Linear Functions Preserving Sut-Majorization on \mathbb{R}^n

Asma Ilkhanizadeh Manesh

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box: 7713936417, Rafsanjan, Iran.

E-mail: a.ilkhani@vru.ac.ir, ailkhanizade@gmail.com

ABSTRACT. Suppose \mathbf{M}_n is the vector space of all n-by-n real matrices, and let \mathbb{R}^n be the set of all n-by-1 real vectors. A matrix $R \in \mathbf{M}_n$ is said to be row substochastic if it has nonnegative entries and each row sum is at most 1. For $x, y \in \mathbb{R}^n$, it is said that x is sut-majorized by y (denoted by $x \prec_{sut} y$) if there exists an n-by-n upper triangular row substochastic matrix R such that x = Ry. In this note, we characterize the linear functions $T: \mathbb{R}^n \to \mathbb{R}^n$ preserving (resp. strongly preserving) \prec_{sut} with additional condition $Te_1 \neq 0$ (resp. no additional conditions).

Keywords:(strong) Linear preserver, Row substochastic matrix, Sut-majorization.

2000 Mathematics subject classification: 15A04, 15A21.

1. Introduction

Over the years, the theory of majorization as a powerful tool has widely been applied to the related research areas of pure mathematics and the applied mathematics (see [19]). A good survey on the theory of majorization was given by Marshall, Olkin, and Arnold [17]. Recently, the concept of generalized stochastic matrices has been attended specially and many papers have been published in this topic [1-8] and [10-15]. The triangular matrices play an important role in the matrix analysis and its application. So, in this work, we pay attention to a new kind of majorization which has been defined by a

Received 17 February 2014; Accepted 14 December 2015 © 2016 Academic Center for Education, Culture and Research TMU

special type of the triangular matrices. Some kinds of majorization with theirs linear preservers can be found in [9], [16], and [18].

Throughout the article,

 \mathbf{M}_n denotes the set of all *n*-by-*n* real matrices.

 \mathbb{R}^n denotes the set of all *n*-by-1 real vectors.

 \mathcal{RS}_n^{ut} denotes the collection of all *n*-by-*n* upper triangular row substochastic matrices.

 $\{e_1,\ldots,e_n\}$ denotes the standard basis of \mathbb{R}^n .

 $A(n_1, \ldots, n_l | m_1, \ldots, m_k)$ denotes the submatrix of A obtained from A by deleting rows n_1, \ldots, n_l and columns m_1, \ldots, m_k .

 $A(n_1,\ldots,n_l)$ denotes the abbreviation of $A(n_1,\ldots,n_l|n_1,\ldots,n_l)$.

 \mathbb{N}_k denotes the set $\{1,\ldots,k\}\subset\mathbb{N}$.

 A^t denotes the transpose of a given matrix $A \in \mathbf{M}_n$.

[T] denotes the matrix representation of a linear function $T:\mathbb{R}^n\to\mathbb{R}^n$ with respect to the standard basis.

 $\mathcal{C}(\mathcal{A})$ denotes the set $\{\sum_{i=1}^{m} \lambda_i a_i \mid m \in \mathbb{N}, \ \lambda_i \geq 0, \ \sum_{i=1}^{m} \lambda_i \leq 1, \ a_i \in A, \ \forall i \in \mathbb{N}_m\},$ where $A \subseteq \mathbb{R}^n$.

 $x^{\downarrow} = (x_1^{\downarrow}, \dots, x_n^{\downarrow})^t$ denotes the decreasing rearrangment of a vector $x = (x_1, \dots, x_n)^t$ $\in \mathbb{R}^n$. This means $x_1 \geq \dots \geq x_n$.

 $x^{\uparrow} = (x_1^{\uparrow}, \dots, x_n^{\uparrow})^t$ denotes the increasing rearrangment of a vector $x = (x_1, \dots, x_n)^t \in \mathbb{R}^n$. This means $x_1 \leq \dots \leq x_n$.

