On Barycentric-Magic Graphs

Maria T. Varela
Department of Pure and Applied Mathematics, Universidad Simón Bolívar, Caracas, Venezuela.
E-mail: mtvarela@usb.ve

Abstract

Let A be an abelian group. A graph $G=(V, E)$ is said to be A-barycentric-magic if there exists a labeling $l: E(G) \longrightarrow A \backslash\{0\}$ such that the induced vertex set labeling $l^{+}: V(G) \longrightarrow A$ defined by $l^{+}(v)=\sum_{u v \in E(G)} l(u v)$ is a constant map and also satisfies that $l^{+}(v)=$ $\operatorname{deg}(v) l\left(u_{v} v\right)$ for all $v \in V$, and for some vertex u_{v} adjacent to v. In this paper we determine all $h \in \mathbb{N}$ for which a given graph G is \mathbb{Z}_{h}-barycentricmagic and characterize \mathbb{Z}_{h}-barycentric-magic labeling for some graphs containing vertices of degree 2 and 3 .

Keywords: Magic graph, Barycentric sequences, Barycentric magic graph.

2000 Mathematics subject classification: $05 \mathrm{C} 15,05 \mathrm{C} 78,11 \mathrm{~B} 50$.

1. Introduction

Let $G=(V, E)$ be a finite, simple and undirected graph and let A be an abelian group (written additively). The graph G is said to be A-magic if there exists a labeling $l: E(G) \longrightarrow A \backslash\{0\}$ of the edges of G by non-zero elements of A such that the induced vertex set labeling $l^{+}: V(G) \longrightarrow A$ defined by $l^{+}(v)=\sum_{u v \in E(G)} l(u v)$ is a constant map. When this constant is $0, G$ is said to be A-zero-sum magic. If there exists a labeling l whose induced vertex set labeling is a constant map and for all $v \in V(G)$ the sum $l^{+}(v)$ also satisfies

[^0]$l^{+}(v)=\operatorname{deg}(v) l\left(u_{v} v\right)$ for some vertex u_{v} adjacent to v, G is said to be $A-$ barycentric-magic.

In this paper we study the following problem:

Given a graph G, find all $h \in \mathbb{N}$ for wich G is \mathbb{Z}_{h}-barycentric-magic and for those h, characterize \mathbb{Z}_{h}-barycentric-magic labeling for G.

The study of the barycentric-magic graphs is a new area in the labeled graph theory, specifically in magic labeling. It is motivated by the relationship between different types of magic labeling and the behavior of the sums of sequences in abelian groups. That is, A-magic labelings of a graph G are equivalent to sequences of non-zero elements of A with the same sum, A-zerosum magic labelings are equivalent to zero-sum sequences in $A \backslash\{0\}$. In the same way, A-barycentric magic labelings are equivalent to sequences of nonzero elements of A that contain one element which is the "average" of its terms, called barycentric sequence and formally defined by:

Definition 1.1. Let $a_{1}, a_{2}, \ldots a_{k}$ be k not necessarily distinct elements of an abelian group A. The above sequence is k-barycentric if there exists j such that $a_{1}+a_{2}+\cdots+a_{j}+\cdots+a_{k}=k a_{j}$. The element a_{j} is called a barycenter.

Barycentric sequences were introduced in [1, 2] as a natural extension of zero-sum sequences, and have already been used in graph labeling problems, specifically in Ramsey theory [1, 3, 5].

In this context we give the following definition:
Definition 1.2. Let A be an abelian group. A graph $G=(V, E)$ is said to be A-barycentric magic if there exists a labeling $l: E(G) \longrightarrow A \backslash\{0\}$ of the edges of G by non-zero elements of A such that the induced vertex set labeling $l^{+}: V(G) \longrightarrow A$ satisfies:
(i) $l^{+}(v)=\sum_{u v \in E(G)} l(u v)$ is a constant map.
(ii) $l^{+}(v)=\operatorname{deg}(v) l\left(u_{v} v\right)$, for all $v \in V(G)$, and for some vertex u_{v} adjacent to v.

Notice that if A is a finite group of order n and $\operatorname{deg}(v) \equiv 0(\bmod n)$ for all $v \in V(G)$, the barycentric-magic graphs coincide with the zero-sum magic graphs.

Based on the definition of integer magic spectrum for a given graph G, which is the set of all positive integers h for which G is \mathbb{Z}_{h}-magic and is denoted by $I M(G)$, we define the barycenter-magic spectrum of G as follows:

Definition 1.3. For a given graph G the set of all positive integers h for which G is \mathbb{Z}_{h}-barycentric magic is called the barycenter-magic spectrum of G and is denoted by $B M(G)$.

