Radical and It's Applications in BCH-Algebras

R. A. Borzooei* and O. Zahiri Department of Mathematics, Shahid Beheshti University, G.C., Tehran, Iran

> E-mail: borzooei@sbu.ac.ir E-mail: o.zahiri@yahoo.com

ABSTRACT. In this paper, for any ideal I of BCH-algebra X, we introduce the concept of \sqrt{I} and show that it is an ideal of X, when I is a closed ideal. Then we verify some useful properties of it and prove that it is the union of all k-nil ideals of I. Moreover, if I is a closed ideal of X, then \sqrt{I} is a closed translation ideal and so we can construct a quotient BCH-algebra. We prove this quotient BCH-algebra is a P-semisimple BCI-algebra and so it is an abelian group. Finally, we use the concept of radical in order to construct the second and the third isomorphism theorems.

Keywords: Ideal, radical, Quotient BCH-algebra, Maximal, Translation.

2000 Mathematics subject classification: 06F35, 03G25.

1. Introduction and Preliminaries

In 1966, Imai and Iséki [13, 14] introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is well-known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. Since then many authors work on various aspects of these algebras such as hyper and fuzzy structure [1, 8, 9, 20], topological view [19]. In 1983, Hu and Li [10, 11] introduced a new class of algebras so-called BCH-algebras. They proved that the class of BCI-algebras is a proper subclass of BCH-algebras. They studied some properties of this algebra. In [6], Dudek and Jun introduced the notion of k-nil

^{*}Corresponding Author

radical in BCH-algebras. They showed that when I is a translation ideal of X, then the k-nil radical of I is also a translation ideal of X. In this paper, we generalize this concept and define the notion of radical in BCH-algebras. We prove that in any BCH-algebra (BCI-algebra) the radical (the k-nil radical) of a closed ideal (of an ideal) is a translation ideal. Then we verify some properties of radical and use it to construct a BCH-algebra without any nilpotent elements.

Definition 1.1. [10, 11] A BCH-algebra is an algebra (X, *, 0) of type (2, 0) satisfying the following conditions:

```
(BCH1) (x * y) * z = (x * z) * y
```

(BCH2) x * x = 0,

(BCH3) x * y = 0 and y * x = 0 imply y = x.

In any BCH-algebra X, the following hold: for any $x, y \in X$,

(BCH4) x * 0 = x,

(BCH5)
$$0 * (x * y) = (0 * x) * (0 * y),$$

(BCH6)
$$0 * (0 * (0 * x)) = 0 * x$$
.

The set $P = \{x \in X | 0 * (0 * x) = x\}$ is called *P-semisimple* part of *X*. A *BCH*-algebra *X* is said to be *P-semisimple* if P = X.

A BCH-algebra X is called BCI-algebra if ((x*y)*(x*z))*(z*y)=0, for all $x,y,z\in X$. The set $B=\{x\in X|0*x=0\}$ is called the BCK-part of X. Moreover, if X is a BCI-algebra and $B=\{0\}$, then X is a P-semisimple BCI-algebra. We will also use the following notation for simplicity:

 $x * y^n = (...(x * y) * ...) * y$, where $x, y \in X$ and $n \in \mathbb{N}$. A *BCI*-algebra X is called *nilpotent* if for any $x \in X$ there is $n \in \mathbb{N}$ such that $0 * x^n = 0$.

Definition 1.2. [10, 11] A non-empty subset I of a BCH-algebra X is called an ideal if $0 \in I$ and $y * x \in I$ and $x \in I$ imply $y \in I$, for all $x, y \in X$. An ideal I is called proper, if $I \neq X$ and it is called closed, if $x * y \in I$, for all $x, y \in I$. If S is a subset of X, then the least ideal of X containing S is called the generated ideal of X by S and is denoted by $\langle S \rangle$. If X is a BCH-algebra, I and J are ideals of X, then we use I + J to denote the ideal of X generated by $I \cup J$.

Theorem 1.3. [21] A BCI-algebra X is nilpotent if and only if all ideals of X are closed.

Theorem 1.4. [21] Let S be a nonempty subset of a BCI-algebra X and $A = \{x \in X | (...((x*a_1)*a_2)*...)*a_n = 0, \text{ for some } n \in \mathbb{N} \text{ and } a_1,...,a_n \in S \}$ Then $\langle S \rangle = A \cup \{0\}$. If S contains a nilpotent element, then $\langle S \rangle = A$.

Note 1.5. If I is a closed ideal of BCH-algebra X and $x \in I$, then $0 * x \in I$. Moreover, if J is an ideal of BCH-algebra X such that $0 * x \in J$, for any $x \in J$, then by (BCH1), $(x * y) * x = 0 * y \in J$, for any $x, y \in J$. Since J is an ideal, then $x * y \in J$, for any $x, y \in J$. Therefore, J is a closed ideal of X.

Lemma 1.6. [6] Let X be a BCH-algebra. Then the following hold: (i) $0 * (0 * x)^n = 0 * (0 * x^n)$, for any $n \in \mathbb{N}$, (ii) $0 * (x * y)^n = (0 * x^n) * (0 * y^n)$, for any $n \in \mathbb{N}$.

Definition 1.7. [18] Let X and Y be two BCH-algebras. A map $f: X \to Y$ is called a BCH-homomorphism if f(x * y) = f(x) * f(y), for all $x, y \in X$. Clearly, if f is a BCH-homomorphism, then f(0) = 0.

Lemma 1.8. Let X be a BCH-algebra. Then the map $f_n: X \to X$, is defined by $f_n(x) = 0 * x^n$, is a BCH-homomorphism, for all $n \in \mathbb{N}$.

Proof. See Lemma 1.6(ii).

Lemma 1.9. [5] Let X be a BCH-algebra and f_0 be the map is defined in Lemma 1.8, Then $f_0(X)$ is a BCI-algebra.