Definition 1.1. Let \mathcal{R} be a relation on \mathbb{R}^n . A linear function $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be a linear preserver of \mathcal{R} if for all $x, y \in \mathbb{R}^n$

$$x\mathcal{R}y \Rightarrow Tx\mathcal{R}Ty$$
.

If T is a linear preserver of \mathcal{R} and $Tx\mathcal{R}Ty$ implies that $x\mathcal{R}y$, then T is called a strong linear preserver of \mathcal{R} .

A matrix $R \in \mathbf{M}_n$ with nonnegative entries is called row stochastic if Re = e, where $e = (1, ..., 1)^t \in \mathbb{R}^n$. Let $x, y \in \mathbb{R}^n$. We say that x is ut-majorized by y, written $x \prec_{ut} y$, if x = Ry for some upper triangular row stochastic matrix R. In [15], the authors found all linear functions $T : \mathbb{R}^n \to \mathbb{R}^n$ preserving ut-majorization with additional condition $Te_1 \neq 0$ and strong preserving ut-majorization as follow.

Theorem 1.2. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear function. Assume $[T] = [a_{ij}]$, and $Te_1 \neq 0$. Then T preserves \prec_{ut} if and only if

$$[T] = \begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 & 0 & a_{1n} \\ 0 & a_{22} & 0 & \dots & 0 & 0 & a_{2n} \\ 0 & 0 & a_{33} & \dots & 0 & 0 & a_{3n} \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & a_{n-1n-1} & a_{n-1n} \\ 0 & 0 & 0 & \dots & 0 & 0 & a_{nn} \end{pmatrix},$$

 $a_{11} + a_{1n} = a_{22} + a_{2n} = \cdots = a_{n-1n-1} + a_{n-1n} = a_{nn}$, and the finite sequence $(0, a_{11}, a_{22}, \dots, a_{n-1n-1})^t$ is monotone.

Theorem 1.3. A linear function $T: \mathbb{R}^n \to \mathbb{R}^n$ strongly preserves \prec_{ut} if and only if there exist $a, b \in \mathbb{R}$ such that $a, a + b \neq 0$, and

$$[T] = \begin{pmatrix} a & 0 & 0 & \dots & 0 & 0 & b \\ 0 & a & 0 & \dots & 0 & 0 & b \\ 0 & 0 & a & \dots & 0 & 0 & b \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & a & b \\ 0 & 0 & 0 & \dots & 0 & 0 & a+b \end{pmatrix}.$$

In this paper, we introduce the relation \prec_{sut} on \mathbb{R}^n and we obtain all linear functions $T: \mathbb{R}^n \to \mathbb{R}^n$ preserving sut-majorization with additional condition $Te_1 \neq 0$ and strongly preserving sut-majorization.

2. Sut-Majorization on \mathbb{R}^n

In this section, we focus on the upper triangular row substochastic matrices and introduce a new type of majorization. Then we characterize the structure of (resp. strong) linear preservers of sut-majorization on \mathbb{R}^n (resp. no additional conditions) with additional condition $Te_1 \neq 0$.

Definition 2.1. A matrix R with nonnegative entries is called *row substochastic* if all its row sums is less than or equal to one.

Definition 2.2. Let $x, y \in \mathbb{R}^n$. We say that x sut-majorized by y (in symbol $x \prec_{sut} y$) if x = Ry, for some $R \in \mathcal{RS}_n^{ut}$.