Besides this introduction, this paper contains two main sections. Section 2 presents the tools that are used in the next section. In Section 3 we give some general results about barycentric magic labeling for regular graphs and stars and solve the main problem for some graphs, particularly for graphs containing vertices of degree 2 and 3 such as chain of cycles, cycles with an edge or path joining two vertices, $K_{2,3}$ and $K_{2, n}$.

2. Tools

In this section we cite some results on barycentric sequences and magic graphs that will be used to establish the main results.

First, we have the following obvious lemma:
Lemma 2.1. In every abelian group A, a sequence $a_{1}, a_{2}, \ldots a_{k}$ where $a_{1}=$ $a_{2}=\ldots a_{k}=a \in A$ is k-barycentric .

As we are interested in graphs containing vertices of degree 2 and 3 , we use the following two lemmas that characterize barycentric sequences with lengths 2 and 3.

Lemma 2.2. Let A be an abelian group. Any sequence in A with two elements is barycentric if and only if the elements are equal.

Lemma 2.3. A 3-sequence in \mathbb{Z}_{h} is barycentric if and only if its elements are equal or are in arithmetic progression.

In what follows, we present some results about magic labeling and the integer magic spectrum for a given graph G.

Lemma 2.4. A graph G is \mathbb{Z}_{2}-magic if and only if the degree of every vertex of G is of the same parity.

Lemma 2.5. If G is a regular graph, then $\operatorname{IM}(G)=\mathbb{N}$.
Lemma 2.6. $I M\left(P_{2}\right)=\mathbb{N}$ and for $n \geq 3, I M\left(P_{n}\right)=\varnothing$.
In [4] Lee, Salehi and Sun showed the following theorem which determines the integer magic spectrum for stars.

Theorem 2.7. Let $n \geqslant 3$, and $p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$ be the prime factorization of $n-1$. Then $\operatorname{IM}\left(K_{1, n}\right)=\bigcup_{i=1}^{k} p_{i} \mathbb{N}$.

3. Main Results

We start with some general results.
Lemma 3.1. Every \mathbb{Z}_{2}-magic graph is a \mathbb{Z}_{2}-barycentric magic graph.
Lemma 3.2. For every abelian group A, P_{2} is A-barycentric magic and P_{n}, $n \geq 3$, is not A-barycentric magic.

Let G be a regular graph. Then, according to Lemma 2.1, if we label all the edges of G with $a \in A \backslash\{0\}$, the graph G will be A-barycentric magic. In consequence we have:

Theorem 3.3. If G is a regular graph, then $B M(G)=I M(G)=\mathbb{N}$.
Particularly, when $G=K_{m, m}$ we have:
Corollary 3.4. $B M\left(K_{m, m}\right)=I M\left(K_{m, m}\right)=\mathbb{N}$.
For any $n \geqslant 1$ the complete bipartite graph $K_{1, n}$ is called a star. Note that $K_{1,1}$ is the same as P_{2}, which is A-barycentric magic for every abelian group A. Also $K_{1,2}$ is the same as P_{3}, which is not barycentric magic. For $n \geqslant 3$ we have the following result.

Theorem 3.5. For any $n \geqslant 3$, if $K_{1, n}$ is \mathbb{Z}_{h}-magic, then it is \mathbb{Z}_{h}-barycentric magic.

Proof. Let v_{0} be the center of the star $K_{1, n}$, then $\operatorname{deg}\left(v_{0}\right)=n$ and for the other vertices $v \neq v_{0}, \operatorname{deg}(v)=1$. If l is a magic labeling of $K_{1, n}$ all edges must have the same label, say $a \in \mathbb{Z}_{h} \backslash\{0\}$. Then $l^{+}\left(v_{0}\right)=n a=\operatorname{deg}\left(v_{0}\right) a$ and for $v \neq v_{0}$, $l^{+}(v)=a=\operatorname{deg}(v) a$. Therefore, $K_{1, n}$ is \mathbb{Z}_{h}-barycentric magic.

From Theorem 2.7 and Theorem 3.5 we obtain:
Corollary 3.6. Let $n \geqslant 3$, and $p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$ be the prime factorization of $n-1$. Then $B M\left(K_{1, n}\right)=I M\left(K_{1, n}\right)=\bigcup_{i=1}^{k} p_{i} \mathbb{N}$.

