion for sut-majorization on Rn.

Proposition 2.3. Let x = (x1, . . . , xn)
t, y = (y1, . . . , yn)

t ∈ Rn. Then x ≺sut

y if and only if xi ∈ C{yi, . . . , yn}, for all i ∈ Nn.

Now, we assert some prerequisites for introducing the main results of this

section.

Lemma 2.4. Suppose T : Rn → Rn is a linear preserver of ≺sut. Assume

that S : Rn−k → Rn−k is a linear function with [S] = [T ](1, . . . , k). Then S

preserves ≺sut on Rn−k.

Proof. Let x′ = (xk+1, . . . , xn)
t, y′ = (yk+1, . . . , yn)

t ∈ Rn−k, and let x′ ≺sut

y′. By Proposition 2.3, we obtain

x := (0, . . . , 0, xk+1, . . . , xn)
t ≺sut y := (0, . . . , 0, yk+1, . . . , yn)

t, where x, y ∈
Rn, and hence Tx ≺sut Ty. This shows that Sx′ ≺sut Sy′ . Therefore, S

preserves ≺sut, as desired. □

Lemma 2.5. Let T : Rn → Rn be a linear preserver of ≺sut. Then [T ] is

upper triangular.

Proof. Let [T ] = [aij ]. We proceed by induction. There is nothing to prove for

n = 1. Suppose that n ≥ 2 and that the assertion has been established for all

linear preservers of ≺sut on Rn−1. Let S : Rn−1 → Rn−1 be the linear function

with [S] = [T ](1). By Lemma 2.4, S preserves ≺sut on Rn−1. The induction

hypothesis insures that [S] is an n − 1-by-n − 1 upper triangular matrix. So

it is enough to show that a21 = · · · = an1 = 0. As e1 ≺sut e2, we see that

Te1 ≺sut Te2 and hence (a11, . . . , an1)
t ≺sut (a12, a22, 0, . . . , 0)

t. It implies

that a31 = · · · = an1 = 0. So it remains to prove that a21 = 0. Assume, if

possible, that a21 ̸= 0. Set x = e1 and y = (−a22

a21
, 1, 0, . . . , 0)t. So x ≺sut y, and

then Tx ≺sut Ty. This follows that a21 = 0, which is a contradiction. Thus

a21 = 0 and we observe that the induction argument is completed. Therefore,

[T ] is an upper triangular matrix. □

The following theorem characterizes structure of the linear functions T : Rn

→ Rn preserving sut-majorization with additional condition Te1 ̸= 0. Note

that the vector x = (x1, . . . , xn)
t is monotone if x = (x↑

1, . . . , x
↑
n)

t or x =

(x↓
1, . . . , x

↓
n)

t.
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Theorem 2.6. Let T : Rn → Rn be a linear function. Assume that [T ] = [aij ]

and Te1 ̸= 0. Then T preserves ≺sut if and only if

[T ] =


a11 0 0 . . . 0

0 a22 0 . . . 0
...

...
... . . .

...

0 0 . . . 0 ann

 ,

and the vector (0, a11, . . . , ann)
t is monotone.

Proof. First, suppose that T preserves ≺sut. It is clear that T preserves ≺sut

if and only if αT preserves ≺sut for all α ∈ R \ {0}. So we can assume without

loss of generality that a11 = 1. By Lemma 2.5, [T ] is upper triangular. We

prove the statement by induction. The result is trivial for n = 1. Assume that

our claim has been proved for all linear preservers of ≺sut on Rn−1.

We claim that a22 ̸= 0. If a22 = 0, we consider the following two cases.

First, let a12 = −1. Then e1 ≺sut e2, but Te1 ̸≺sut Te2, which is a contradic-

tion.

Next, let a12 ̸= −1. Put x = e1+e2 and y = −a12e1+e2. We see that x ≺sut y,

but Tx ̸≺sut Ty. This means T does not preserve ≺sut.

Thus a22 ̸= 0.

Let S : Rn−1 → Rn−1 be the linear function with [S] = [T ](1). By Lemma

2.4, S preserves ≺sut on Rn−1. Since a22 ̸= 0, the induction hypothesis ensures

that

[S] =


a22 0 0 . . . 0

0 a33 0 . . . 0
...

...
... . . .

...