Let x = Ry, for some $R \in \mathcal{RS}_n^{ut}$. Then

$$R = \begin{pmatrix} r_{11} & r_{12} & \dots & r_{1n-1} & r_{1n} \\ 0 & r_{22} & \dots & r_{2n-1} & r_{2n} \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & \dots & 0 & r_{n-1n-1} & r_{n-1n} \\ 0 & \dots & 0 & 0 & r_{nn} \end{pmatrix},$$

 $\sum_{j=i}^n r_{ij} \leq 1$, $r_{ij} \geq 0$, and $x_i = \sum_{j=i}^n r_{ij}y_j$, for each $i \in \mathbb{N}_n$. So $x_i \in \mathcal{C}\{y_i, \ldots, y_n\}$, for each $i \in \mathbb{N}_n$.

Also, if $x_i \in \mathcal{C}\{y_i, \ldots, y_n\}$, for each $i \in \mathbb{N}_n$, then there exist $r_{ij} \geq 0$ such that $\sum_{j=i}^n r_{ij} \leq 1$ and $x_i = \sum_{j=i}^n r_{ij}y_j$, for each $i \in \mathbb{N}_n$ and for each $j \in \mathbb{N}_i$. Let $r_{ij} = 0$ for each $1 \leq i < j$ and put $R = (r_{ij})$. It is clear that $R \in \mathcal{RS}_n^{ut}$ and x = Ry. Therefore, $x \prec_{sut} y$.

We summarize the foregoing discussion in the following proposition. This proposition provides a criterion for sut-majorization on \mathbb{R}^n .

Proposition 2.3. Let $x = (x_1, ..., x_n)^t$, $y = (y_1, ..., y_n)^t \in \mathbb{R}^n$. Then $x \prec_{sut} y$ if and only if $x_i \in \mathcal{C}\{y_i, ..., y_n\}$, for all $i \in \mathbb{N}_n$.

Now, we assert some prerequisites for introducing the main results of this section.

Lemma 2.4. Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear preserver of \prec_{sut} . Assume that $S: \mathbb{R}^{n-k} \to \mathbb{R}^{n-k}$ is a linear function with $[S] = [T](1, \ldots, k)$. Then S preserves \prec_{sut} on \mathbb{R}^{n-k} .

Proof. Let $x' = (x_{k+1}, \ldots, x_n)^t$, $y' = (y_{k+1}, \ldots, y_n)^t \in \mathbb{R}_{n-k}$, and let $x' \prec_{sut} y'$. By Proposition 2.3, we obtain

 $x := (0, \dots, 0, x_{k+1}, \dots, x_n)^t \prec_{sut} y := (0, \dots, 0, y_{k+1}, \dots, y_n)^t$, where $x, y \in \mathbb{R}^n$, and hence $Tx \prec_{sut} Ty$. This shows that $Sx' \prec_{sut} Sy'$. Therefore, S preserves \prec_{sut} , as desired.

Lemma 2.5. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear preserver of \prec_{sut} . Then [T] is upper triangular.

Proof. Let $[T] = [a_{ij}]$. We proceed by induction. There is nothing to prove for n = 1. Suppose that $n \geq 2$ and that the assertion has been established for all linear preservers of \prec_{sut} on \mathbb{R}^{n-1} . Let $S : \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ be the linear function with [S] = [T](1). By Lemma 2.4, S preserves \prec_{sut} on \mathbb{R}^{n-1} . The induction hypothesis insures that [S] is an n-1-by-n-1 upper triangular matrix. So it is enough to show that $a_{21} = \cdots = a_{n1} = 0$. As $e_1 \prec_{sut} e_2$, we see that $Te_1 \prec_{sut} Te_2$ and hence $(a_{11}, \ldots, a_{n1})^t \prec_{sut} (a_{12}, a_{22}, 0, \ldots, 0)^t$. It implies that $a_{31} = \cdots = a_{n1} = 0$. So it remains to prove that $a_{21} = 0$. Assume, if possible, that $a_{21} \neq 0$. Set $x = e_1$ and $y = (\frac{-a_{22}}{a_{21}}, 1, 0, \ldots, 0)^t$. So $x \prec_{sut} y$, and then $Tx \prec_{sut} Ty$. This follows that $a_{21} = 0$, which is a contradiction. Thus $a_{21} = 0$ and we observe that the induction argument is completed. Therefore, [T] is an upper triangular matrix.