Now consider graphs containing vertices of degree 2 or 3 . Let C_{n} be the cycle of length n. According to the Lemma 2.2, the only possible barycentric magic labeling of C_{n} is one in which all edges have the same label.

Theorem 3.7. C_{n} is A-barycentric magic for every abelian group A and $B M\left(C_{n}\right)=I M\left(C_{n}\right)=\mathbb{N}$.

The chain of cycles $C\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ denotes the graph of k cycles $C_{n_{1}}$, $C_{n_{2}}, \ldots, C_{n_{k}}$ of sizes $n_{1}, n_{2}, \ldots, n_{k}$ such that $C_{n_{i}}$ and $C_{n_{i+1}}$ have a common vertex, for $i=1,2, \ldots, k-1$.

Theorem 3.8. $C\left(n_{1}, n_{2}\right)$ is \mathbb{Z}_{h}-barycentric magic if and only if h is even.

Proof. Let $G=C\left(n_{1}, n_{2}\right)$ be the graph of two cycles $C_{n_{1}}$ and $C_{n_{2}}$ with common vertex v. The degree set of G is $\{2,4\}$, hence it is \mathbb{Z}_{2}-barycentric magic. From Lemma 2.2, all edges of each cycle should have the same label. Suppose that the edges of $C_{n_{1}}$ are labeled with a and those of $C_{n_{2}}$ with b. The requirement of having the same number for the sum of the edges incident to all vertices will provide the equations

$$
2 a \equiv 2 b \quad(\bmod h)
$$

for the vertices of the cycles, and

$$
2 a+2 b \equiv 2 a(\bmod h) \quad \text { or } 2 a+2 b \equiv 2 b(\bmod h)
$$

for the vertex v.
From these equations we get:

$$
2 a \equiv 2 b \equiv 0(\bmod h)
$$

This condition is fulfilled only when h is even, $h=2 m$ and $a=b=m$. Moreover, with this condition, the vertex v verifies that $l^{+}(v)=2 a+2 b=0=$ $\operatorname{deg}(v) a=\operatorname{deg}(v) b$. Therefore $G=C\left(n_{1}, n_{2}\right)$ is \mathbb{Z}_{h}-barycentric magic.

Corollary 3.9. $B M\left(C\left(n_{1}, n_{2}\right)\right)=2 \mathbb{N}$.
The previous result can be easily generalized to the case of k cycles.
Theorem 3.10. $C\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is \mathbb{Z}_{h}-barycentric magic if and only if h is even.

Corollary 3.11. $B M\left(C\left(n_{1}, n_{2}, \ldots, n_{k}\right)\right)=2 \mathbb{N}$.
Remark 3.12. The only \mathbb{Z}_{h}-barycentric magic labeling of $C\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is when h is even and all the edges are labeled with m, where $h=2 m$.

Theorem 3.13. Let $G=C_{n}+e, n>3$, where $e=u v, u$ and v are nonadjacent vertices in C_{n}. Then G is \mathbb{Z}_{h}-barycentric magic if and only if $h=4 k$, $k \in \mathbb{N}$.

Proof. Let $G=C_{n}+e, n>3$ where $e=u v, u$ and v are non-adjacent vertices in C_{n}. Then, the components of $G-\{u, v\}$ are the paths $P_{n_{1}}$ and $P_{n_{2}}$. The degree set of G is $\{2,3\}$, hence it is not \mathbb{Z}_{2}-barycentric magic. From Lemma 2.2, all the edges of $P_{n_{1}}$ (and $P_{n_{2}}$) should have the same label. Moreover, from Lemma 2.3 the edges incident to u and v should have the same label or the labels must be in arithmetic progression.
Suppose that all edges have the same label a, then it must be that $3 a \equiv 2 a$ $(\bmod h)$, this gives $a \equiv 0(\bmod h)$. Hence the labeling of G will have three elements in arithmetic progression, one for $P_{n_{1}}$, another for $P_{n_{2}}$ and the last one for the edge $u v$. This gives the three following cases:
Case 1. We label the graph G as follows. The edges of $P_{n_{1}}$ with a, the edge $u v$ with $a+r$ and the edges of $P_{n_{2}}$ with $a+2 r$. The requirement of having the same number for the sum of the edges incident to all vertices will provide the equations

$$
\begin{array}{r}
2 a \equiv 2 a+4 r \quad(\bmod h), \\
3 a+3 r \equiv 2 a(\bmod h), \\
3 a+3 r \equiv 2 a+4 r(\bmod h)
\end{array}
$$

