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Abstract. Let M be an orientable hypersurface in the Euclidean space

R2n with induced metric g and TM be its tangent bundle. It is known

that the tangent bundle TM has induced metric g as submanifold of the

Euclidean space R4n which is not a natural metric in the sense that the

submersion π : (TM, g) → (M, g) is not the Riemannian submersion. In

this paper, we use the fact that R4n is the tangent bundle of the Eu-

clidean space R2n to define a special complex structure J on the tangent

bundle R4n so that (R4n, J ,〈, 〉) is a Kaehler manifold, where 〈, 〉 is the

Euclidean metric which is also the Sasaki metric of the tangent bundle

R4n. We study the structure induced on the tangent bundle (TM, g)

of the hypersurface M , which is a submanifold of the Kaehler manifold

(R4n, J ,〈, 〉). We show that the tangent bundle TM is a CR-submanifold

of the Kaehler manifold (R4n, J ,〈, 〉). We find conditions under which

certain special vector fields on the tangent bundle (TM, g) are Killing

vector fields. It is also shown that the tangent bundle TS2n−1 of the

unit sphere S2n−1 admits a Riemannian metric g and that there exists a

nontrivial Killing vector field on the tangent bundle (TS2n−1, g).
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1. Introduction

Recently efforts are made to study the geometry of the tangent bundle of a

hypersurface M in the Euclidean space Rn+1 ( cf. [3]), where the authors have

shown that the induced metric on its tangent bundle TM as submanifold of

the Euclidean space R2n+2 is not a natural metric. In [4], we have extended

the study initiated in [3] on the geometry of the tangent bundle TM of an

immersed orientable hypersurface M in the Euclidean space Rn+1. It is well

known that Killing vector fields play an important role in shaping the geometry

of a Riemannian manifold, for instance the presence of nonzero Killing vector

field on a compact Riemannian manifold forces its Ricci curvature to be non-

negative and this in particular implies that on a compact Riemannian manifolds

of negative Ricci curvature there does not exist a nonzero Killing vector field.

The study of Killing vector fields becomes more interesting on the tangent

bundle TM of a Riemannian manifold (M, g) as the tangent bundle TM is

noncompact. It is known that if the tangent bundle TM of a Riemannian

manifold (M, g) is equipped with Sasaki metric, then the verticle lift of a parallel

vector field on M is a Killing vector field (cf. [15]). However if the Sasaki metric

is replaced by the Cheeger-Gromoll metric, then the vertical lift of any nonzero

vector field on M is never Killing (cf. [14]). Note that both Sasaki metric as well

as Cheeger-Gromoll metrics are natural metrics. We consider an orientable real

hypersurface M of the Euclidean space R2n with the induced metric g. Then

as the tangent bundle TM of M is a submanifold of codimension two in R4n,

it has induced metric g and this metric g on TM is not a natural metric as

the submersion π : (TM, g) → (M, g) is not the Riemannian submersion (cf.

[3]). Let N be the unit normal vector field to the hypersurface M and J be

the natural complex structure on the Euclidean space R2n. Then we have a

globally defined unit vector field ξ on the hypersurface given by ξ = −JN called

the characteristic vector field of the real hypersurface (cf. [1, 2, 5, 6, 7, 8, 9]),

and this vector field ξ gives rise to two vector fields ξh (the horizontal lift)

and ξv (the vertical lift) on the tangent bundle (TM, g). In this paper, we

use the fact that R4n is the tangent bundle of the Euclidean space R2n and

that the projection π : R4n → R2n is a Riemannian submersion, to define

a special almost complex structure J on the tangent bundle R4n which is

different from the canonical complex structure of the Euclidean space R4n and

show that (R4n, J ,〈, 〉) is a Kaehler manifold, where 〈, 〉 is the Euclidean metric

on R4n. It is shown that the codimension two submanifold (TM, g) of the

Kaehler manifold (R4n, J ,〈, 〉) is a CR-submanifold (cf. [10]) and it naturally

inherits certain special vector fields other than ξh and ξv, and in this paper we

are interested in finding conditions under which these special vector fields are

Killing vector fields on (TM, g). One of the interesting outcome of this study

is, we have shown that the tangent bundle TS2n−1 of the unit sphere S2n−1 as
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Tangent Bundle of the Hypersurfaces in a Euclidean Space 15

submanifold of R4n admits a nontrivial Killing vector field. It is worth pointing

out that on the tangent bundle TS2n−1 with Sasakian metric no vertical or

horizontal lift of a vector field is Killing as this will require the corresponding

vector field on S2n−1 is parallel which is impossible as S2n−1 is space of constant

curvature 1. Note that on even dimensional Riemannian manifolds which are

irreducible, it is difficult to find Killing vector fields, where as on products like