The following theorem characterizes structure of the linear functions $T: \mathbb{R}^n \to \mathbb{R}^n$ preserving sut-majorization with additional condition $Te_1 \neq 0$. Note that the vector $x = (x_1, \dots, x_n)^t$ is monotone if $x = (x_1^{\uparrow}, \dots, x_n^{\uparrow})^t$ or $x = (x_1^{\downarrow}, \dots, x_n^{\downarrow})^t$.

Theorem 2.6. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear function. Assume that $[T] = [a_{ij}]$ and $Te_1 \neq 0$. Then T preserves \prec_{sut} if and only if

$$[T] = \begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 & a_{nn} \end{pmatrix},$$

and the vector $(0, a_{11}, \ldots, a_{nn})^t$ is monotone.

Proof. First, suppose that T preserves \prec_{sut} . It is clear that T preserves \prec_{sut} if and only if αT preserves \prec_{sut} for all $\alpha \in \mathbb{R} \setminus \{0\}$. So we can assume without loss of generality that $a_{11} = 1$. By Lemma 2.5, [T] is upper triangular. We prove the statement by induction. The result is trivial for n = 1. Assume that our claim has been proved for all linear preservers of \prec_{sut} on \mathbb{R}^{n-1} .

We claim that $a_{22} \neq 0$. If $a_{22} = 0$, we consider the following two cases.

First, let $a_{12} = -1$. Then $e_1 \prec_{sut} e_2$, but $Te_1 \not\prec_{sut} Te_2$, which is a contradiction

Next, let $a_{12} \neq -1$. Put $x = e_1 + e_2$ and $y = -a_{12}e_1 + e_2$. We see that $x \prec_{sut} y$, but $Tx \not\prec_{sut} Ty$. This means T does not preserve \prec_{sut} .

Thus $a_{22} \neq 0$.

Let $S: \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ be the linear function with [S] = [T](1). By Lemma 2.4, S preserves \prec_{sut} on \mathbb{R}^{n-1} . Since $a_{22} \neq 0$, the induction hypothesis ensures that

$$[S] = \begin{pmatrix} a_{22} & 0 & 0 & \dots & 0 \\ 0 & a_{33} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 & a_{nn} \end{pmatrix},$$

and the vector $(0, a_{22}, \ldots, a_{nn})^t$ is monotone. So it is enough to show that $a_{12} = \cdots = a_{1n} = 0$ and $1 \le a_{22}$. Assume that there is some j $(2 \le j \le n)$ such that $a_{1j} \ne 0$. Choose $x = -a_{1j}e_1$ and $y = -a_{1j}e_1 + e_j$. The proof is divided into two steps.

Step 1. If $a_{jj} > 0$; We consider two cases.

Case 1. $a_{1j} > 0$. Since $x \prec_{sut} y$, but $Tx \not\prec_{sut} Ty$, a contradiction.

Case 2. $a_{1j} < 0$. As $e_j \prec_{sut} y$, but $Te_j \not\prec_{sut} Ty$, we conclude T does not preserve \prec_{sut} .

Step 2. If $a_{jj} < 0$; We have two cases.

Case 1. $a_{1j} > 0$. One can see that $e_j \prec_{sut} y$, but $Te_j \not\prec_{sut} Ty$, which is a contradiction.

Case 2. $a_{1j} < 0$. It is clear that $x \prec_{sut} y$, but $Tx \not\prec_{sut} Ty$. It implies that T does not preserve \prec_{sut} .

Hence $a_{1j} = 0$ for each j $(2 \le j \le n)$, and so

$$[T] = \begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 & a_{nn} \end{pmatrix}.$$

Since $e_1 \prec_{sut} e_2$, we have $Te_1 \prec_{sut} Te_2$. This means that $1 \leq a_{22}$. So the vector $(0, 1, a_{22}, \ldots, a_{nn})^t$ is monotone.