From these equations we get $a=r$, where $4 r \equiv 0(\bmod h)$. Then the barycentric magic labeling of G is as follows. The edges of $P_{n_{1}}$ are labeled with a, those of $P_{n_{2}}$ with $3 a$ (or vice versa), and the edge $u v$ with $2 a$, where $4 a \equiv 0(\bmod$ $h)$. Observe that if h is odd the condition $4 a \equiv 0(\bmod h)$ implies that $a \equiv 0$ $(\bmod h)$, which is not acceptable. And if $h=4 k+2, k \in \mathbb{N}$, the condition $4 a \equiv 0(\bmod h)$ implies that $a=\frac{h}{2}$, hence $2 a \equiv 0(\bmod h)$ which is not an acceptable answer. Therefore the barycentric magic labeling is obtained only when $h=4 k, k \in \mathbb{N}$.
Case 2. We label the graph G as follows. The edges of $P_{n_{1}}$ with $a+r$, the edge $u v$ with a and the edges of $P_{n_{2}}$ with $a+2 r$. If v_{1} is a vertex of $P_{n_{1}}$, then the sum of the edges incident to v_{1} and the sum of the edges incident to u must be the same. That is $2 a+2 r \equiv 3 a+3 r(\bmod h)$. Hence $a+r \equiv 0(\bmod h)$, but $a+r$ is the label of the edges of $P_{n_{1}}$. Therefore, this labeling is not barycentric magic.
Case 3. We label the graph G as follows. The edges of $P_{n_{1}}$ with $a+r$, the edge $u v$ with $a+2 r$ and the edges of $P_{n_{2}}$ with a. Using similar reasoning to the Case 2 , we obtain again that $a+r \equiv 0(\bmod h)$. Therefore, this labeling is not barycentric magic.
In consequence G is \mathbb{Z}_{h}-barycentric magic if and only if $h=4 k, k \in \mathbb{N}$.
Corollary 3.14. Let $G=C_{n}+e, n>3$ where $e=u v, u$ and v are nonadjacent vertices in C_{n}. Then $B M(G)=4 \mathbb{N}$.

In the previous theorem, if we change the edge $u v$ by a path, then the graph stops being barycentric magic.

Theorem 3.15. Let G be the graph which consists of the cycle C_{n} with a path P_{k} connecting any two non-adjacent vertices u and v of C_{n}. Then G is not \mathbb{Z}_{h}-barycentric magic for any h.
Proof. Let G be the graph C_{n} with a path P_{k} connecting any two non-adjacent vertices u and v of C_{n}. Let $P_{n_{1}}$ and $P_{n_{2}}$ be the two components of $G-P_{k}$. From Theorem 3.13, the only possible barycentric magic labeling of G is as follows. The edges of $P_{n_{1}}$ are labeled with a, those of $P_{n_{2}}$ with $3 a$ (or vice versa), and the edges of P_{k} with $2 a$. Then the vertex sum in P_{k} is $4 a$, and the vertex sum in the others is $6 a$. Hence we get $2 a \equiv 0(\bmod h)$, but $2 a$ is the label of the edges of P_{k}. In consequence, G is not \mathbb{Z}_{h}-barycentric magic.
Corollary 3.16. Let G be the graph which consists of the cycle C_{n} with a path P_{k} connecting any two non-adjacent vertices u and v of C_{n}. Then $B M(G)=\emptyset$.

For two cycles without common vertices joined by an edge or a path we have:
Theorem 3.17. Let G be a graph which consists of two cycles $C_{n_{1}}$ and $C_{n_{2}}$ without common vertices joined by an edge uv with $u \in C_{n_{1}}$ and $v \in C_{n_{2}}$. Then G is not \mathbb{Z}_{h}-barycentric magic for any h.

Proof. Two edges incident to u are in $C_{n_{1}}$, then they must have the same label, say a. Hence, from Lemma 2.3 we have $l(u v)=a$. Therefore $3 a \equiv 2 a(\bmod h)$, that is $a \equiv 0(\bmod h)$, which is not an acceptable answer.

With the same argument of the previous theorem we obtain:
Theorem 3.18. Let G be the graph which consists of two cycles $C_{n_{1}}$ and $C_{n_{2}}$ without common vertices joined by a path P_{k}. Then G is not \mathbb{Z}_{h}-barycentric magic.