Note 1.10. Let A be an ideal of a BCI-algebra X. Define a binary relation θ on X as follows: $(x,y) \in \theta$ if and only if $x*y,y*x \in A$, for all $x,y \in X$. Then, θ is a congruence relation and it is called the congruence relation induced by A. We usually denote A_x for $[x] = \{y \in X | (x,y) \in \theta\}$. Moreover A_0 is the greatest closed ideal of X contained in A. Set $X/A = \{A_x | x \in X\}$. Then $(X/A, *, A_0)$ is a BCI-algebra, where $A_x * A_y = A_{x*y}$, for all $x,y \in X$ (See [21]).

Theorem 1.11. [18] Let X, Y be two BCH-algebras and $f: X \to Y$ be a BCH-algebra homomorphism. Then $f(X) \cong X/Ker(f)$.

Theorem 1.12. [21] Let A be a closed ideal of a BCI-algebra X, I(X,A) be the collection of all ideals of X containing A and I(X/A) be the collection of all ideals of X/A. Then $\varphi: I(X,A) \to I(X/A)$, defined by $I \mapsto I/A$, is a bijection.

Theorem 1.13. [4] The category of BCH-algebras has arbitrary products. Let $\{X_j|j\in J\}$ be a family of BCH-algebras. Then $\prod_{j\in J}X_j=\{(x_j)_{j\in J}|x_j\in J\}$

 $X_j, \forall j \in J$ is the product of this family.

Definition 1.14. Let (X,.,0) be an abelian group. Then (X,*,0) is a P-semisimple BCI-algebra, where $x*y=x.y^{-1}$, for all $x,y\in X$. This BCI-algebra is called the adjoint BCI-algebra of (X,.,0) (See [21], Example 1.3.1.).

From now on, in this paper, we assume X=(X,*,0) be a BCH-algebra , unless otherwise stated.

2. Radical in BCH-algebras

In 1992, W. P. Huang [12] introduced the notion of nil ideal in BCI-algebras. In 1999, E. H. Roh and Y. B. Jun introduced nil ideals in BCH-algebras. They introduced nil subsets using nilpotent elements. Then W. A. Dudek and Y. B. Jun [6] introduced the notion of k-nil radicals in BCH-algebras. They showed that, if I is an ideal of X, then k-nil radical of I is an ideal, too. Moreover, k-nil radical of a translation ideal is again a translation ideal.

Lemma 2.1. For any $x \in X$ and $n, m \in \mathbb{N}$, the following hold:

(i)
$$0 * (0 * (0 * x^n)) = 0 * x^n$$
.
(ii) $0 * (0 * x^n)^m = 0 * (0 * x^{nm})$.

Proof. (i) Let $x \in X$ and $n \in \mathbb{N}$. Then

$$0*(0*(0*x^n)) = 0*(0*(0*x)^n), \text{ by Lemma 1.6(i)}$$

$$= 0*(0*(0*x))^n, \text{ by Lemma 1.6(i)}$$

$$= (0*(0*(0*x)))*(0*(0*x))^{n-1}$$

$$= (0*x)*(0*(0*x))^{n-1}, \text{ by (BCH6)}$$

$$= ((0*x)*(0*(0*x)))*(0*(0*x))^{n-2}$$

$$= ((0*(0*(0*x)))*x)*(0*(0*x))^{n-2}, \text{ by (BCH1)}$$

$$= (0*x^2)*(0*(0*x))^{n-2}, \text{ by (BCH6)}$$

$$\vdots$$

$$= (0*x^{n-1})*(0*(0*x))$$

$$= (0*(0*(0*x)))*x^{n-1}, \text{ by (BCH1)}$$

$$= (0*x)*x^{n-1}, \text{ by (BCH6)}$$

$$= 0*x^n.$$

(ii) Suppose that $x \in X$ and $n, m \in \mathbb{N}$. Then

$$0*(0*x^n)^m = (...(0*(0*x^n))*...)*(0*x^n)$$

$$= (...((0*(0*x^n))*(0*x^n))*...)*(0*x^n)$$

$$= (...((0*(0*x)^n)*(0*x^n))*...)*(0*x^n), \text{ by Lemma 1.6(i)}$$

$$= ((...(0*(0*x^n))*...)*(0*x^n))*(0*x)^n, \text{ by (BCH1)}$$

$$= ((...(0*(0*x^n))*...)*(0*x^n))*(0*x)^n$$

$$\vdots$$

$$= 0*(0*x)^{mn}.$$

Now, by Lemma 1.6(i), we obtain $0 * (0 * x^n)^m = 0 * (0 * x^{nm})$.

Definition 2.2. Let I be an ideal of X. The set

$$\{x \in X | \ 0 * x^n \in I \text{ and } 0 * (0 * x^n) \in I, \text{ for some } n \in \mathbb{N}\}$$

is called the *radical* of I and is denoted by \sqrt{I} .

Example 2.3. Let $(\mathbb{Z}, -, 0)$ be the adjoint BCI-algebra of the abelian group $(\mathbb{Z}, +, 0)$. Let $Y = \{0, b, c, d\}$. Define the binary operation "*'" on Y by the following table:

Table 1									
*'	0	b	c	d					
0	0	0	0	0					
b	b	0	d	d					
c	c	0	0	c					
d	d	0	0	0					

Then (Y, *', 0) is a BCH-algebra (See [3], Example 2.3). Now, let $X = \mathbb{Z} \cup \{b, c, d\}$ and define the operation "*" on X, by

$$x * y = \begin{cases} x - y & \text{if } x, y \in \mathbb{Z}, \\ x *' y & \text{if } x, y \in Y, \\ -y & \text{if } x \in Y, y \in \mathbb{Z} - \{0\}, \\ x & \text{if } x \in \mathbb{Z}, y \in Y. \end{cases}$$