S2k−1×S2l−1, S2k−1×R2l−1, R2k−1×R2l−1 one can easily find Killing vector

fields. Since the tangent bundle TS2n−1 is trivial for n = 1, 2, 4, finding Killing

vector fields is easy in these dimensions, but for n ≥ 5, it is not trivial.

2. Preliminaries

Let (M, g) be a Riemannian manifold and TM be its tangent bundle with

projection map π : TM −→M . Then for each (p, u) ∈ TM , the tangent space

T(p,u)TM = H(p.u)⊕V(p,u), where V(p,u) is the kernel of dπ(p,u):T(p,u)(TM) −→
TpM and H(p.u) is the kernel of the connection map K(p,u) : T(p,u)(TM) −→
TpM with respect to the Riemannian connection on (M, g). The subspaces

H(p.u),V(p,u) are called the horizontal and vertical subspaces respectively. Con-

sequently, the Lie algebra of smooth vector fields X(TM) on the tangent bundle

TM admits the decomposition X(TM) = H⊕V where H is called the horizon-

tal distribution and V is called the vertical distribution on the tangent bundle

TM . For each Xp ∈ TpM , the horizontal lift of Xp to a point z = (p, u) ∈ TM
is the unique vector Xh

z ∈ Hz such that dπ(Xh
z ) = Xp ◦ π and the vertical

lift of Xp to a point z = (p, u) ∈ TM is the unique vector Xv
z ∈ Vz such that

Xv
z (df) = Xp(f) for all functions f ∈ C∞(M), where df is the function defined

by (df)(p, u) = u(f). Also for a vector field X ∈ X(M), the horizontal lift of X

is a vector field Xh ∈ X(TM) whose value at a point (p, u) is the horizontal lift

of X(p) to (p, u) , the vertical lift Xv of X is defined similarly. For X ∈ X(M)

the horizontal and vertical lifts Xh, Xv of X are uniquely determined vector

fields on TM satisfying

dπ(Xh
z ) = Xπ(z),K(Xh

z ) = 0, dπ(Xv
z ) = 0,K(Xv

z ) = Xπ(z)

Also, we have for a smooth function f ∈ C∞(M) and vector fields X,Y ∈
X(M), that (fX)h = (f ◦ π)Xh, (fX)v = (f ◦ π)Xv, (X + Y )h = Xh + Y h

and (X + Y )v = Xv + Y v. If dimM = m and (U,ϕ) is a chart on M with

local coordinates x1, x2, . . . , xm, then (π−1(U), ϕ) is a chart on TM with lo-

cal coordinates x1, x2, . . . , xm, y1, y2, . . . , ym, where xi = xi ◦ π and yi = dxi,

i = 1, 2, . . . ,m.

A Riemannian metric g on the tangent bundle TM is said to be natural met-

ric with respect to g on M if g(p,u)(X
h, Y h) = gp(X,Y ) and g(p,u)(X

h, Y v) = 0,

for all vectors fields X,Y ∈ X(M) and (p, u) ∈ TM , that is the projection map

π : TM −→M is a Riemannian submersion.
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Let M be an orientable hypersurface of the Euclidean space R2n with im-

mersion f : M −→ R2n and TM be its tangent bundle. Then as F = df :

TM −→ R4n = TR2n is also an immersion, TM is an immersed submanifold

of the Euclidean space R4n. We denote the induced metrics on M, TM by

g, g respectively and the Euclidean metric on R2n as well as on R4n by 〈, 〉.
Also, we denote by ∇,∇, D and D the Riemannian connections on M , TM ,