To prove the sufficiency, let $x=(x_1,\ldots,x_n)^t,y=(y_1,\ldots,y_n)^t\in\mathbb{R}^n$ and let $x\prec_{sut}y$. Then

$$Tx = (a_{11}x_1, a_{22}x_2, \dots, a_{nn}x_n)^t$$

and

$$Ty = (a_{11}y_1, a_{22}y_2, \dots, a_{nn}y_n)^t.$$

We prove $(Tx)_i \in \mathcal{C}\{(Ty)_i, \ldots, (Ty)_n\}$, for all $i \in \mathbb{N}_n$. Let $i \in \mathbb{N}_n$. Since $x_i \in \mathcal{C}\{y_i, \ldots, y_n\}$, then there exist $0 \le \alpha_i, \ldots, \alpha_n \le 1$, $\sum_{k=i}^n \alpha_k \le 1$, and $x_i = \sum_{k=i}^n \alpha_k y_k$. As $a_{ii}, \ldots, a_{nn} \ne 0$, we conclude that $(Tx)_i = \sum_{k=i}^n (\frac{a_{ii}\alpha_k}{a_{kk}})(Ty)_k$. Clearly, $(Tx)_i \in \mathcal{C}\{(Ty)_i, \ldots, (Ty)_n\}$. This implies that $Tx \prec_{sut} Ty$. Therefore, T preserves \prec_{sut} .

Corollary 2.7. If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear preserver of \prec_{sut} such that $Te_1 \neq 0$, then rank[T] = n.

We observe from Theorem 1.2 that if $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear preserver of \prec_{ut} such that $Te_1 \neq 0$, then $rank[T] \geq n-1$. We need the following lemma in the rest of this paper.

Lemma 2.8. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear function that strongly preserves \prec_{sut} . Then T is invertible.

Proof. Let $x \in \mathbb{R}^n$, and let Tx = 0. Since Tx = T0 and T strongly preserves \prec_{sut} , we have $x \prec_{sut} 0$. So x = 0. Therefore, T is invertible.

The following theorem characterizes the linear functions $T: \mathbb{R}^n \to \mathbb{R}^n$ which strongly preserves sut-majorization. We close this paper with this theorem.

Theorem 2.9. A linear function $T: \mathbb{R}^n \to \mathbb{R}^n$ strongly preserves \prec_{sut} if and only if $[T] = \alpha I_n$, for some $\alpha \in \mathbb{R} \setminus \{0\}$.

Proof. First, suppose that T strongly preserves \prec_{sut} . Lemma 2.8 ensures that T is invertible and hence $Te_1 \neq 0$. So by Theorem 2.6,

$$[T] = \begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 & a_{nn} \end{pmatrix},$$

and the vector $(0, a_{11}, \dots, a_{nn})^t$ is monotone. By a simple calculation, we obtain

$$[T]^{-1} = \begin{pmatrix} \frac{1}{a_{11}} & 0 & 0 & \dots & 0\\ 0 & \frac{1}{a_{22}} & 0 & \dots & 0\\ \vdots & \vdots & \vdots & \dots & \vdots\\ 0 & 0 & \dots & 0 & \frac{1}{a_{nn}} \end{pmatrix}.$$

Since T strongly preserves \prec_{sut} , we conclude T^{-1} is a linear preserver of \prec_{sut} , and hence the vector $(0, \frac{1}{a_{11}}, \ldots, \frac{1}{a_{nn}})^t$ is monotone. Thus $a_{11} = \cdots = a_{nn}$, as desired.

For the converse, assume that there exists $\alpha \in \mathbb{R}$ such that $\alpha \neq 0$ and $[T] = \alpha I_n$. Thus $[T]^{-1} = \frac{1}{\alpha} I_n$. It follows from Theorem 2.6, T and T^{-1} preserve \prec_{sut} , therefore, T strongly preserves \prec_{sut} .