Clearly, * is well-defined and x*x=0, for any $x\in X$. Let x*y=0=y*x, for some $x,y\in X$. Since (Y,*',0) and $(\mathbb{Z},-,0)$ are BCH-algebras, then $x,y\in \mathbb{Z}$ or $x,y\in Y$, implies x=y. If $x\in Y$ and $y\in \mathbb{Z}-\{0\}$, then 0=x*y=-y and so y=0. On the other hand, 0=x*y=x*0=x. Hence x=y. By a similar way if $x\in \mathbb{Z}-\{0\}$ and $y\in Y$, then 0=x*y=x and so x=0. Hence "*" satisfies in (BCH3). Moreover, if $x,y,z\in X$. Then clearly, $x,y,z\in Y$ or $x,y,z\in \mathbb{Z}$ implies (x*y)*z=(x*z)*y. If $x\in \mathbb{Z}$, then (x*y)*z=x=(x*z)*y. Now, let $x\in Y$. If y=0 or z=0, then clearly, (x*y)*z=(x*z)*y. Let $y,z\in \mathbb{Z}-\{0\}$, then (x*y)*z=-z=-z*y=(x*z)*y. Finally, if $z\in Y$ and $y\in \mathbb{Z}$, then (x*y)*z=(x*'y)*z=-z=-z*y=(x*z)*y. Therefore, (X,*,0) is a BCH-algebra. Let $I=\{0\}$. If $x\in \mathbb{Z}$, then $0*x^n=0$ implies -nx=0 and so x=0, for all $n\in \mathbb{N}$. Hence $\sqrt{I}=\{x\in X|0*x^n=0,0*(0*x^n)=0$ for some $n\in \mathbb{N}\}=\{0,b,c,d\}$.

Corollary 2.4. If I is a closed ideal, then

$$\sqrt{I} = \{x \in X | \ 0 * x^n \in I, \ for \ some \ n \in \mathbb{N}\}.$$

Definition 2.5. [6] Let I be a non-empty subset of X. Then the set $\sqrt[k]{I} = \{x \in X | 0 * x^k \in I\}$ is called the k-nil radical of I.

In Corollary 2.6 we will obtain the relation between \sqrt{I} and $\sqrt[n]{I}$, for any $n \in \mathbb{N}$.

Corollary 2.6. Let I be a closed ideal of X. Then,

(i)
$$\sqrt{I} = \bigcup_{n \in \mathbb{N}} \sqrt[n]{I}$$
.

(ii) If $x, y \in \sqrt{I}$, then there exists $m \in \mathbb{N}$ such that, $x, y \in \sqrt[m]{I}$.

Proof. (i) Let $x \in X$. Then

$$x \in \sqrt{I} \iff 0 * x^n, 0 * (0 * x^n) \in I$$
, for some $n \in \mathbb{N}$
 $\Leftrightarrow 0 * x^n \in I$, since I is a closed ideal
 $\Leftrightarrow x \in \sqrt[n]{I}$, for some $n \in \mathbb{N}$.

Therefore, $\sqrt{I} = \bigcup_{n \in \mathbb{N}} \sqrt[n]{I}$, for some $n \in \mathbb{N}$.

(ii) Let $x, y \in \sqrt{I}$. Then there are $s, t \in \mathbb{N}$ such that, $0 * x^s, 0 * (0 * x^s) \in I$ and $0 * y^t, 0 * (0 * y^t) \in I$. Since I is closed, we have $0 * (0 * x^s)^t \in I$ and $0 * (0 * y^t)^s \in I$. Now, Lemma 2.1(ii), implies $0 * (0 * x^{st}) \in I$ and $0 * (0 * y^{ts}) \in I$ and so $0 * (0 * (0 * x^{st})) \in I$ and $0 * (0 * (0 * y^{ts})) \in I$. Hence by Lemma 2.1(i), we have $0 * x^{st}, 0 * y^{ts} \in I$, so $x, y \in \sqrt[st]{I}$.

Theorem 2.7. Let I be a closed ideal of X. Then \sqrt{I} is a closed ideal of X.

Proof. Obviously, $0 \in \sqrt{I}$. Let $x, y \in X$ such that $x * y, y \in \sqrt{I}$. Since I is closed, so by Corollary 2.4, $0*(x*y)^n \in I$ and $0*y^m \in I$, for some $n, m \in \mathbb{N}$. By lemma 2.1(ii), we have $(0*(0*(x*y)^{2n})) = (0*(0*(x*y))^n)*(0*(x*y))^n \in I$. By a similar argument we get that $(0*(0*(x*y)^{mn})) \in I$. Since I is a closed ideal of X, $0*(0*(0*(x*y)^{mn}))) \in I$. Then, by Lemma 2.1(i), $0*(x*y)^{mn} \in I$. Likewise, we can we obtain $0*y^{mn} \in I$. Since I is an ideal of X, by Lemma 1.6, $0*x^{mn} \in I$ and so $x \in \sqrt{I}$. Hence \sqrt{I} is an ideal of X. Now, let $x, y \in \sqrt{I}$. By a similar way as the proof of the last part, we can obtain $0*x^{mn} \in I$ and $0*y^{mn} \in I$, for some $m, n \in \mathbb{N}$. Hence, $0*(x*y)^{mn} = (0*x^{mn})*(0*y^{mn}) \in I$ and so $x*y \in \sqrt{I}$. Therefore, \sqrt{I} is a closed ideal of X.

Definition 2.8. An element x of X is called *nilpotent* if $0 * x^n = 0$, for some $n \in \mathbb{N}$. The set of all nilpotent elements of X is denoted by N(X) or $\sqrt{0}$.

Proposition 2.9. $\sqrt{0}$ is a closed ideal of X.

Proof. Since $I = \{0\}$ is a closed ideal of X, then by Theorem 2.7, $\sqrt{0}$ is a closed ideal of X.

Example 2.10. (i) Let (G,.,e) be the cyclic group of order three, $X=(\mathbb{Z},*,0)$ and Y=(G,*,e) be the adjoint BCI-algebras of the abelian groups $(\mathbb{Z},+,0)$, and (G,.,0) respectively. Then by Theorem 1.13, we have $X\times Y$ is a BCH-algebra. In $X\times Y$, we have $(0,e)*(x,e)^n\neq (0,e)$, for all $x\in \mathbb{Z}\setminus\{0\}$. Hence $(x,e)\notin \sqrt{(0,e)}$, for all $x\in \mathbb{Z}\setminus\{0\}$. Also, $(0,e)*(0,y)^3=(0,e)$, for all $y\in G$. Therefore, $\sqrt{(0,e)}$ is a proper ideal of $X\times Y$.