R2n, and R4n respectively. Let N and S be the unit normal vector field and

the shape operator of the hypersurface M . For the hypersurface M of the

Euclidean space R2n we have the following Gauss and Weingarten formulae

DXY = ∇XY + 〈S(X), Y 〉N , DXN = −S(X), X,Y ∈ X(M) (2.1)

where S is the shape operator (Weingarten map). Similarly for the submanifold

TM of the Euclidean space R4n we have the Gauss and Weingarten formulae

DEF = ∇EF + h(E,F ), DEN = −S̄N (E) +∇⊥EN (2.2)

where E,F ∈ X(TM), ∇⊥ is the connection in the normal bundle of TM and

S̄N denotes the Weingarten map in the direction of the normal N and is related

to the second fundamental form h by〈
h(X,Y ), N

〉
= g(S̄N (X), Y ) (2.3)

Also we observe that for X ∈ X(M) the vertical lift Xv of X to TM ,

as Xv ∈ ker dπ, where π : TM → M is the natural submersion, we have

dπ(Xv) = 0 that is df( dπ(Xv)) = 0 or equivalently we get d(f ◦ π)(Xv) = 0,

that is d(π̃◦F )(Xv) = 0 (π : TR2n → R2n), which gives dF (Xv) ∈ ker dπ̃ = V̄.

Now we state the following results which are needed in our work.

Lemma 2.1. [3] Let N be the unit normal vector field to the hypersurface M

of R2n and P = (p,Xp) ∈ TM . Then the horizontal and vertical lifts Y hP , Y cP
of Yp ∈ TpM satisfy

dFP (Y hP ) = (dfp(Yp))
h + VP , dFP (Y vP ) = (dfp(Yp))

v

where VP ∈ VP is given by VP = 〈Sp(Xp), Yp〉Nv
P , Nv

P being the vertical lift

of the unit normal N to with respect to the tangent bundle π : R4n → R2n.

Lemma 2.2. [3] If (M, g) is an orientable hypersurface of R2n, and (TM, g)

is its tangent bundle as submanifold of R4n, then the metric g on TM for

P = (p, u) ∈ TM , satisfies:

(i) gP (Xh
P , Y

h
P ) = gp(Xp, Yp) + gp(Sp(Xp), u)gp(Sp(Yp), u).

(ii) gP (Xh
P , Y

v
P ) = 0.

(ii) g(Xv, Y v) = gp(Xp, Yp).

Remark 2.3. It is well known that a metric g defined on TM using the Rie-

mannian metric g of M (such as Sasaki metric, Cheeger-Gromoll metric) are
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Tangent Bundle of the Hypersurfaces in a Euclidean Space 17

natural metrics in the sense that the submersion π : (TM, g) −→ (M, g) be-

comes a Riemannian submersion with respect to these metrics. However, as

seen from above Lemmas, the induced metric on the tangent bundle TM of a

hypersurface M of the Euclidean space R2n, as a submanifold of R4n is not a

natural metric because of the present of the term gp(Sp(Xp), u)gp(Sp(Yp), u) in

the inner product of horizontal vectors on TM . Moreover, note that the for an

orientable hypersurface M of the Euclidean space R2n, the vertical lift Nv of

the unit normal is tangential to the submanifold TM of R4n as seen in 2.1

In what follows, we drop the suffixes like in gp(Sp(Xp), u) and and it will be

understood from the context of the entities appearing in the equations.

Theorem 2.4. [3] Let (M, g) be an orientable hypersurface of R2n, and (TM, g)

be its tangent bundle as submanifold of R4n. If ∇ and ∇ denote the Riemann-

ian connections on (M, g) and (TM, g) respectively, then

(i) ∇XhY h = (∇XY )h − 1
2 (R(X,Y )u)v,

(ii) ∇XvY h = g(S(X), Y ) ◦ πNv

(iii) ∇XvY v = 0, (iv) ∇XhY v = (∇XY )v + g(S(X), Y ) ◦ π Nv.

Lemma 2.5. [4] Let TM be the tangent bundle of an orientable hypersurface

M of R2n. Then for X,Y ∈ X(M),

(i) h(Xv, Y v) = 0,

(ii) h(Xv, Y h) = 0,

(iii) h(Xh, Y h) = g(S(X), Y ) ◦ π Nh.

Lemma 2.6. [4] For the tangent bundle TM of an orientable hypersurface M

of R2n and X ∈ X(M), we have

(i) DXvNv = 0,

(ii) DXvNh = 0,

(iii) DXhNv = −(S(X))v, (iv) DXhNh = −(S(X))h.

