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Abstract. In this paper, by considering the notion of extended BCK-

module, we define the concepts of free extended BCK-module, free object

in category of extended BCK-modules and we state and prove some re-

lated results. Specially, we define the notion of idempotent extended

BCK-module and we get some important results in free extended BCK-

modules. In particular, in category of idempotent extended BCK-modules,

we give a method to make a free object on a nonempty set and in BCK-

algebra of order 2, we give a method to make a basis for unitary extended

BCK-modules. Finally, we define the notions of projective and produc-

tive modules and we investigate the relation between free modules and

projective modules. In special case, we state the relation between free

modules and productive modules.

Keywords: BCK-algebra, Extended BCK-module, Free extended BCK-

module.

2000 Mathematics subject classification: 06F35, 06D99.

1. Introduction

The notion of BCK-algebra was formulated first in 1966 by Imai and Iseki.

This notion is originated from two different ways. One of the motivations
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is based on set theory. Another motivation is from classical and non-classical

propositional calculus. As is well known, there is close relationship between the

notion of the set difference in set theory and the implication functor in logical

systems. Then the following problems arise from this relationship. What is

the most essential and fundamental common properties? Can we establish a

good theory of general algebra? To give answer to these problems, Y. Imai and

K. Iseki introduced a notion of a new class of general algebras, which is called

a BCK-algebra. This name is taken from BCK-system of C. A. Meredith.

BCK-algebras have been applied to many branches of mathematics, such as

group theory, functional analysis, probability theory and topology. The notion

of BCK-module was introduced in [3] as an action of a BCK-algebra over a

commutative group by M. Aslam, A.B .Thaheem and H.A.S. Abujaabal. The

idea was further explored by F. Kopa and C. Vance in [9]. The concept of

BCK-module was extended by R. A. Borzooei, J. Shohani and M. Jafari in [6].

In following, this concept was extended in different way by R. A. Borzooei and

S. Saidi Goraghani in [5]. In groups category and modules category, the study

of free objects is important and interesting. In particular, free modules have

numerous applications in mathematics. Now, since the notions of free module

and projective module are fundamental notions in modules theory, then in this

paper, we introduce and investigate them on BCK-modules. In studying of

BCK-modules, founding a basis for a BCK-module is important. In general,

founding a method to make a free object in category of BCK-modules can be

interesting and important. So we start off this long way and we obtain some

results as mentioned in the abstract.

2. Preliminaries

Definition 2.1. [10] A BCK-algebra is a structure X = (X, ∗, 0) of type (2, 0)

such that:

(BCK1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(BCK2) (x ∗ (x ∗ y)) ∗ y = 0,

(BCK3) x ∗ x = 0,

(BCK4) 0 ∗ x = 0,

(BCK5) x ∗ y = y ∗ x = 0 implies that x = y, for all x, y, z ∈ X.

Let (X, ∗, 0) be a BCK-algebra. The relation x ≤ y, which is defined by

x ∗ y = 0, is a partial order with 0 as the least element. In BCK-algebra X,

for any x, y, z ∈ X, we have

(BCK6) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(BCK7) x ∗ 0 = x.

Moreover, ∅ 6= X0 ⊆ X is called a subalgebra of X, if for any x, y ∈ X0,

x ∗ y ∈ X0, i.e., X0 is closed under the binary operation “ ∗ ” of X. X is called

bounded, if there exists 1 ∈ X such that x ≤ 1, for any x ∈ X and in this case,

we set Nx = 1 ∗ x. X is said to be commutative, if y ∗ (y ∗ x) = x ∗ (x ∗ y), for
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all x, y ∈ X. X is said to be implicative, if x ∗ (y ∗ x) = x, for all x, y ∈ X. In

a BCK-algebra X, we let x ∧ y = y ∗ (y ∗ x) and in a bounded BCK-algebra

X, we let x ∨ y = N(Nx ∧ Ny), for all x, y ∈ X. In bounded commutative

BCK-algebra X, ∨ is the least upper bound and ∧ is the greatest lower bound

of X and so (X,∨,∧) is a bounded lattice. ∅ 6= A ⊆ X is called an ideal of X,

if 0 ∈ A and for any x, y ∈ X, x ∗ y ∈ A and y ∈ A imply that x ∈ A. If X is

commutative and A be a proper ideal of X, then A is called a prime ideal of X,

if a∧b ∈ A implies that a ∈ A or b ∈ A, for any a, b ∈ X. Suppose A is an ideal

of BCK-algebra X. Then we denote x ∼ y if and only if x∗y ∈ A and y∗x ∈ A,

for any x, y ∈ X. So ∼ is an equivalence relation on X. Denote the equivalence

class containing x by Cx and X
A = {Cx : x ∈ X}. Moreover, (XA , ?, C0) is

a BCK-algebra, where C0 = A and Cx ? Cy = Cx∗y, for all x, y ∈ X. The

relation “ ≤ ” which is defined by Cx ≤ Cy if and only if x ∗ y ∈ A, is a partial

order relation on X
A . If X is bounded and commutative, then X

A is bounded

and commutative, too. In addition C1 is unit of X
A . Let (X, ∗, 0) and (Y, ∗′, 0′)

be two BCK-algebras. A mapping f : X → Y is called a homomorphism if

f(0) = 0′ and f(x∗y) = f(x)∗′ f(y), for any x, y ∈ X. If f is one to one (onto),

then f is called monomorphism (epimorphism) and if f is onto and one to one,

then f is called an isomorphism. Let f : X → Y be a BCK-epimorphism.