(ii) Let $X = (\mathbb{R}, *, 0)$ be the adjoint BCI-algebra of abelian group $(\mathbb{R}, +, 0)$.

That is x*y=x+(-y), for all $x,y\in\mathbb{R}$. Let $a\in\mathbb{Q}$, where \mathbb{Q} is the set of all rational numbers and $\langle\{a,-a\}\rangle$ be the ideal generated by $\{a,-a\}$. Then $\langle\{a,-a\}\rangle=\{x\in X|\,x*a^n=0,\,$ for some $n\in\mathbb{N}\}=\{...,-2a,-a,0,a,2a,3a,...\}$ and so

$$\begin{split} \sqrt{\langle \{a, -a\} \rangle} &= \{x \in \mathbb{R} | \ 0 * x^n \in \langle \{a, -a\} \rangle, \exists n \in \mathbb{N} \} \\ &= \{x \in \mathbb{R} | \ -(nx) = \pm ma, \exists n, m \in \mathbb{N} \} \\ &= \{ \pm \frac{m}{n} a | \ n, m \in \mathbb{N} \} \subseteq \mathbb{Q}. \end{split}$$

Therefore, $\sqrt{\langle \{a, -a\} \rangle}$ is a proper ideal of $(\mathbb{R}, *, 0)$.

In Proposition 2.11, we want to verify relation between \sqrt{I} and the set of all nilpotent elements of X/I, for any ideal I of X.

Proposition 2.11. Let X be a BCI-algebra, I be an ideal of X and I_x is an equivalence class of X containing x with respect to the congruence relation which is defined in Note 1.10, for any $x \in X$. Then $\sqrt{I} = \{x \in X | I_x \in N(X/I)\}$.

Proof. Let $x \in X$. Then

$$\begin{split} I_x \in N(X/I) &\Leftrightarrow I_0 * I_x^n = I_0, & \text{for some } n \in \mathbb{N} \\ &\Leftrightarrow I_{0*x^n} = I_0 \\ &\Leftrightarrow 0 * x^n, 0 * (0 * x^n) \in I \\ &\Leftrightarrow x \in \sqrt{I}. \end{split}$$

Hence $\sqrt{I} = \{x \in X | I_x \in N(X/I)\}.$

Theorem 2.12. Let X be a BCI-algebra and I be an ideal of X. Then \sqrt{I} is a closed ideal of X.

Proof. Let $y, x * y \in \sqrt{I}$. Then by Proposition 2.11, $I_{x*y}, I_y \in N(X/I)$. By Proposition 2.9, we obtain $I_x \in N(X/I)$. Now, Proposition 2.11, implies $x \in \sqrt{I}$. Hence \sqrt{I} is an ideal of X.

Let $x, y \in \sqrt{I}$. Then Proposition 2.11 implies that $I_x, I_y \in N(X/I)$. Now, by proposition 2.11, we have $I_{x*y} = I_x * I_y \in N(X/I)$. Therefore, $x * y \in \sqrt{I}$. \square

In the next proposition, we try to obtain some useful properties of radical in BCH-algebras.

Proposition 2.13. Let I and J be two ideals of X. Then the following assertions hold:

- (i) If I is a closed ideal of X, then $I \subseteq \sqrt{I}$.
- (ii) If $I \subseteq J$, then $\sqrt{I} \subseteq \sqrt{J}$.
- (iii) If I and J are closed, then $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.

(iv) If I is a closed or X is a BCI-algebra, then $\sqrt{\sqrt{I}} = \sqrt{I}$.

(v) Let Y be a BCH-algebra, and $f: X \to Y$ be a BCH-homomorphism. If I is an ideal of X and J is an ideal of Y, then $\sqrt{f^{-1}(J)} = f^{-1}(\sqrt{J})$ and $f(\sqrt{I}) \subseteq \sqrt{f(I)}$. Moreover, if f is onto and $\ker f \subseteq I$, then $f(\sqrt{I}) = \sqrt{f(I)}$.

Proof. (i) Let $x \in I$. Since I is closed, then $0 * x \in I$ and so $x \in \sqrt{I}$. (ii) Straightforward.

(iii) Since I and J are closed ideals, $I \cap J$ is also a closed ideal. Now, let $x \in \sqrt{I \cap J}$. Then by Corollary 2.6(i), there is an $n \in \mathbb{N}$ such that $0 * x^n, 0 *$ $(0*x^n) \in I \cap J$ and so $x \in \sqrt{I} \cap \sqrt{J}$. Hence, we have $\sqrt{I \cap J} \subseteq \sqrt{I} \cap \sqrt{J}$. Let $x \in \sqrt{I} \cap \sqrt{J}$. Then, there exist $m, n \in \mathbb{N}$ such that $0 * x^n \in \sqrt{I}$ and $0*x^m \in \sqrt{J}$. By using the proof of Theorem 2.7, we have $0*x^{mn} \in I \cap J$. Since $I \cap J$ is a closed ideal of X, then $x \in \sqrt{I \cap J}$. Hence $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$. (iv) Let I be a closed ideal of X. Then by (i), $I \subseteq \sqrt{I}$ and so (ii), implies $\sqrt{I} \subset \sqrt{\sqrt{I}}$. Now, let $x \in \sqrt{I}$. Then there exists $n \in \mathbb{N}$ such that $0 * x^n \in \sqrt{I}$. Likewise, there is $m \in \mathbb{N}$ such that $0 * (0 * x^n)^m \in I$. By Lemma 2.1(ii), we have $0*(0*x^{mn}) \in I$. Since I is closed we obtain $0*x^{mn} = 0*(0*(0*x^{mn})) \in I$. Hence $x \in \sqrt{I}$, whence $\sqrt{I} \subseteq \sqrt{I}$. Now, let X be a BCI-algebra and I be an ideal of X. Then by (i), (ii), and Theorem 2.12, we have $\sqrt{I} \subseteq \sqrt{\sqrt{I}}$. Let $J = \sqrt{I}$ and $x \in \sqrt{J}$. Then there exists $n \in \mathbb{N}$ such that, $0 * x^n, 0 * (0 * x^n) \in J$. Thus, $0*(0*x^n)^m$, $0*(0*(0*x^n)^m) \in I$, for some $m \in \mathbb{N}$. Also, by Lemma 2.1(ii), we have $0 * (0 * x^n)^m = 0 * (0 * x^{nm})$ and $0 * (0 * (0 * x^n)^m) = 0 * x^{mn}$. Hence $0 * x^{mn}$, $0 * (0 * x^{mn}) \in I$ and so $x \in \sqrt{I} = J$. Therefore, $\sqrt{J} = J$. (v) Let $x \in X$. Then