Let J be the natural complex structure on the Euclidean space R2n, which

makes (R2n, J, 〈, 〉) a Kaehler manifold. Then on an orientable real hypersurface

M of R2n with unit normal N , we define a unit vector field ξ ∈ X(M) by

ξ = −JN , with its dual 1-form η(X) = g(X, ξ), where g is the induced metric

on M . For X ∈ X(M), we express JX = ϕ(X) + η(X)N , where ϕ(X) is the

tangential component of JX, and it follows that ϕ is a (1, 1) tensor field on M ,

and that (ϕ, ξ, η, g) defines an almost contact metric structure on M (cf. [5],

[8], [9]), that is

ϕ2X = −X + η(X)ξ, η(ξ) = 1, η ◦ ϕ = 0, ϕ(ξ) = 0

and

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), X,Y ∈ X(M)

Moreover, we have the following.
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Lemma 2.7. [8] Let M be an orientable real hypersurface of R2n. Then the

structure (ϕ, ξ, η, g) on M satisfies

(i) (∇Xϕ)(Y ) = η(Y )SX − g(SX, Y )ξ,

(ii) ∇Xξ = ϕSX, X,Y ∈ X(M).

3. A Structure on (TM, g)

We know that the Euclidean space R4n has many complex structures, how-

ever in this section we treat R4n as the tangent bundle of R2n and consider

a specific complex structure on the Euclidean space R4n. Let π : R4n =

TR2n → R2n be the submersion of the tangent bundle of R2n. Then it is easy

to show that the Euclidean metric 〈, 〉 on the tangent bundle R4n is Sasaki

metric and using the canonical almost complex structure J of R2n, we define

J : X(R4n)→ X(R4n) by

J(Eh) = (JE)h, J(Ev) = (JE)v, E ∈ X(R2n)

and it is easily follows that J is an almost complex structure, satisfying〈
JE, JF

〉
= 〈E,F 〉 with respect to the Euclidean metric 〈, 〉 on R4n and that

(DEJ)(F ) = 0, E,F ∈ X(R4n) that is (R4n, J, 〈, 〉) is a Kaehler manifold.

Regarding the complex structure J defined above, we have the following

Lemma 3.1. Let π : R4n → R2n be the submersion of the tangent bundle

R4n = TR2n. Then complex structure J on R4n satisfies

J ◦ dπ = dπ ◦ J

Proof. Take X ∈ X(R2n), then for the horizontal lift Xh, we have:

J ◦ dπ(Xh) = J(dπ(Xh)) = JX ◦ π

and

dπ ◦ J(Xh) = dπ(JX)h = JX ◦ π
which proves

J ◦ dπ(Xh) = dπ ◦ J(Xh)

Similarly for the vertical lift Xvwe have

J ◦ dπ(Xv) = J(dπ(Xv)) = 0

and

dπ ◦ J(Xv) = dπ(JX)v = 0

This proves the Lemma. �

Remark 3.2. If M is an orientable real hypersurface of the Euclidean space

R2n with immersion f , then F = df is the immersion of the tangent bundle

TM into the Euclidean space R4n and as immersions are local embeddings,

in general, we identify the local quantities on submanifold with those of the

ambient space for instance we identify df(X) with X for X ∈ X(M). However,
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while dealing with the immersion F of TM in R4n one need to be cautious

specially while dealing with the horizontal lifts (cf. 2.1). Therefore in what

follows, we shall bring dF in to play whenever it is needed specially in the case

of horizontal lifts.

Observe that if M is an orientable real hypersurface of the Euclidean space

R2n with unit normal vector field N , then we know that horizontal lift Nh is

a unit normal vector field to the submanifold TM of R4n and that the vertical

lift Nv ∈ X(TM) (cf.[1]). We have

JNh = (JN)h = −(df(ξ))h = −dF (ξh) + g(S(ξ), u)Nv ∈ X(TM) (3.1)

and

JNv = (JN)v = −ξv ∈ X(TM) (3.2)

LetM be an orientable real hypersurface of the Kaehler manifold (R2n, J, 〈, 〉).
Then as TM is submanifold of the Kaehler manifold (R4n, J, 〈, 〉), we denote

by Γ(T⊥TM) the space of smooth normal vector fields to TM . The restriction

of the complex structure J on R4n to X(TM) and Γ(T⊥TM) can be expressed

as

J(E) = ϕ(E) + ψ(E), J(N) = G(N) + χ(N), E ∈ X(TM), N ∈ Γ(T⊥TM)

where ϕ(E), G(N) are the tangential and ψ(E), χ(N) are the normal compo-

nents of JE, and J(N) respectively. Note that the horizontal lift Nh of the unit

normal N to the hypersurface M is normal to TM that is Nh ∈ Γ(T⊥TM),

where as the vertical lift Nv ∈ X(TM).