Then X
Kerf

∼= Y .

Lemma 2.2. [10] Let X be a bounded implicative BCK-algebra . Then for all

x, y, z ∈ X,

(i) x ∧ y = x ∗Ny,

(ii) x ∗ (x ∧ y) = x ∗ y,

(iii) x ∧ (y ∗ z) = (x ∧ y) ∗ (x ∧ z),

(iv) (x ∗ y) + (y ∗ x) = x+ y, where x+ y = (x ∗ y) ∨ (y ∗ x),

(v) (x+ y) ∧ z = (x ∧ z) + (y ∧ z),
(vi) x+ x = 0 and so x = −x,

(vii) x+ 0 = 0 + x = x.

Definition 2.3. [5] Let X be a BCK-algebra, M be an abelian group and

operation . : X ×M −→ M be defined by (x,m) 7→ x.m, which satisfies the

following axioms:

(XM1) (x ∧ y).m = x.(y.m),

(XM2) x.(m+ n) = x.m+ x.n,

(XM3) 0.m = 0,

(XM4) (x ∗ y).m = x.m− y.m, where x ∗ y 6= 0, for x 6= y,

for all x, y ∈ X and m,n ∈M . Then M is called an extended BCK-module or

briefly XE-module. If X is bounded and 1.m = m, for any m ∈M , then M is

called a unitary XE-module.

Proposition 2.4. [5] Let X be a bounded implicative BCK-algebra such that

”≤” is totally ordered and operations ”+,.”: X × X −→ X be defined by
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x + y = (x ∗ y) ∨ (y ∗ x), x.y = x ∧ y, for all x, y ∈ X. Then X is an

XE-module.

Proposition 2.5. [5] Let X be a bounded commutative BCK-algebra such that

X is an XE-module and A be an ideal of X. Then (XA ,+
′) is an abelian group,

where Cx +′ Cy = Cx+y and x+ y = x ∗ y ∨ y ∗ x, for any x, y ∈ X. Moreover,

if operation • : X × X
A −→

X
A is defined by x • Cy = Cx.y, for any x, y ∈ X,

then X
A is an XE-module.

Definition 2.6. [5] A map f : M → N , where M and N are XE-modules, is

called an XE-homomorphism, if the following hold:

(i) f(m+ n) = f(m) + f(n),

(ii) f(x.m) = x.f(m), for all m,n ∈M and x ∈ X.

Theorem 2.7. [5] Let X be a bounded implicative BCK-algebra. Then

(
∏
i∈I X,+

′) is an abelian group, where {xi}i∈I +′ {yi}i∈I = {xi + yi}i∈I , for

any {xi}i∈I , {yi}i∈I ∈
∏
i∈I X. Moreover, if operation

. : X ×
∏
i∈I X −→

∏
i∈I X is defined by x.{xi}i∈I = {x ∧ xi}i∈I , for any

x, xi ∈ X, then
∏
i∈I X is an XE-module.

Definition 2.8. [5] A subgroup N of XE-module M is a submodule of M , if

for any x ∈ X and any n ∈ N , x.n ∈ N . N is called a prime submodule of M ,

if N 6= M and for any x ∈ X, x.m ∈ N implies that m ∈ N or x ∈ (N : M).

Note that, for XE-module M , Y ⊆ X and submodule N of M , we consider

YM = Y.M = {x.m : x ∈ Y,m ∈M}, (N : M) = {x ∈ X : x.M ⊆ N}.

Proposition 2.9. [5] Let M be an XE-module and N be a submodule of M .

Then (N : M) is an ideal of X. Moreover, M
N is an XE-module.

Lemma 2.10. [5] Let X be a commutative BCK-algebra, M be an XE-module,

N be a submodule of M and A be an ideal of X. Then

AM +N = {
∑n
i=1 ti.mi + n : t ∈ A,m ∈M,n ∈ N} is a submodule of M .

Theorem 2.11. [5] Let X be a bounded BCK-algebra, A be a proper ideal of

X and M be an XE-module. Then M
AM is an (XA )E-module.

Theorem 2.12. [5] Let M and M ′ be two XE-modules and φ : M −→M ′ be

an XE-homomorphism. Then M
Kerφ ' Imgφ.

Note. From now on, in this paper, M is an abelian group and X is a

BCK-algebra.