$$x \in \sqrt{f^{-1}(J)} \quad \Leftrightarrow \quad 0 * x^n, 0 * (0 * x^n) \in f^{-1}(J), \quad \text{for some } n \in \mathbb{N}$$

$$\Leftrightarrow \quad f(0) * f(x)^n, f(0) * (f(0) * f(x)^n) \in J, \quad \text{for some } n \in \mathbb{N}$$

$$\Leftrightarrow \quad 0 * f(x)^n, 0 * (0 * f(x)^n) \in J, \quad \text{for some } n \in \mathbb{N}$$

$$\Leftrightarrow \quad f(x) \in \sqrt{J} \Leftrightarrow x \in f^{-1}(\sqrt{J}).$$

Hence $f^{-1}(\sqrt{J}) = \sqrt{f^{-1}(J)}$.

Let $b \in f(\sqrt{I})$. Then there exists $a \in \sqrt{I}$ such that f(a) = b and so $0 * a^n \in I$ and $0 * (0 * a^n) \in I$, for some $n \in \mathbb{N}$. Since f is a homomorphism, we have $0 * f(a)^n, 0 * (0 * f(a)^n) \in f(I)$. Hence, $b = f(a) \in \sqrt{f(I)}$, whence $f(\sqrt{I}) \subseteq \sqrt{f(I)}$. Now, let f be an onto homomorphism such that $\ker f \subseteq I$ and $y \in \sqrt{f(I)}$. Then there exists $m \in \mathbb{N}$ such that $0 * y^m \in f(I)$ and $0 * (0 * y^m) \in f(I)$. Since f is onto, then y = f(x), for some $x \in X$ and so $f(0 * x^m) = 0 * f(x)^m = 0 * y^m \in f(I)$. Hence there is $b \in I$, such that $f(0 * x^m) = f(b)$ and so $f((0 * x^m) * b) = f(0 * x^m) * f(b) = 0$. It follows that $(0 * x^m) * b \in \ker f \subseteq I$. Since $b \in I$, then $0 * x^m \in I$. By a similar way we have $0 * (0 * x^m) \in I$ and so $x \in \sqrt{I}$. Therefore, $y = f(x) \in f(\sqrt{I})$, so $\sqrt{f(I)} \subseteq f(\sqrt{I})$.

Proposition 2.14. Let I and J be two closed ideals of BCI-algebra X. Then $\sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}$.

Proof. Since I,J are closed ideals, we have $I\subseteq \sqrt{I}$ and $J\subseteq \sqrt{J}$ and so $I+J\subseteq \sqrt{I}+\sqrt{J}$. Hence by Proposition 2.13(ii), $\sqrt{I+J}\subseteq \sqrt{\sqrt{I}+\sqrt{J}}$. Let $u\in \sqrt{\sqrt{I}+\sqrt{J}}$. Then $0*u^n\in \sqrt{I}+\sqrt{J}$, for some $n\in \mathbb{N}$. By Theorem 1.4, there are $m\in \mathbb{N}$ and $a_1,...,a_m\in \sqrt{I}$ such that

$$(...((0*u^n)*a_1)*...)*a_m \in \sqrt{J}, (1)$$

By Corollary 2.6(ii), we can find $s \in \mathbb{N}$ such that $0 * a_i^s \in I$, for all $i \in \{1, 2, ..., m\}$. On the other hand, (1) implies there is $t \in \mathbb{N}$ such that $0 * ((...((0 * u^n) * a_1) * ...) * a_m)^t \in J$. Since I and J are closed ideals of X, likewise the proof of Theorem 2.7, we have $0 * a_i^{ts} \in I$, for all $i \in \{1, 2, ..., m\}$ and $0 * ((...((0 * u^n) * a_1) * ...) * a_m)^{ts} \in J$ and so by Lemma 1.6(ii),

$$(...((0*(0*u^n)^{ts})*(0*a_1^{ts}))*...)*(0*a_m^{ts}) \in J, (2)$$

Since I is an ideal of X and $0*a_i^{ts} \in I$, for all $i \in \{1, 2, ..., m\}$, then $0*(0*u^n)^{st} \in I+J$. Hence $0*u^n \in \sqrt{I+J}$ and so $u \in \sqrt{\sqrt{I+J}}$. Hence by Proposition 2.13(iv), $u \in \sqrt{I+J}$. Summing up the above statements, we get $\sqrt{I+J} = \sqrt{\sqrt{I}+\sqrt{J}}$.

The following example shows that if, I and J are not closed then, Proposition 2.14 may not be true.

Example 2.15. Let $X = (\mathbb{Z}, -, 0)$ be the BCI-algebra in Example 2.10(i). Assume that $I = \{0, 3, 6, 9, ...\}$ and $J = \{0, -3, -6, -9, ...\}$. Then clearly, I and J are ideals of X. Since $9, 6 \in I$ and $6 * 9 = -3 \notin I$, I is not closed. By a similar way, we can deduced that J is not closed. Moreover,

$$\sqrt{I} = \{x \in X \mid 0 * x^n, 0 * (0 * x^n) \in I, \text{ for some } n \in \mathbb{N} \}$$

$$= \{x \in X \mid nx, -nx \in I, \text{ for some } n \in \mathbb{N} \}$$

$$= \{0\}.$$

Similarly, we can obtain $\sqrt{J} = \{0\}$. Therefore, $\sqrt{\sqrt{I} + \sqrt{J}} = \sqrt{\{0\}} = \{0\}$. Also we have

$$\begin{split} I+J &= \langle \{3,-3\} \rangle &=& \{x \in \mathbb{Z} | \ x*a^n = 0, \ \text{ for some } n \in \mathbb{N}, a \in \{3,-3\} \ \} \\ &=& \{...,-6,-3,0,3,6,...\}. \end{split}$$

Hence $\sqrt{I+J} = \{x \in \mathbb{Z} | 0 * x^n, 0 * (0 * x^n) \in I+J, \text{ for some } n \in \mathbb{N} \} = \mathbb{Z}.$ Therefore, $\sqrt{I+J} \neq \sqrt{\sqrt{I+J}}.$

Proposition 2.16. Let M be a maximal ideal of a BCI-algebra X such that M is closed. Then $\sqrt{M} = X$.