Lemma 3.3. Let TM be the tangent bundle of an orientable real hypersurface

of R2n. Then for X ∈ X(M),

ϕ(Xh) = (ϕ(X))h − g(S(X), u)ξv, ϕ(Xv) = (ϕ(X))v + η(X) ◦ πNv

ψ(Xh) = η(X) ◦ πNh, ψ(Xv) = 0

Proof. Note that for the horizontal lift Xh we have

JXh = JdF (Xh) = J
(
(df(X))h + g(SX, u) ◦ πNv

)
= (Jdf(X))

h
+ g(SX, u) ◦ π (JN)

v

= (ϕX + η(X)N)
h − g(SX, u) ◦ πξv

= (ϕ(X))
h − g(SX, u) ◦ πξv + η(X) ◦ πNh

which together with the definition JXh = ϕ(Xh) + ψ(Xh), on equating tan-

gential and normal components give

ϕ(Xh) = (ϕ(X))h − g(S(X), u)ξv and ψ(Xh) = η(X) ◦ πNh

Similarly for the vertical lift Xv, we have

JXv = ϕ(Xv) + ψ(Xv) = (JX)v = (ϕX + η(X)N)
v
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which gives

(ϕ(Xv)) + ψ(Xv) = (ϕX)v + η(X) ◦ πNv

Comparing the tangential and normal components we conclude

ϕ(Xv) = (ϕ(X))v + η(X) ◦ πNv, and ψ(Xv) = 0.

�

We choose a unit normal vector field N∗ ∈ Γ(T⊥TM) such that
{
N∗, Nh

}
is a local orthonormal frame of normals for the submanifold TM . It is known

that N∗ is vertical vector field on the tangent bundle R4n (cf. [1]). Since,〈
JN∗, N∗

〉
= 0,

〈
JN∗, Nh

〉
=
〈
N∗, ξh

〉
= 0, it follows that JN∗ ∈ X(TM)

and we define unit vector field ζ ∈ X(TM) by

ζ = −JN∗ (3.3)

Now, for any normal vector field N ∈ Γ(T⊥TM), we have

N =
〈
N,N∗

〉
N∗ +

〈
N,Nh

〉
Nh

which together with equations (3.1), (3.2) and (3.3) gives χ(N) = 0 and that

J(N) ∈ X(TM), isgiven by

J(N) =
〈
J(N), ζ

〉
ζ +

〈
J(N), T

〉
T (3.4)

where T ∈ X(TM), is given by

T = ξh − g(S(ξ), u)Nv = −JNh (3.5)

Also, using equation (3.2), we have

−ξv = JNv = ϕ(Nv) + ψ(Nv)

which gives

ϕ(Nv) = −ξv and ψ(Nv) = 0 (3.6)

Moreover, we have

ϕ(ζ) = 0 and ψ(ζ) = N∗, ψ(ξh) = Nh (3.7)

If we denote by α, β the smooth 1-forms on TM dual to the vector field ζ and

T respectively, then for E ∈ X(TM), it follows that

J
(
ψ(E)

)
= −α(E)ζ − β(E)T

and consequently, operating J on J(E) = ϕ(E) + ψ(E), E ∈ X(TM), we get

ϕ2 = −I + α⊗ ζ + β ⊗ T and ψ ◦ ϕ = 0 (3.8)

Using Lemma 2.1 and equations (3.3), (3.5), (3.6), (3.8), we see that the vector

fields ζ, T and 1-fomrs α, βsatisfy

ϕ(ζ) = 0, ϕ(T ) = 0, g(ζ, T ) = 0, α ◦ ϕ = 0, β ◦ ϕ = 0 (3.9)
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Also, as g is the induced metric on the submanifold TM and J is skew sym-

metric with respect to the Hermitian metric 〈, 〉, we have

g (ϕ(E), F ) = −g(E,ϕ(F )), E,F ∈ X(TM) (3.10)