3. Free Extended BCK-Module

Definition 3.1. Let M be an XE-module, ∅ 6= T ⊆M and

M = {
∑
i∈I xi.ti : xi ∈ X, ti ∈ T}. Then we say M is generated by T and we

set M =≺ T �. If |T | <∞, then M is called finitely generated XE-module.
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Example 3.2. (i) Let X = {0, 1, 2} and operation “ ∗ ” is defined by

∗ 0 1 2

0 0 0 0

1 1 0 0

2 2 2 0

Then (X, ∗, 0) is a BCK-algebra. Now, let operation . : X×Z −→ Z be defined

by 2.n = n, 1.n = 0.n = 0, for any n ∈ Z. Then Z is an XE-module. For any

0 6= n ∈ Z, n = 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 2.1 + · · ·+ 2.1 and so Z =≺ 1 �.

(ii) Let M = {0, 1, 2, 3}, X = {0, a} and the operations “ ∗1 ”, “ ∗2 ” be defined

by

∗1 0 1 2 3

0 0 0 0 0

1 1 0 1 0

2 2 2 0 0

3 3 2 1 0

∗2 0 a

0 0 0

a a 0

Then (M, ∗1, 0) is a bounded implicativeBCK-algebra with unit 3 and (X, ∗2, 0)

is aBCK-algebra, too. It is easy to show that (M,+) is an abelian group, where

m+n = (m∗1 n)∨ (n∗1m), for any m,n ∈M . Let operation . : X×M −→M

be defined by a.m = m and 0.m = 0, for any m ∈ M . Then M is an XE-

module. Since 1 = a.1, 2 = a.2 and 3 = a.1 + a.2, M =≺ {1, 2} �.

(iii) Let D = {0, 12 , 1}, X1 = {a, b} and 0, f, I be functions from X1 to D such

that 0(x) = 0, f(x) = 1
2 and I(x) = 1, for any x ∈ X1. We define operation

“∗” by (g ∗h)(x) = g(x)−min{g(x), h(x)}, for any g, h ∈ {0, f, I} = X. Then

it is easy to show that (X, ∗, 0) is a BCK-algebra. Consider the abelian group

A = {m2n : m ∈ Z, n ∈ N ∪ {0}}. Let operation . : X × A −→ A be defined by

g.m2n = g(x)m
2n , for any g ∈ X, m

2n ∈ A. Then A is an XE-module. because, for

any m
2n , m1

2n1
, m2

2n2
∈ A and x ∈ X1,

(XM1): (f ∧ I).m2n = min{f, I}.m2n = f.m2n = f(x)m
2n = m

2n+1 = f.(I.m2n ). Simi-

larly, (g ∧ h).m2n = g.(h. f(x)m2n ), for any g, h ∈ X.

(XM2): g.( m1

2n1
+ m2

2n2
) = g(x)( m1

2n1
+ m2

2n2
) = g(x)m1

2n1
+ g(x)m2

2n2
) = g.m1

2n1
+ g.m2

2n2
,

for any g ∈ X.

(XM3): It is clear.

(XM4): We have I ∗ f 6= 0. Then

(I ∗ f).(
m

2n
) = f.

m

2n
=
f(x)m

2n
=

m

2n+1
=
m

2n
− m

2n+1
=
I(x)m

2n
− f(x)m

2n

= I.
m

2n
− f. m

2n
.

Moreover, we claim that T = {1, 12 ,
1
22 , · · · ,

1
2n , · · · } is a generator for A. Let

m
2n ∈ A, where m ∈ Z and n ∈ N ∪ {0}. We have
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m
2n =

1

2n
+ · · ·+ 1

2n︸ ︷︷ ︸
m time

= I(x). 1
2n + · · ·+ I(x). 1

2n . Then A =≺ T �.

(iv): Let X be the BCK-algebra which is defined in (iii). Consider the abelian

group,

M = {m
2n

+ Z : m ∈ Z, n ∈ N ∪ {0}, where m

2n
+ Z has uniquely represent}.

If operation . : X ×A −→ A is defined by g.m2n + Z = g(x)m
2n + Z, then it is not

difficult to prove that M is an XE-module.

If T = {Z, 12 + Z, 1
22 + Z, · · · , 1

2n + Z, · · · }, then M =≺ T �.

Theorem 3.3. Let X be bounded and commutative and A be an ideal of X. If

X is an XE-module such that X =≺ T �, where T ⊆ X, then
X
A =≺ {Ct : t ∈ T} � as an XE-module.

Proof. By Proposition 2.5, (XA ,+
′) is an XE-module. Let T = {ti : i ∈ I} such

that X =≺ T �. Then for any x ∈ X, x =
∑
i∈I0 xi.ti, where I0 ⊆ I and so

Cx = C∑
i∈I0

xi.ti =
∑
i∈I0 Cxi.ti =

∑
i∈I0 xi • Cti . Hence,

X
A =≺ {Cti : i ∈ I} � . �

Definition 3.4. Let M be an XE-module and ∅ 6= T ⊆M . We say that T is

a basis for M if

(i) M =≺ T �,

(ii) If
∑
i∈I xi.ti = 0, for any xi ∈ X and ti ∈ T , then xi = 0, for any i ∈ I.