ACKNOWLEDGMENTS

The author is indebted to an anonymous referee for his/her suggestions and helpful remarks.

References

- 1. A. Armandnejad, Right gw-majorization on $\mathbf{M}_{n,m}$, Bulletin of the Iranian Mathmatical Society, $\mathbf{35}(2)$, (2009), 69–76.
- A. Armandnejad, H. R. Afshin, Linear functions preserving multivariate and directional majorization, *Iranian Journal of Mathematical Sciences and Informatics*, 5(1), (2010), 1–5
- 3. A. Armandnejad, F. Pasandi, Block diagonal majorization, *Iranian Journal of Mathematical Sciences and Informatics*, 8(2), (2013), 131–136.
- 4. A. Armandnejad, Z. Gashool, Strong linear preservers of g-tridiagonal majorization on \mathbb{R}^n , Electronic Journal of Linear Algebra, 123, (2012), 115–121.
- 5. A. Armandnejad, H. Heydari, Linear functions preserving gd-majorization from $\mathbf{M}_{n,m}$ to $\mathbf{M}_{n,k}$, Bulletin of the Iranian Mathmatical Society, $\mathbf{37}(1)$, (2011), 215–224.
- 6. A. Armandnejad, A. Ilkhanizadeh Manesh, Gut-majorization on $\mathbf{M}_{n,m}$ and its linear preservers, *Electronic Journal of Linear Algebra*, **23**, (2012), 646–654.
- 7. A. Armandnejad, A. Salemi, On linear preservers of lgw-majorization on $\mathbf{M}_{n,m}$, Bulletin of the Malaysian Mathematical Society, $\mathbf{35}(3)$, (2012), 755–764.
- 8. A. Armandnejad, A. Salemi, The structure of linear preservers of gs-majorization, Bulletin of the Iranian Mathmatical Society, $\bf 32(2)$, (2006), 31-42.
- L. B. Beasley, S. G. Lee, Y. H. Lee, A characterization of strong preservers of matrix majorization, *Linear Algebra and its Applications*, 367, (2003), 341–346.
- 10. H. Chiang, C. K. Li, Generalized doubly stochastic matrices and linear preservers, *Linear and Multilinear Algebra*, **53**(1), (2005), 1–11.
- A. M. Hasani, M. Radjabalipour, On linear preservers of (right) matrix majorization, Linear Algebra and its Applications, 423(2), (2007), 255–261.
- A. M. Hasani, M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, *Electronic Journal of Linear Algebra*, 15(1), (2006), 260–268.

- 13. A. Ilkhanizadeh Manesh, On linear preservers of sgut-majorization on $\mathbf{M}_{n,m}$, Bulletin of the Iranian Mathmatical Society, **42**(2), (2016), 471–481.
- 14. A. Ilkhanizadeh Manesh, Right gut-Majorization on $\mathbf{M}_{n,m}$, Electronic Journal of Linear Algebra, $\mathbf{31}(1)$, (2016), 13–26.
- 15. A. Ilkhanizadeh Manesh, A. Armandnejad, Ut-Majorization on \mathbb{R}^n and its Linear Preservers, Operator Theory: Advances and Applications, Springer Basel, (2014), 253–259.
- 16. C. K. Li, E.Poon, Linear operators preserving directional majorization, *Linear Algebra and its Applications*, **235**(1), (2001), 141–149.
- 17. A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, *Springer, New York*, 2011.
- 18. M. Soleymani, A. Armandnejad, Linear preservers of even majorization on $\mathbf{M}_{n,m}$, Linear and Multilinear Algebra, **62**(11), (2014), 1437–1449.
- 19. B. Y. Wang, Foundations of majorization inequalities, Beijing Normal Univ. Press, Beijing China, 1990.