Then using equations (3.8), (3.9) and (3.10), we have

g (ϕ(E), ϕ(F )) = g(E,F )− α(E)α(F )− β(E)β(F ), E,F ∈ X(TM) (3.11)

Thus we have proved the following

Lemma 3.4. Let TM be the tangent bundle of an orientable real hypersurface

of R2n. Then there is a structure (ϕ, ζ, T, α, β, g) similar to contact metric

structure on TM , where ϕ is a tensor field of type (1, 1), ζ, T are smooth vector

fields and α, β are smooth 1-forms dual to ζ, T with respect to the Riemannian

metric g satisfying

ϕ2 = −I+α⊗ζ+β⊗T , ϕ(ζ) = 0, ϕ(T ) = 0, α◦ϕ = 0, β ◦ϕ = 0, g(ζ, T ) = 0

g (ϕ(E), ϕ(F )) = g(E,F )− α(E)α(F )− β(E)β(F ), E,F ∈ X(TM).

In the next Lemma, we compute the co-variant derivatives of the tensor ϕ.

Lemma 3.5. Let (ϕ, ζ, T, α, β, g) be the structure on the tangent bundle TM

of an orientable real hypersurface M of the Euclidean space R2n. Then

(i) (∇Xhϕ)(Y h) = {(∇Xϕ) (Y )}h − {X (g(SY, u) + g(SY, u)JSX)}v

(ii) (∇Xhϕ)(Y v) = 0,

(iii) (∇Xvϕ)(Y v) = 0, (∇Xvϕ)(Y h) = g (SX,ϕY ) ◦πNv + g (SX, Y ) ◦πξv.

Proof. Using the definition of J , Lemma 2.1 and Lemma 3.3 together with

equation (3.1), we get for X,Y ∈ X(M)

JY h = JdF (Y h) = J
(

(df(Y ))
h

+ g(SY, u) ◦ πNv
)

= (ϕY + η(Y )N)
h − g(SY, u) ◦ πξv

= ϕ
(
Y h
)

+ η(Y ) ◦ πNh

which gives

DXhJY h = D((df(X))h+g(SX,u)◦πNv)
(
ϕ
(
Y h
)

+ η(Y ) ◦ πNh
)

= D(df(X))hϕ
(
Y h
)

+X(η(Y )) ◦ πNh + η(Y ) ◦ πD(df(X))hN
h

+g(SX, u) ◦ πDNv

(
(ϕ(Y ))h − g(S(Y ), u) ◦ πξv

)
+ 0

+g(SX, u) ◦ πη(Y ) ◦ πDNvNh

Note that the tangent bundle TR2n = R4n has Sasaki metric and thus using

Lemma 7.2 of [10] (keeping in view that R2n is flat), in the above equation, we

get

DXhJY h = ∇Xhϕ
(
Y h
)

+ h(Xh, ϕ
(
Y h
)

+X(η(Y )) ◦ πNh − η(Y ) ◦ π (SX)
h

(3.12)
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Similarly we have

JDXhY h = J
(
D((df(X))h+g(SX,u)◦πNv)

(
(df(Y ))

h
+ g(SY, u) ◦ πNv

))
= J

{
∇XhY h + h(Xh, Y h) +X(g(SY, u) ◦ πNv + g(SY, u) ◦ π (DXN)

v

+ g(SX, u) ◦ πDNv (dfY )
h

+ 0 + 0
}

= ϕ
(
∇XhY h

)
+ ψ

(
∇XhY h

)
+ Jh(Xh, Y h)−X(g(SY, u) ◦ πξv

−g(SY, u) ◦ πJ (SX)
v

= ϕ
(
∇XhY h

)
+ ψ

(
∇XhY h

)
− g(SX, Y ) ◦ πξh −X(g(SY, u) ◦ πξv

−g(SY, u) ◦ π (ϕSX)
v − g(SY, u) ◦ πη(SX)Nv (3.13)

where we used Lemmas 2.3, 2.4 and Lemma 7.2 in [10]. Now as
(
R4n, J, 〈, 〉

)
is a Kaehler manifold, the equations (3.12) and (3.13) on comparing tangential

we get(
∇Xhϕ

)
(Y h) = {(∇Xϕ) (Y )}h − {X (g(SY, u) + g(SY, u)JSX)}v

which proves (i).