(In this case, we say that T is a linearly independent set).

Definition 3.5. Let M be an XE-module. Then M is called a free XE-

module, if M has a nonempty basis. Specially, if M =≺ m �, where m ∈ M ,

then M is a called a cyclic XE-module.

Example 3.6. (i) Let X = {0, x} and operation “ ∗ ” on X be defined by

∗ 0 x

0 0 0

x x 0

Then (X, ∗, 0) is a BCK-algebra. Now, let operation . : X×Z −→ Z is defined

by x.n = n and 0.n = 0, for any n ∈ Z. It is easy to show that Z is an

XE-module. Now, we show that Z is a free XE-module. For any n ∈ Z,

n = 1 + · · · + 1 = x.1 + · · · + x.1. So Z =≺ 1 � on X. Moreover, if t.1 = 0,

then t = 0, for any t ∈ X. Therefore, Z is a free XE-module.

(ii) In Example 3.2 (ii), if x.1 + y.2 = 0, for any x, y ∈ X, then x = y = 0.

Hence, M =≺ {1, 2} � is a free XE-module.

(iii) In Example 3.2 (iii), we have A =≺ T �. If
∑
g. 1

2n = 0, for any g ∈ X
and n ∈ N ∪ {0}, then g = 0. Therefore, A is a free XE-module.
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(iv) In Example 3.2 (iv), T is not a basis for M . Since

I.Z + I.(
1

2
+ Z) + · · ·+ I.(

1

2n
+ Z) + · · · = Z +

1

2
+ Z + · · ·+ 1

2n
+ Z + · · ·

= (1 +
1

2
+ · · ·+ 1

2n
+ · · · ) + Z

= 2 + Z
= Z,

T is not a linearly independent set.

Proposition 3.7. Let X be of order 2. Then every unitary XE-module is a

free XE-module.

Proof. Let X = {0, 1} be a BCK-algebra of order 2. Then X is a bounded

BCK-algebra with unit 1. Let M be a unitary XE-module and

K = {T ⊆ M : T is linear independent}. Since M is a unitary XE-module,

1.a = a 6= 0, for any 0 6= a ∈ M . So {a} is linear independent. It means

that {a} ∈ K and so K 6= ∅. Let Y = {Ti : i ∈ I} be a chain of elements

in K. We claim that U =
⋃
i∈I Ti is an upper bound for Y , with respect to

“ ⊆ ”. Since we have a chain, there exists Tj ∈ K such that U ⊆ Tj and so

U ∈ K. Hence, by Zorn Lemma, K has a maximal element T1. We claim that

M =≺ T1 �. Let M 6=≺ T1 �. Then ≺ T1 �( M and so there exists m ∈ M
such that m /∈≺ T1 �. We show that T1 ∪ {m} is linear independent. Let

x.m+x1.t1 +x2.t2 + · · · = 0, for any x, xi ∈ X and i ∈ I. If x 6= 0, then x = 1.

So m = −(x1.t1 + x2.t2 + · · · ) and so m ∈≺ T1 �, which is a contradiction.

Hence, x = 0 and so T1 ∪ {m} is a linear independent set. Therefore, M is a

free XE-module. �

Theorem 3.8. Let X be of order 2 and M be a unitary XE-module. Then

every W ⊆M such that M =≺W �, contains a basis for M .

Proof. The proof is similar to the proof of Proposition 3.7. �

Lemma 3.9. Let X be bounded and commutative, X be an XE-module and A

be an ideal of X. Then X
A is an (XA )E-module.

Proof. By Proposition 2.5, (XA ,+
′) is an abelian group. Now, let operation

• : XA ×
X
A −→

X
A be defined by Cx • Cy = Cx.y, for any x, y ∈ X. Then it is

easy to prove that X
A is an (XA )E-module. �

Theorem 3.10. Let X be bounded and commutative, P be a prime ideal in

X, t ∈ X − P and X =≺ t � be a free XE-module, where x.y = x∧ y, for any

x, y ∈ X. Then X
P is a free (XP )E-module.

Proof. By Lemma 3.9, X
P is an (XP )E-module. Let Cy ∈ X

P , for any y ∈ X.

Then there exists x ∈ X such that Cy = Cx.t = Cx • Ct and so X
P =≺ Ct �.

Now, let Cx • Ct = C0, for any x ∈ X. Then C0 = Cx • Ct = Cx.t = Cx∧t
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and so by (BCK7), x ∧ t = (x ∧ t) ∗ 0 ∈ P . Since t /∈ P , then x ∈ P and so

Cx = C0. Therefore, {Ct} is a basis for X
P . �

Definition 3.11. Let M be an XE-module such that 2m = m + m = 0, for

any m ∈M . Then M is called an idempotent XE-module.

Example 3.12. (i) In Example 3.2 (ii), M is an idempotent XE-module.

(ii) If bounded implicative BCK-algebra X be totally ordered, then by Propo-

sition 2.4, X is an idempotent XE-module.