Now consider the complete bipartite graph $K_{2,3}$. In [6] Salehi showed that every magic labeling of $K_{2,3}$ induces zero-zum. In the case of barycentric magic labeling, we have:

Theorem 3.19. $K_{2,3}$ is not \mathbb{Z}_{h}-barycentric magic for any h.
Proof. Let $V\left(K_{2,3}\right)=\left\{u_{1}, u_{2}\right\} \cup\left\{v_{1}, v_{2}, v_{3}\right\}$ be the set of vertices of $K_{2,3}$. Then $\operatorname{deg}\left(u_{i}\right)=3$ for $i=1,2$, and $\operatorname{deg}\left(v_{j}\right)=2$ for $j=1,2,3$. From Lemma 2.2 the edges incident to v_{j} must have the same label for each j, and from Lemma 2.3 the edges incident to u_{i} must have the same label or the labels are in arithmetic progression, for each i. We have the following two cases.
Case 1. We label the three edges incident to u_{1} with the same label a. Then the three edges incident to u_{2} must have the same label a (because the edges incident to v_{j} must have the same label). In this case, we have $3 a \equiv 2 a(\bmod$ $h)$, hence $a \equiv 0(\bmod h)$, which is not an acceptable answer.
Case 2. We label $K_{2,3}$ as follows. $l\left(u_{1} v_{1}\right)=a, l\left(u_{1} v_{2}\right)=a+r$ and $l\left(u_{1} v_{3}\right)=$ $a+2 r$ Then, the edges incident to u_{2} must be labeled in the same way, that is, $l\left(u_{2} v_{j}\right)=a+(j-1) r$ for $j=1,2,3$ (because the edges incident to v_{j} must have the same label). From $l^{+}\left(v_{1}\right)=l^{+}\left(v_{2}\right)$ we have $2 a \equiv 2 a+2 r(\bmod h)$ or equivalently $2 r \equiv 0(\bmod h)$. And from $l^{+}\left(u_{1}\right)=l^{+}\left(v_{1}\right)$ we have $3 a+3 r \equiv 2 a$ $(\bmod h)$, or $3 a+r \equiv 2 a(\bmod h)$, that is, $a+r \equiv 0(\bmod h)$, which is not an acceptable answer.
In consequence $K_{2,3}$ is not \mathbb{Z}_{h}-barycentric magic for any h.
Generalizing the previous theorem we have:
Theorem 3.20. For $n \geq 3, K_{2, n}$ is \mathbb{Z}_{h}-barycentric magic if and only if $\operatorname{gcd}(n-$ $2, h) \neq 1$.

Proof. Let $V\left(K_{2, n}\right)=\left\{u_{1}, u_{2}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the set of vertices of $K_{2, n}$. Then $\operatorname{deg}\left(u_{i}\right)=n$ for $i=1,2$, and $\operatorname{deg}\left(v_{j}\right)=2$ for $j=1,2, \ldots, n$. From Lemma 2.2, for each j, the edges incident to v_{j} must have the same label. Suppose that $l\left(u_{1}, v_{j}\right)=a_{j}$ and $l\left(u_{2}, v_{j}\right)=a_{j}$. Then $2 a_{1} \equiv 2 a_{2} \equiv \cdots \equiv 2 a_{n}(\bmod h)$. We have the following two cases.
Case 1. h is odd. In this case, the condition $2 a_{1} \equiv 2 a_{2} \equiv \cdots \equiv 2 a_{n}(\bmod$ $h)$ implies that all edges have the same label, say a. From condition $l^{+}\left(u_{i}\right)=$
$l^{+}\left(v_{j}\right)$ we obtain that $(n-2) a=0(\bmod h)$ and is it not possible when $\operatorname{gcd}(n-$ $2, h)=1$. If $\operatorname{gcd}(n-2, h)=\delta \neq 1$, then the choice $a=\frac{h}{\delta}$ gives a barycentric magic labeling.
Case 2. h is even. In this case, the condition $2 a_{1} \equiv 2 a_{2} \equiv \cdots \equiv 2 a_{n}(\bmod$ $h)$ implies that there are at most two different labels a and $b=a+\frac{h}{2}$, such that $2 a \equiv 2 b(\bmod h)$. We label $K_{2, n}$ as follows. $l\left(u_{1}, v_{j}\right)=a$ for $1 \leq j \leq k$ and $l\left(u_{1}, v_{j}\right)=b$ for $k+1 \leq j \leq n$, for some $1 \leq k \leq n$. Then, from Lemma 2.2 the edges incident to u_{2} must be labeled in the same way. This labeling is barycentric magic if and only if:

$$
\begin{equation*}
k a+(n-k) b \equiv n a \equiv 2 a \equiv 2 b(\bmod h) \tag{3.1}
\end{equation*}
$$

or

$$
\begin{equation*}
k a+(n-k) b \equiv n b \equiv 2 a \equiv 2 b(\bmod h) \tag{3.2}
\end{equation*}
$$