Proof. Since M is a closed ideal of X, then by Theorem 1.12, $\{M/M, X/M\}$ is the set of all ideals of X/M. Hence all ideal of X/M are closed (M/M) is a zero ideal of X/M and so it is closed). Thus, by Theorem 1.3, X/M is nilpotent and so

$$\forall x \in X, \exists n \in N \text{ such that } M_0*M_x^n = M_0 \Rightarrow M_{0*x^n} = M_0.$$
 Hence for all $x \in X, \, 0*x^n \in M$ and so $\sqrt{M} = X$.

In the next example, we will show that if the ideal M is not closed, then Proposition 2.16 may not be true, in general.

Example 2.17. Let X be the BCI-algebra in Example 2.15, and let $M = \mathbb{N} \cup \{0\}$. Clearly, M is not closed (Since 2 * 3 = 2 - 3 = -1) and M is a maximal ideal of X (See [21], Example 5.3.2). Let $x \in X$. Then

$$x \in \sqrt{M} \Leftrightarrow 0 * x^n, 0 * (0 * x^n) \in M$$

 $\Leftrightarrow 0 - nx \in M \text{ and } 0 - (0 - nx) \in M$
 $\Rightarrow nx, -nx \in M$
 $\Leftrightarrow x = 0.$

Therefore, $\sqrt{M} = \{0\}.$

By Note 1.10, if I is an ideal of BCI-algebra X, then the relation $\theta = \{(x,y) \in X \times X | x*y, y*x \in I\}$, is a congruence relation of X, but it is not true for BCH-algebra in general case.

Example 2.18. Let $X = \{0, a, b, c, d, e, f, g, h, i, j, k\}$. Define the binary operation "*" on X by the following table:

Table 2												
*	0	a	b	c	d	e	f	g	h	i	j	k
0	0	0	0	0	0	0	0	0	h	h	h	h
a	a	0	a	0	a	0	a	0	h	h	h	h
b	b	b	0	0	f	f	f	f	i	h	k	k
c	c	b	a	0	g	f	g	f	i	h	k	k
d	d	d	0	0	0	0	d	d	j	h	h	j
e	e	e	a	0	a	0	e	d	j	h	h	j
f	f	f	0	0	0	0	0	0	k	h	h	h
g	g	f	a	0	a	0	a	0	k	h	h	h
h	h	h	h	h	h	h	h	h	0	0	0	0
i	i	i	h	h	k	k	k	k	b	0	f	f
j	j	j	k	k	k	k	j	j	d	0	0	d
k	k	k	h	h	h	h	h	h	f	0	0	0

Then (X, *, 0) is a BCH-algebra (See [2] Example 7). Let $I = \{0, b, d, f\}$. Clearly, I is an ideal of X. Let $\theta = \{(x, y) \in X \times X | x * y, y * x \in I\}$. Then c * a = b and a * c = 0 and so $(a, c) \in \theta$. Moreover, e * c = 0 and c * e = f and so $(e, c) \in \theta$. But, $(c * c, e * a) = (0, e) \notin \theta$. It follows that θ is not a congruence relation on X.

Definition 2.19. [18] A translation ideal of X is an ideal U of X such that:

$$\forall x, y, z \in X, x * y \in U, y * x \in U \Rightarrow (x * z) * (y * z) \in U, (z * x) * (z * y) \in U.$$

Remark 2.20. Let U be a translation ideal of BCH-algebra X. Then the relation θ , was defined in Note 1.10, is a congruence relation on X. By U_x we denote the equivalence class containing x and by X/U we denote the set of all equivalence classes with respect to this congruence relation. Then $(X/U, *, U_0)$ is a BCH-algebra, where $U_x * U_y = U_{x*y}$, for all $x, y \in X$. Moreover, kerf is a translation ideal for any BCH-homomorphism f (See [18]).

Dudek and Jun in [6], prove that if U is a translation ideal of X, then so is $\sqrt[n]{U}$, for any $n \in \mathbb{N}$. In Theorem 2.21, we will show that if I is a closed ideal of X, then $\sqrt[n]{I}$ is a translation ideal of X, for any $n \in \mathbb{N}$.

Theorem 2.21. Let I be a closed ideal of X. Then,

- (i) $\sqrt[n]{I}$ is a translation ideal of X, for all $n \in \mathbb{N}$.
- (ii) \sqrt{I} is a translation ideal of X.

Proof. (i) Let $x, y, z \in I$, such that $x * y, y * x \in \sqrt[n]{I}$. Then $0 * (x * y)^n \in I$ and $0 * (y * x)^n \in I$. By Lemma 1.9, we have

$$([(0*(0*x^n))*(0*(0*z^n))]*[(0*(0*y^n))*(0*(0*z^n))])*[(0*(0*x^n))*(0*(0*y^n))] = 0.$$

Since I is a closed ideal, then $0*(0*(x*y)^n) \in I$ and so by Lemma 1.6(ii), $(0*(0*x^n))*(0*(0*y^n)) \in I$. Hence $[(0*(0*x^n))*(0*(0*z^n))]*[(0*(0*y^n))*(0*(0*z^n))] \in I$. Now, since I is closed, then $0*([(0*(0*x^n))*(0*(0*z^n))]*(0*(0*x^n)))$ is $[(0*(0*y^n))*(0*(0*z^n))] \in I$, so Lemma 2.1(i) and 1.6, imply that

$$0*((x*z)*(y*z))^n = [(0*x^n)*(0*z^n)]*[(0*y^n)*(0*z^n)] \in I.$$

Hence, $(x*z)*(y*z) \in \sqrt[n]{I}$. By a similar way, $(z*x)*(z*y) \in \sqrt[n]{I}$. Thus, $\sqrt[n]{I}$ is a translation ideal of X.