(iii) Let X = {0, 1, 2, 3, 4} and the operation ” ∗ ” is defined by

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 0 0

2 2 2 0 2 0

3 3 3 3 0 0

4 4 4 3 2 0

Then (X, ∗, 0) is a bounded BCK-algebra with unit 4. Let Y = {0, 1, 4}
and M = {0, 2, 3, 4}. It is clear that Y is a subalgebra of X and so it is

a BCK-algebra. It is easy to show that (M,+) is an abelian group, where

x + y = (x ∗ y) ∨ (y ∗ x), for any x, y ∈ M . Now, we define the operation

. : Y ×M → M by y.m = y ∧m, for any y ∈ Y and m ∈ M . Then M is an

idempotent Y E-module.

Theorem 3.13. Let X be bounded implicative and totally ordered, operations

“+, .” : X×X −→ X be defined by x+y = (x∗y)∨ (y ∗x), x.y = x∧y, for any

x, y ∈ X and M be an idempotent XE-module. Then M is a free XE-module

if and only if M '
∏
i∈I X, where I is a nonempty set.

Proof. (⇒) Let M =≺ T � be a free idempotent XE-module, where

T = {ti : i ∈ I}. By Theorem 2.7, (
∏
i∈I X,+

′) is an XE-module, where

{xi}i∈I +′ {yi}i∈I = {xi + yi}i∈I and x.{xi}i∈I = {x ∧ xi}i∈I , for any

{xi}i∈I , {yi}i∈I ∈
∏
i∈I X and x ∈ X. We define φ :

∏
i∈I Xi −→ M , by

φ({xi}i∈I) =
∑
i∈I xi.ti, for any ti ∈ T and xi ∈ X. We show that φ is an XE-

homomorphism. It is clear that φ is well defined. Now, since M is idempotent,

x.t−y.t = x.t+y.t, for any x, y ∈ X and t ∈ T . On the other hand, xi∗yi = 0 or
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yi ∗xi = 0, for any i ∈ I. Hence, by (XM4), for any {xi}i∈I , {yi}i∈I ∈
∏
i∈I X,

φ({xi}i∈I +′ {yi}i∈I) = φ({xi + yi}i∈I) =
∑
i∈I

(xi + yi).ti

=
∑
i∈I

(xi ∗ yi ∨ yi ∗ xi).ti

=
∑
j∈J

(xj ∗ yj).tj +
∑
k∈K

(yk ∗ xk).tk

=
∑
j∈J

xj .tj +
∑
j∈J

yj .tj +
∑
k∈K

yk.tk +
∑
k∈K

xk.tk

=
∑
i∈I

xi.ti +
∑
i∈I

yi.ti

= φ({xi}i∈I) + φ({yi}i∈I), where, J ∪K = I.

Moreover, for any x ∈ X, by (XM1) and (XM2),

φ(x.{xi}i∈I) = φ({x ∧ xi}i∈I) =
∑
i∈I

(x ∧ xi).ti =
∑
i∈I

x.(xi.ti) = x.
∑
i∈I

xi.ti

= x.φ({xi}).

Then φ is an XE-homomorphism. It is clear that φ is an epimorphism. Now,

let φ({xi}i∈I) =
∑
i∈I xi.ti = 0. Since T is linear independent, xi = 0, for any

i ∈ I and so Kerφ = {0}. On the other hand, by Theorem 2.12,
∏

i∈I X

Kerφ ' M

and so
∏
i∈I X 'M .

(⇐) Let M '
∏
t∈T X, where T is a nonempty set. We construct a basis for∏

t∈T X. Let θt = {ui}i∈I such that

ui =

{
0 if i 6= t

1 if i = t

We show that K = {θt : t ∈ T} is a basis for
∏
t∈T X. Let {xt}t∈T ∈

∏
t∈T X.

We have

{xi}i∈I = {0, · · · , x1, 0, · · · }+′ {0, · · · , x2, 0, · · · }+′ · · ·
= {0, · · · , x1 ∧ 1, 0, · · · }+′ {0, · · · , x2 ∧ 1, 0, · · · }+′ · · ·
= x1.{0, · · · , 1, · · · }+′ x2.{0, · · · , 1, 0, · · · }+′ · · ·
= x1.θt1 +′ x2.θt2 +′ · · ·

Then
∏
t∈T X =≺ K �. Now, let

∑
i∈I xi.θti = 0. Then

0 =
∑
i∈I

xi.θti = x1.{0, 0, · · · , 1, 0, · · · }+′ x2.{0, 0, · · · , 1, 0, · · · }+′ · · ·

= {0, · · · , x1 ∧ 1, 0, · · · }+′ {0, · · · , x2 ∧ 1, 0, · · · }+′ · · ·
= {0, · · ·x1, 0, · · · }+′ {0, · · · , x2, 0, · · · }+′ · · ·
= {xi}i∈I
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Hence, xi = 0, for any i ∈ I and so K is a basis for
∏
t∈T X. Finally, let

ϕ :
∏
t∈T X −→M be an XE-isomorphism. Then ϕ(K) is a basis for M . �

Definition 3.14. Let Y be a nonempty set, F be an XE-module and i : Y −→
F be a map. If for any mapping f : Y −→ A, where A is an XE-module, there

exists a unique XE-homomorphism f̄ : F −→ A such that f̄ ◦ i = f , then F is

called a free object on Y .