Without loss of generality, we consider only (3.1). The condition $n a \equiv 2 a(\bmod$ $h)$ is satisfied only when $\operatorname{gcd}(n-2, h) \neq 1$. Then suppose that $\operatorname{gcd}(n-2, h)=$ $\delta \neq 1$. Choose $k=\delta, a=\frac{h}{\delta}, b=a+\frac{h}{2}$ and using the fact that $n-\delta$ is always even we get

$$
k a+(n-k) b=\delta \frac{h}{\delta}+(n-\delta)\left(\frac{h}{\delta}+\frac{h}{2}\right) \equiv n a \quad(\bmod h)
$$

and

$$
n a \equiv 2 b \equiv 2 a \quad(\bmod h) .
$$

Therefore $K_{2, n}$ is \mathbb{Z}_{h}-barycentric magic with this labeling. We can also label $K_{2, n}$ as in Case 1.

The following example shows a particular case of the previous theorem.
Example 3.21. Consider the graph $K_{2,11}$ and the group \mathbb{Z}_{12}. Let $V\left(K_{2,11}\right)=$ $\left\{u_{1}, u_{2}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{11}\right\}$ be the set of vertices of $K_{2,11}$. Then $\operatorname{deg}\left(u_{i}\right)=11$ for $i=1,2$, and $\operatorname{deg}\left(v_{j}\right)=2$ for $j=1,2, \ldots, 11$. In this case choose $a=\frac{h}{\delta}=4$ (because $\operatorname{gcd}(n-2, h)=\delta=3), b=a+\frac{h}{2}=10$ and $k=3$. The labeling of $K_{2,11}$ is as follows:

$$
\begin{aligned}
& l\left(u_{i} v_{j}\right)=4 \quad \text { for } i=1,2 \text { and } j=1,2,3 \\
& l\left(u_{i} v_{j}\right)=10 \quad \text { for } i=1,2 \text { and } j=4, \ldots, 11 .
\end{aligned}
$$

Then

$$
\begin{gathered}
l^{+}\left(v_{j}\right)=2 \cdot 4=\operatorname{deg}\left(v_{j}\right) \cdot 4 \equiv 8(\bmod h) \text { for } j=1,2,3 \\
l^{+}\left(v_{j}\right)=2 \cdot 10=\operatorname{deg}\left(v_{j}\right) \cdot 10 \equiv 8(\bmod h) \text { for } j=4, \ldots, 11 \\
l^{+}\left(u_{i}\right)=3 \cdot 4+8 \cdot 10 \equiv 8 \equiv \operatorname{deg}\left(u_{i}\right) \cdot 4(\bmod h) \text { for } i=1,2
\end{gathered}
$$

Note that if we label all edges with $a=\frac{h}{\delta}=4$ we also get a barycentric magic labeling.

References

1. C. Delorme, S. González, O. Ordaz, M.T. Varela, Barycentric Sequences and Barycentric Ramsey Numbers Stars, Discrete Math., 277, (2004), 45-56.
2. C. Delorme, I. Marquez, O. Ordaz, A. Ortuño, Existence Conditions for Barycentric Sequences, Discrete Math., 281, (2004), 163-172.
3. S. González, L. González, O. Ordaz, Barycentric Ramsey Numbers for Small Graphs, Bull. Malays. Math. Sci. Soc. (2), 32(1), (2009), 1-17.
4. S.-M. Lee, E. Salehi, H. Sun, Integer- Magic Spectra of Trees with Diameter at most Four, J. Comb. Math. Comb. Comput., 50, (2004), 3-15.
5. O. Ordaz, D. Quiroz, Barycentric-sum problem: a survey, Divulg. Mat, 8, (2007), 193206.
6. E. Salehi, Zero-Sum Magic Graphs and Their Null Sets, Ars Comb., 82, (2007), 41-53.

[^0]: * Corresponding Author

 Received 24 September 2013; Accepted 20 January 2015
 (c)2015 Academic Center for Education, Culture and Research TMU