(ii) Let $x,y,z\in X$ such that $x*y,y*x\in \sqrt{I}$. By Corollary 2.6(ii), there is $n\in\mathbb{N}$ such that $x*y,y*x\in \sqrt[n]{I}$ and so by (i), $(x*z)*(y*z),(z*x)*(z*y)\in \sqrt[n]{I}$. Hence, by Corollary 2.6(i), $(x*z)*(y*z),(z*x)*(z*y)\in \sqrt{I}$. Therefore, \sqrt{I} is a translation ideal of X.

Corollary 2.22. Let I be a closed ideal of X. Then $(X/\sqrt{I}, *, (\sqrt{I})_0)$ is a BCH-algebra.

Proof. By Theorem 2.21, \sqrt{I} is a translation ideal of X, so by Remark 2.20, $(X/\sqrt{I},*,0)$ is a BCH-algebra.

In Corollary 2.22, we proved that if I is a closed ideal of X, then X/\sqrt{I} is a BCH-algebra. In the next proposition we show that it has no non zero nilpotent elements.

Proposition 2.23. Let J be a closed ideal of X and $I = \sqrt{J}$. Then BCH-algebra $(X/I, *, I_0)$ does not have any non zero nilpotent elements.

Proof. Let $I_x \in X/\sqrt{0}$. Then

$$I_x$$
 is nilpotent $\Leftrightarrow I_0 * I_x^n = I_0$, for some $n \in \mathbb{N}$ \Leftrightarrow $I_{0*x^n} = I_0$
 \Leftrightarrow $0 * x^n, 0 * (0 * x^n) \in I$.

Therefore, $0 * (0 * x^n)^m \in J$ and $0 * (0 * (0 * x^n))^t \in J$, for some $n, t \in \mathbb{N}$. By $0 * (0 * x^n)^m \in J$ and Lemma 2.1(ii), one has $0 * (0 * x^{mn}) \in J$. Also by Lemma2.1 and 1.6(i), the following hold:

$$0 * (0 * x)^{mn} = 0 * (0 * x^{mn}) \in J. (1)$$

By $0 * (0 * (0 * x^n))^t \in J$ and Lemma 1.6(i), we have

$$0*(0*(0*x^{nt}) = 0*(0*(0*x^n)^t) = 0*(0*(0*x^n))^t \in J.$$

and so Lemma 2.1(i), implies that

$$0 * (0 * (0 * x^{nt})) = 0 * x^{nt} \in J (2) .$$

It follows from (1),(2) and Corollary 2.4 that $0 * x, x \in \sqrt{J} = I$. Thus $I_0 = I_x$. Therefore, I_0 is the only nilpotent element of X/I.

Proposition 2.24. For any $x, y, z \in X$, we have $((x * y) * (x * z)) * (z * y) \in N(X)$. Moreover, $\{((x * y) * (x * z)) * (z * y) | x, y, z \in X\} \subseteq \sqrt{I}$, for all ideal I of X.

Proof. Let $x, y, z \in X$. Then Lemma 1.6(i), implies

$$0*(((x*y)*(x*z))*(z*y)) = (((0*x)*(0*y))*((0*x)*(0*z)))*((0*z)*(0*y)).$$

By Lemma 1.9, $f_0(X)$ is a BCI-algebra, thus

$$(((0*x)*(0*y))*((0*x)*(0*z)))*((0*z)*(0*y)) = 0$$

Therefore, 0*(((x*y)*(x*z))*(z*y)) = 0. That is $(((x*y)*(x*z))*(z*y)) \in N(X)$. Now, let I be an ideal of X. Then by Proposition 2.13(ii), $N(X) \subseteq \sqrt{I}$ and so $\{((x*y)*(x*z))*(z*y)|x,y,z\in X\}\subseteq \sqrt{I}$. It completes the proof of this proposition.

Corollary 2.25. Let I be a closed ideal of X. Then $(X/J,*,J_0)$ is a P-semisimple BCI-algebra, where $J=\sqrt{I}$.

Proof. By Corollary 2.22, $(X/J,*,J_0)$ is a BCH- algebra. Let $J_x,J_y,J_z\in X/J$. Then

$$((J_x * J_y) * (J_x * J_z)) * (J_z * J_y) = J_{((x*y)*(x*z))*(z*y)}.$$

By Proposition 2.24, $((x*y)*(x*z))*(z*y) \in J$. Since J is a closed ideal of X, we obtain $J_{((x*y)*(x*z))*(z*y)} = J_0$. Hence $((J_x*J_y)*(J_x*J_z))*(J_z*J_y) = J_0$. It follows that $(X/J,*,J_0)$ is a BCI-algebra. Now, by Proposition 2.23, $(X/J,*,J_0)$ does not have any nilpotent element and so BCK-part of X/J is the set $\{I_0\}$. Therefore, $(X/J,*,J_0)$ is a P-semisimple BCI-algebra.

Remark 2.26. We know that each abelian group induces a P-semisimple BCI-algebra and the opposite process is still true (See [21]). Hence Corollary 2.25, implies for any closed ideal I of BCH-algebra X we can find an abelian group. It is (X/J,.), where $J=\sqrt{I}$ and $J_x.J_y=J_{x*(0*y)}$, for all $x,y\in X$.

Theorem 2.27. Let I and J be two ideals of X, such that $I \subseteq J$ and let I be a translation ideal of X. Then J/I is an ideal of X, where $J/I = \{I_x | x \in J\}$. Moreover, $I_x \in J/I$ if and only if $x \in J$ (See [18]).

Theorem 2.28. Let H be a subalgebra of X and K be a closed ideal of X. Then $\frac{H\sqrt{K}}{\sqrt{K}} \cong \frac{H}{H\cap \sqrt{K}}$, where $H\sqrt{K} = \bigcup \{(\sqrt{K})_h | h \in H\}$.