Proposition 3.15. Let F1 and F2 be two XE-modules and F1 and F2 be two

free objects on Y1 and Y2, respectively. If |Y1| = |Y2|, then F1 w F2.

Proof. The proof is straitforward. �

Theorem 3.16. By assumptions of Theorem 3.13, every free object in the

category of idempotent XE-modules is isomorphic with
∏
i∈I X, where I is

a nonempty set. (In this category, objects are idempotent XE-modules and

morphisms are XE-homomorphisms.)

Proof. Let F be a free object on T , where T is a nonempty set. Similar to the

proof of Theorem 3.13, K = {θt : t ∈ T} is a basis for
∏
t∈T X, as an XE-

module. We show that
∏
t∈T X is a free object on K. Let G be an idempotent

XE-module and i : K −→
∏
t∈T X, f : K −→ G be two maps. We define

h :
∏
t∈T X −→ G by h(

∑
t∈T yt.θt) =

∑
t∈T yt.f(θt), where yt ∈ X, for any

t ∈ T . Let
∑
t∈T yt.θt =

∑
t∈T y

′
t.θt, for any yt, y

′
t ∈ X. So {yt}t∈T = {y′t}t∈T

and so
∑
t∈T yt.f(θt) =

∑
t∈T y

′
t.f(θt). It means that h is well defined. Since

(X,≤) is totally ordered, yt ∗ y′t = 0 or y′t ∗ yt = 0, for any yt, y
′
t ∈ X. Also,

since G is idempotent, for any
∑
t∈T yt.θt,

∑
t∈T y

′
t.θt ∈

∏
t∈T X, by (XM4),

h(
∑
t∈T

yt.θt +′
∑
t∈T

y′t.θt) = h(
∑
j∈J

(yj ∗ y′j).θj +′
∑
k∈K

(y′k ∗ yk).θk)

=
∑
j∈J

(yj ∗ y′j).f(θj) +′
∑
k∈K

(y′k ∗ yk).f(θk)

=
∑
j∈J

yj .f(θj) +′
∑
j∈J

y′j .f(θj)

+′
∑
k∈K

y′k.f(θk) +′
∑
k∈K

yk.f(θk)

=
∑
t∈T

yt.f(θt) +′
∑
t∈T

y′t.f(θt)

= h(
∑
t∈T

yt.θt) +′ h(
∑
t∈T

y′t.θt),
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where T = J ∪K. Now, for any x ∈ X, by (XM1) and (XM2),

h(x.
∑
t∈T

yt.θt) = h(
∑
t∈T

x.(yt.θt)) = h(
∑
t∈T

(x ∧ yt).θt)

=
∑
t∈T

(x ∧ yt).f(θt) =
∑
t∈T

x.(yt.f(θt))

= x.
∑
t∈T

yt.f(θt) = x.h(
∑
t∈T

yt.θt).

Then h is an XE-homomorphism. On the other hand, by definition h,

h ◦ i(θt) = h(θt) = f(θt), for any t ∈ T . It is easy to show that h is a unique

XE-homomorphism. Hence,
∏
t∈T X is a free object on K. Since |K| = |T |,

then by Proposition 3.15,
∏
t∈T X ' F . �

Notation: If X is totally ordered and bounded implicative, then by the

proof of Theorem 3.13, we obtain a method to make a free object on a nonempty

set in the category of idempotent XE-modules. If A is a nonempty set, then

K = {θa : a ∈ A} is a basis for
∏
a∈AX. By Theorem 3.16,

∏
a∈AX is a free

object on K.

Theorem 3.17. By assumptions of Theorem 3.13, every XE-module in the

category of idempotent XE-modules is homomorphic image of a free XE-module.

Proof. Let M be an idempotent XE-module such that M =≺ A �, where A is

a nonempty set. By the above notation,
∏
a∈AX is a free object on

K = {θa : a ∈ A}. Then there exists a unique XE-homomorphism φ :∏
a∈AX −→ M such that φ ◦ i = f , where i : K −→

∏
a∈AX is an inclu-

sion map and f : K −→ M is defined by f(θa) = a. Now, let m ∈ M . We

have

m =
∑
i∈I

xi.ai =
∑
i∈I

xi.f(θai) =
∑
i∈I

xi.φ ◦ i(θai) =
∑
i∈I

xi.φ(θai)

=
∑
i∈I

φ(xi.θai) = φ(
∑
i∈I

xi.θai),

where xi ∈ X, for any i ∈ I. Therefore, φ is an XE-epimorphism. �

Lemma 3.18. Let M and N be two XE-modules. Then

M ×N = {(m,n) : m ∈M,n ∈ N} is an XE-module.