0 0 . . . 0 ann

 ,

and the vector (0, a22, . . . , ann)
t is monotone. So it is enough to show that

a12 = · · · = a1n = 0 and 1 ≤ a22. Assume that there is some j (2 ≤ j ≤ n)

such that a1j ̸= 0. Choose x = −a1je1 and y = −a1je1 + ej . The proof is

divided into two steps.

Step 1. If ajj > 0; We consider two cases.

Case 1. a1j > 0. Since x ≺sut y, but Tx ̸≺sut Ty, a contradiction.

Case 2. a1j < 0. As ej ≺sut y, but Tej ̸≺sut Ty, we conclude T does not

preserve ≺sut.

Step 2. If ajj < 0; We have two cases.

Case 1. a1j > 0. One can see that ej ≺sut y, but Tej ̸≺sut Ty, which is a

contradiction.

Case 2. a1j < 0. It is clear that x ≺sut y, but Tx ̸≺sut Ty. It implies that T

does not preserve ≺sut.
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Hence a1j = 0 for each j (2 ≤ j ≤ n), and so

[T ] =


a11 0 0 . . . 0

0 a22 0 . . . 0
...

...
... . . .

...

0 0 . . . 0 ann

 .

Since e1 ≺sut e2, we have Te1 ≺sut Te2. This means that 1 ≤ a22. So the

vector (0, 1, a22, . . . , ann)
t is monotone.

To prove the sufficiency, let x = (x1, . . . , xn)
t, y = (y1, . . . , yn)

t ∈ Rn and let

x ≺sut y. Then

Tx = (a11x1, a22x2, . . . , annxn)
t

and
Ty = (a11y1, a22y2, . . . , annyn)

t.

We prove (Tx)i ∈ C{(Ty)i, . . . , (Ty)n}, for all i ∈ Nn. Let i ∈ Nn. Since

xi ∈ C{yi, . . . , yn}, then there exist 0 ≤ αi, . . . , αn ≤ 1,
∑n

k=i αk ≤ 1, and xi =∑n
k=i αkyk. As aii, . . . , ann ̸= 0, we conclude that (Tx)i =

∑n
k=i(

aiiαk

akk
)(Ty)k.

Clearly, (Tx)i ∈ C{(Ty)i, . . . , (Ty)n}. This implies that Tx ≺sut Ty. There-

fore, T preserves ≺sut . □

Corollary 2.7. If T : Rn → Rn is a linear preserver of ≺sut such that Te1 ̸= 0,

then rank[T ] = n.

We observe from Theorem 1.2 that if T : Rn → Rn is a linear preserver of

≺ut such that Te1 ̸= 0, then rank[T ] ≥ n − 1. We need the following lemma

in the rest of this paper.

Lemma 2.8. Let T : Rn → Rn be a linear function that strongly preserves

≺sut. Then T is invertible.

Proof. Let x ∈ Rn, and let Tx = 0. Since Tx = T0 and T strongly preserves

≺sut, we have x ≺sut 0. So x = 0. Therefore, T is invertible. □

The following theorem characterizes the linear functions T : Rn → Rn which

strongly preserves sut-majorization. We close this paper with this theorem.

Theorem 2.9. A linear function T : Rn → Rn strongly preserves ≺sut if and

only if [T ] = αIn, for some α ∈ R \ {0}.

Proof. First, suppose that T strongly preserves ≺sut. Lemma 2.8 ensures that

T is invertible and hence Te1 ̸= 0. So by Theorem 2.6,

[T ] =


a11 0 0 . . . 0

0 a22 0 . . . 0
...

...
... . . .

...

0 0 . . . 0 ann

 ,
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and the vector (0, a11, . . . , ann)
t is monotone.

By a simple calculation, we obtain

[T ]−1 =


1

a11
0 0 . . . 0

0 1
a22

0 . . . 0
...

...
... . . .

...

0 0 . . . 0 1
ann

 .

Since T strongly preserves ≺sut, we conclude T−1 is a linear preserver of

≺sut, and hence the vector (0, 1
a11

, . . . , 1
ann

)t is monotone. Thus a11 = · · · =
ann, as desired.

For the converse, assume that there exists α ∈ R such that α ̸= 0 and

[T ] = αIn. Thus [T ]−1 = 1
αIn. It follows from Theorem 2.6, T and T−1

preserve ≺sut, therefore, T strongly preserves ≺sut. □
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