Now, using h(Xv, Y v) = 0 and S̄ψ(Y v)X
v = 0 together with DXvJY v =

JDXvY v, and comparing tangential components, we immediately arrive at

(∇Xvϕ)(Y v) = 0

Next, we have ∇Xvϕ(Y h) = ∇Xv

(
(ϕY )

h − g(SX, u) ◦ πξv
)

= ∇Xv (ϕY )
h

=

g (SX,ϕY )◦πNv and ϕ
(
∇XvY h

)
= g (SX,ϕY )◦πϕ (Nv) = −g (SX, Y )◦πξv.

Thus, we get(
∇Xvϕ

)
(Y h) = g (SX,ϕY ) ◦ πNv + g (SX, Y ) ◦ πξv

Finally, using h(Xh, Y v) = 0 and S̄ψ(Y v)X
h = 0 together with DXhJY v =

JDXhY v, and comparing tangential components, we immediately arrive at

(∇Xhϕ)(Y v) = 0

�

Lemma 3.6. Let (ϕ, ζ, T, α, β, g) be the structure on the tangent bundle TM

of an orientable real hypersurface M of the Euclidean space R2n. Then for

E ∈ X(TM),

∇Eζ = ϕ
(
SN∗(E)

)
− J

(
∇⊥EN∗

)
, h(E, ζ) = ψ

(
SN∗(E)

)
∇ET = ϕ

(
SNh(E)

)
− J

(
∇⊥ENh

)
, h(E, T ) = ψ

(
SNh(E)

)
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Proof. Using equation (2.2), we have

∇Eζ = DEζ − h(E, ζ)

= −JDEN
∗ − h(E, ζ)

= J
(
SN∗(E)

)
− J

(
∇⊥EN∗

)
− h(E, ζ)

= ϕ
(
SN∗(E)

)
+ ψ

(
SN∗(E)

)
− J

(
∇⊥EN∗

)
− h(E, ζ)

Since J(N) ∈ X(TM) for each normal N ∈ Γ(T⊥TM), equation tangential

and normal components in above equation, we get the first part. The second

part follows similarly using T = −JNh. �

Now, we prove the following:

Theorem 3.7. The tangent bundle TM of an orientable real hypersurface

M of the Euclidean space R2n is a CR-submanifold of the Kaehler manifold

(R4n, J, 〈, 〉).

Proof. Use the structure (ϕ, ζ, T, α, β, g) on the submanifold TM of R4n to

define the distribution D by

D = {E ∈ X(TM) : α(E) = β(E) = 0}

and D⊥ be the distribution spanned by the orthogonal vector fields ζ and T .

Note that ζ is unit vector field on TM and the length of the vector field T

satisfies

‖T‖2 = 1 + 2g(S(ξ), u)2 ≥ 1

which shows that D⊥ is 2-dimensional distribution on TM and that JD⊥ =

Γ(T⊥TM). It is easy to see that D and D⊥ are orthogonal complementary

distributions and that dimD = 4(n− 1). Note that for E ∈ X(TM), we have

ψ(E) =
〈
ψ(E), N∗

〉
N∗ +

〈
ψ(E), Nh

〉
Nh = α(E)N∗ + β(E)Nh

and consequently if E ∈ D, then above equation gives JE = ϕE which is

orthogonal to both ζ and T and that JE ∈ D, which implies JD = D. This

proves that TM is a CR-submanifold of the Kaehler manifold (R4n, J, 〈, 〉) (cf.

[8]). �

4. Killing Vector Fields on TM

Let TM be the tangent bundle of an orientable real hypersurface M of the

Euclidean space R2n. Recall that a vector field ς ∈ X(TM) on the Riemannian

manifold (TM, g) is said to be Killing if

(£ςg) (E,F ) = 0, E,F ∈ X(TM)

where £ς is the Lie derivative with respect to the vector field ς. We have

seen in previous section that the tangent bundle (TM, g) admits a structure

(ϕ, ζ, T, α, β, g), that is similar to the almost contact structure. In this section
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we are interested in finding conditions under which the special vector fields ζ

and T are Killing vector fields and as a particular case we get that the tangent

bundle
(
TS2n−1, g

)
of the unit sphere S2n−1 in the Euclidean space R2n admits

a nontrivial Killing vector field.