Proof. Let • : X × (M,N) −→ (M,N) is defined by x • (m,n) = (x.m, x.n),

for any m ∈ M , n ∈ N and x ∈ X. It is easy to show that M × N is an

XE-module. �

Theorem 3.19. Let M and N be free XE-modules. Then M × N is a free

XE-module.
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Proof. Let M =≺ T � and N =≺ K �, where T = {ti : i ∈ I} and

K = {kj : j ∈ J} are basises of M , N , respectively. It is easy to show that

M ×N =≺ {(ti, 0) : i ∈ I} ∪ {(0, kj) : j ∈ J} � is a free XE-module. �

Theorem 3.20. Let X be bounded and implicative, A be a proper ideal of X

and M be a free XE-module with basis Y . Then M
AM is a free (XA )E-module.

Moreover, the cardinality of Y is equal to cardinality of the basis of M
AM .

Proof. By Lemma 2.11, M
AM is an (XA )E-module. Let β : M → M

AM be canonical

epimorphism. We show that M
AM is a free (XA )E-module by basis β(Y ). For

any m+AM ∈ M
AM , there exists x1, · · · , xn ∈ X such that

m+AM =

n∑
i=1

xi.yi +AM = (x1.y1 +AM) + · · ·+ (xn.yn +AM)

= Cx1 • (y1 +AM) + · · ·+ Cxn • (yn +AM)

= Cx1
• (β(y1)) + · · ·+ Cxn

• (β(yn)).

Then M
AM =≺ β(Y ) � . Now, let

∑n
i=1 Cxi

• (yi + AM) = AM . Hence,∑n
i=1 xi.yi +AM = AM and so

∑n
i=1 xi.yi ∈ AM . This means that∑n

i=1 xi.yi =
∑m
i=1 si.mi, where si ∈ A,mi ∈ M,m ∈ Z, 1 ≤ i ≤ m. For any

mi ∈M , we have mi =
∑li
j=1 tij .yj , where tij ∈ X, 1 ≤ j ≤ n, li ∈ Z. Then

n∑
i=1

xi.yi =

m∑
i=1

si.Σ
li
j=1tij .yj

= s1.Σ
l1
j=1t1j .yj + · · ·+ sm.Σ

lm
j=1tmj .yj

=

l1∑
j=1

s1.(t1j .yj) + · · ·+
lm∑
j=1

sm.(tmj .yj)

=

l1∑
j=1

(s1 ∧ t1j).yj + · · ·+
lm∑
j=1

(sm ∧ tmj).yj .

Therefore,
∑n
i=1 xi.yi − (

∑l1
j=1(s1 ∧ t1j).yj + · · ·+

∑lm
j=1(sm ∧ tmj).yj) = 0.

If y1 be only in the first summation, then we have x1 = 0 and so Cx1
= C0 = A

and similarly for other xi, where 1 ≤ i ≤ n. If y1 be in two summation, then

x1.y1−(s1∧t11).y1+· · · = 0. If x1∗(s1∧t11) 6= 0, where x1 6= (s1∧t11), then by

(XM4), (x1 ∗ (s1 ∧ t11)).y1 + · · · = 0. Since Y is a basis of M, x1 ∗ (s1 ∧ t11) =

0, which is a contradiction. Hence, x1 ∗ (s1 ∧ t11) = 0. By lemma 2.2 (i),

x1 ∗ (s1 ∗Nt11) = 0. It results that Cx1
? (Cs1 ? CNt11) = Cx1∗(s1∗Nt11 )

= C0.

Since Cs1 = C0, C0 = Cx1 ? (Cs1 ? C1∗t11) = Cx1 ? C0∗1∗t11 = Cx1∗0 = Cx1

and so Cx1
= C0 = A. Similarly, Cxi

= A, for any 1 ≤ i ≤ n. Therefore,

β(Y ) is a basis of M
AM . Now, we show that |β(Y )| = |Y |. We define φ :

Y → β(Y ) by φ(y) = β(y). It is clear that φ is well defined and onto. Let

β(y) = β(z), for some y, z ∈ Y and y 6= z. Hence, C1 • β(y) = C1 • β(z) and so
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C1 • β(y)− C1 • β(z) = AM . Since β(Y ) is a basis of M
AM , C1 = C0, which is

a contradiction. Therefore, φ is one to one and |φ(Y )| = |Y |. �

Theorem 3.21. Let f : X → Y be an epimorphism of bounded implicative

BCK-algebras, Y 6= {0} and every two basises of any Y E-module have equal

cardinality. Then every two basises of any XE-module have equal cardinality,

too.

Proof. Let M be an arbitrary free XE-module with basises K and U . We

must show that |K| = |U |. Let A = Kerf . If A = X, then f(X) = 0.