Theorem 4.1. Let (ϕ, ζ, T, α, β, g) be the structure on the tangent bundle TM

of an orientable real hypersurface M of the Euclidean space R2n. Then the

vector field ζ is Killing.

Proof. First note that on taking inner product with N∗ in each part of Lemma

2.5, we conclude that SN∗(Xh) = 0, SN∗(Xv) = 0, X ∈ X(M) and conse-

quently,

SN∗(E) = 0, E ∈ X(TM) (4.1)

Also using second part of equation (2.2) in (ii) and (iv) of Lemma 2.4, we

conclude that ∇⊥ENh = 0, E ∈ X(TM), that is Nh is parallel on the normal

bundle of TM . Moreover, we have

∇⊥EN∗ =
〈
∇⊥EN∗, Nh

〉
Nh = −

〈
N∗,∇⊥ENh

〉
Nh = 0

that is N∗ is parallel in the normal bundle of TM . Thus using equation (4.1)

in Lemma 3.5, it follows that ζ is a parallel vector field and consequently, it is

a Killing vector field. �

Theorem 4.2. Let (ϕ, ζ, T, α, β, g) be the structure on the tangent bundle TM

of an orientable real hypersurface M of the Euclidean space R2n. Then the

vector field T is Killing if and only if the following condition holds

g
((
ϕ ◦ SNh − SNh ◦ ϕ

) (
Xh
)
, Y h

)
= 0, X,Y ∈ X(M)

Proof. Since Nh is parallel in the normal bundle of TM , by Lemma 3.5, we

have

∇ET = ϕ
(
SNh(E)

)
, E ∈ X(TM) (4.2)

Also using Lemma 2.4, we conclude that

SNh(Xv) = 0, SNh(Xh) = (S(X))
h

, X ∈ X(M) (4.3)

Then using skew-symmetry of the tensor ϕ, and equations (4.2) and (4.3) to-

gether with Lemma 3.3, we immediately arrive at

(£T g) (Xv, Y v) = 0 (4.4)

(£T g)
(
Xh, Y v

)
= g

(
ϕ ◦ SNh

(
Xh
)
, Y v

)
= −g

(
SNh

(
Xh
)
, ϕ (Y v)

)
= −g

(
SNh

(
Xh
)
, (ϕ (Y ))

v
+ η(X) ◦ πNv

)
= 0 (4.5)

(£T g)
(
Xh, Y h

)
= g

((
ϕ ◦ SNh − SNh ◦ ϕ

) (
Xh
)
, Y h

)
(4.6)

and the equations (4.4)-(4.6) prove the Theorem. �
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Consider the unit sphere S2n−1 in the Euclidean space R2n, whose shape

operator is given by S = −I. Using Lemma 2.4, we get on the tangent bundle

TS2n−1 that

SNh(Xh) = (S(X))
h

= −Xh, SNh(Xv) = 0

Then the Lemma 3.3 together with above equation, gives(
ϕ ◦ SNh − SNh ◦ ϕ

) (
Xh
)

= −ϕ
(
Xh
)
− SNh

(
(ϕ(X))h − g(S(X), u) ◦ πξv

)
= −g(X,u) ◦ πξv, X ∈ X(S2n−1)

and consequently,

g
((
ϕ ◦ SNh − SNh ◦ ϕ

) (
Xh
)
, Y h

)
= 0, X,Y ∈ X(S2n−1)

Thus as a particular case of the Theorem 4.2, we have

Corollary 4.3. Let (ϕ, ζ, T, α, β, g) be the structure on the tangent bundle

TS2n−1 of the unit sphere S2n−1 in the Euclidean space R2n, n > 1. Then the

vector field T is a nontrivial Killing vector field.

Proof. It remains to be shown that T is nontrivial. Since, Nh is parallel in the

normal bundle of TS2n−1, by Lemmas 2.4 and 3.5, we have

∇XhT = −ϕ
(
Xh
)

, X ∈ X(S2n−1) (4.7)

where we used the fact that the shape operator S of the unit sphere S2n−1

is given by S = −I. The Lemma 3.4 gives the rank of ϕ is 4(n − 1) and

consequently, equation (4.7) gives that the Killing vector field T is not parallel,

that is T is a nontrivial Killing vector field. �
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