Since f is an epimorphism, f(X) = {0} = Y , which is a contradiction and so

A 6= X. By Theorem 3.20, M
AM is a free (XA )E-module with basis of β(K) such

that |β(K)| = |K| and M
AM is a free (XA )E-module with basis of β(U) such

that |β(U)| = |U |. Since Y ' X
A , M

AM is a free Y E-module. It results that

|β(K)| = |β(U)| and so |K| = |U |. �

4. Productive and Projective XE-Module

Definition 4.1. Let M be an XE-module. If for any submodule N of M ,

there exists an ideal A of X such that N = AM , then M is called a productive

XE-module.

Theorem 4.2. Let X be commutative. Then every cyclic XE-module is a

productive XE-module.

Proof. Since M is a cyclic XE-module, there exists m ∈M such that

M =≺ m �. Let N be a submodule of M . By Proposition 2.9, (N : M) is

an ideal of X and by Lemma 2.10, (N : M)M is a submodule of M . We show

that N = (N : M)M . It is clear that (N : M)M ⊆ N . Now, let n ∈ N . Then

there exists x ∈ X such that n = x.m. Since

x.M = x. ≺ m �= {x.(xi.m) : xi ∈ X} = {(x ∧ xi).m : xi ∈ X}
= {xi.(x.m) : xi ∈ X} = {xi.n : xi ∈ X} ⊆ N,

x ∈ (N : M) and so n ∈ (N : M)M . Hence, N ⊆ (N : M)M . Therefore,

N = (N : M)M . �

Definition 4.3. Let A,B, P be three XE-modules. Then P is called a projec-

tiveXE-module if for anyXE-homomorphism g : P → B andXE-epimorphism

f : A→ B, there exists XE-homomorphism h : P → A such that f ◦ h = g.

Theorem 4.4. Let M be an idempotent XE-module with basis ∅ 6= Y and for

any x, y ∈ X and 0 6= x, x ∗ y = 0 implies that x = y. Then M is a free object

on Y . Moreover, if M is free XE-module, then M is a projective XE-module.

Proof. Let i : Y → M be a map. We will show that for any mapping f :

Y → G, where G is an idempotent XE-module, there exists a unique XE-

homomorphism h : M → G such that h ◦ i = f . We have
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M = {
∑
i∈I xi.yi : xi ∈ X, yi ∈ Y, i ∈ I}. We define

h(
∑
i∈I xi.yi) =

∑
i∈I xi.f(yi). Let

∑
i∈I xi.yi =

∑
i∈I x

′
i.yi, where xi, x

′
i ∈ X.

Hence, x1.y1 − x′1.y1 + x2.y2 − x′2.y2 + · · · = 0. If xi ∗ x′i 6= 0, where xi 6= x′i,

then by (XM4), we have (x1 ∗x′1).y1 + (x2 ∗x′2).y2 + · · · = 0. Since Y is a basis

of M, xi ∗ x′i = 0, which is a contradiction. So xi ∗ x′i = 0 and so xi = x′i, for

any i ∈ I. It results that h is well defined. Now,

h(
∑
i∈I

xi.yi +
∑
i∈I

x′i.yi) = x1.f(y1) + x′1.f(y1) + x2.f(y2) + x′2.f(y2) + · · ·

=
∑
i∈I

xi.f(yi) +
∑
i∈I

x′i.f(yi)

= h(
∑
i∈I

xi.yi) + h(
∑
i∈I

x′i.yi),

where, xi, x
′
i ∈ X and i ∈ I. On the other hand, for any x ∈ X, by (XM1),

(XM2), we have

h(x.
∑
i∈I

xi.yi) = h(
∑
i∈I

x.(xi.yi)) = h(
∑
i∈I

(x ∧ xi).yi) =
∑
i∈I

(x ∧ xi).f(yi)

=
∑
i∈I

x.(xi.f(yi)) = x.
∑
i∈I

xi.f(yi) = x.h(
∑
i∈I

xi.yi).

Then h is an XE-homomorphism. By definition h, h ◦ i(y) = h(y) = f(y) for

any y ∈ Y and so h ◦ i = f . Finally, h is unique, because if there exists an

XE-homomorphism h′ : M → G such that h′ ◦ i = f , then we have

h′(y) = h′ ◦ i(y) = f(y) = h ◦ i(y) = h(y), for any y ∈ Y . Therefore, M is a

free object on Y .

Now, we prove that the second part of theorem. Let M be a free XE-module

with basis Y , f : A → B be an XE-epimorphism and g : M → B be an XE-

homomorphism. Let y ∈ Y . Then i(y) ∈ M , where i : Y → M is inclusion

map. It results that g(i(y)) ∈ B. Since f is an XE-epimorphism, there exists

ay ∈ A such that f(ay) = g(i(y)). Since choosing θ is at the discretion of

us, W. O. L. G, suppose that ay is unique. Hence, we can define θ : Y → A

by θ(y) = ay. Since M is a free object on Y , there exists h : M → A such

that h ◦ i = θ. It is easy to show that f ◦ h ◦ i(y) = f(ay) = g ◦ i(y) and so

f ◦ h ◦ i = g ◦ i : Y → B. Since M is a free object on Y , f ◦ h = g. �
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