Proof. Let $I = \sqrt{K}$. By Theorem 2.7, I is a closed ideal of X and so $I_0 = \{x \in X | x * 0, 0 * x \in I\} = I$. Hence $I \subseteq H\sqrt{K}$. If $x, y \in H\sqrt{K}$, then there are $a, b \in H$ such that $x \in I_a$ and $y \in I_b$ and so $I_x = I_a$ and $I_y = I_b$. Hence $x * y \in I_{x*y} = I_{a*b}$ and $a * b \in H$. It follows that $x * y \in H\sqrt{K}$, so $H\sqrt{K}$ is a subalgebra of X containing \sqrt{K} . Thus by Corollary 2.22, $\frac{H\sqrt{K}}{\sqrt{K}}$ is a BCH-algebra. Since \sqrt{K} is a translation ideal of X, then $H \cap \sqrt{K}$ is a translation ideal of H and so by Remark 2.20, $\frac{H}{H\cap \sqrt{K}}$ is a BCH-algebra. Define $\varphi: H \to HI$ by $\varphi(h) = I_h$, for all $h \in H$. It is easily seen that, φ is a homomorphism. Let $I_x \in \frac{HI}{I}$. Then there exists $h \in H$ such that $x \in I_h$. Therefore, $I_x = I_h$ and so $I_x = \varphi(x) = \varphi(h)$. Thus φ is epimorphism. Moreover,

$$x \in ker\varphi \Leftrightarrow I_x = \varphi(x) = I_0 \Leftrightarrow x * 0 \in I \Leftrightarrow x \in H \cap I.$$

Therefore, $Ker(\varphi) = H \cap I$. Now, by Theorem 1.11, we have $\frac{H\sqrt{K}}{\sqrt{K}} \cong \frac{H}{H \cap \sqrt{K}}$.

Theorem 2.29. Let K and A be two closed ideals of X and $A \subseteq K$. Suppose that $\sqrt{K}/\sqrt{A} = \{(\sqrt{A})_x | x \in \sqrt{K}\}$. Then $\frac{X}{\sqrt{K}} \cong \frac{X/\sqrt{A}}{\sqrt{K}/\sqrt{A}}$.

Proof. By Corollary 2.22, $\frac{X}{\sqrt{K}}$ and $\frac{X}{\sqrt{A}}$ are BCH-algebras. Now, let $f: \frac{X}{\sqrt{A}} \to \frac{X}{\sqrt{K}}$ be defined by $(\sqrt{A})_x \mapsto (\sqrt{K})_x$. If $(\sqrt{A})_x = (\sqrt{A})_y$, for $x, y \in X$, then $x*y, y*x \in \sqrt{A}$. Since $A \subseteq K$, by Proposition 2.13(ii), we have $x*y, y*x \in \sqrt{K}$. Hence $(\sqrt{K})_x = (\sqrt{K})_y$. Thus f is well defined. Clearly, f is

an epimorphic. Now, let $(\sqrt{A})_x \in Ker(f)$. Then $(\sqrt{K})_x = (\sqrt{K})_0$ and so $x \in \sqrt{K}$. Hence $(\sqrt{A})_x \in \sqrt{K}/\sqrt{A}$. On the other hand, if $(\sqrt{A})_x \in \sqrt{K}/\sqrt{A}$, then $x \in \sqrt{K}$. Since \sqrt{K} is closed, we have $(\sqrt{K})_x = (\sqrt{K})_0$. Hence $(\sqrt{A})_x \in Ker(f)$. Therefore, $Ker(f) = \sqrt{K}/\sqrt{A}$. Now, by Theorem 1.11, we have $\frac{X}{\sqrt{K}} \cong \frac{X/\sqrt{A}}{\sqrt{K}/\sqrt{A}}$.

Acknowledgement. The authors would like to express their sincere thanks to the referees for their valuable comments and suggestions.

References

- A. Borumand Saeid , Redefined fuzzy subalgebra (with thresholds) of BCK/BCIalgebras, Iranian Journal of Mathematical Sciences and Informatics, 4(2), (2009), 9-24.
- A. Borumand saeid and A. Namdar, On n-fold Ideals in BCH-algebras and Computation Algorithms, World Applied Sciences Journal, 7, (2009), 64-69.
- M. A. Chaudhry and H. Fakhar-ud-din, On some classes of BCH-algebras, IJMMS, 25(3), (2001), 205-211.
- M. A. Chaudhry and H. Fakhar-ud-din, Some Categorical Aspects of BCH-Algebras, IJMMS, 27, (2003), 1739-1750.
- K. H. Dar and M. Akram, On Endomorphism of BCH-Algebra, Annals of University of Craiova, Comp. Sci. Ser, 33, (2006), 227-234.
- W. A. Dudek and Y. B. Jun, Radical Theory in BCH-Algebras, Algebra and Discrete Mathematics, 1, (2002), 69-78.
- W. A. Dudek and R. Rousseau, Set Theoretics Relations and BCH-Algebras With Trivial Structure, Univ. uNovom Sadu Zb. Rad. Prirod.-Mat. Fak. ser. Mat, 25 (1), (1995), 75-82.
- S. Ghorbani, Quotient BCI-algebras induced by pseudo-valuations, Iranian Journal of Mathematical Sciences and Informatics, 5(2), (2010), 13-24.
- M. Golmohamadian and M. M. Zahedi, BCK-algebras and hyper BCK-algebras induced by deterministic finite automaton, Iranian Journal of Mathematical Sciences and Informatics, 4(1), (2009), 79-98.
- 10. Q. P. Hu and X. Li , On BCH -algebras, $Math.\ Seminar\ Notes,\ {\bf 11}$, (1983), 313-320.
- 11. Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica, 30, (1985), 659-661.
- 12. W. P. Huang, Nil-Radical in BCI-Algebras, Math. Japonica, 37, (1992), 363-366.
- Y. Imai and K. Iséki, On Axiom System of Propositional Calculi, XIV, Japan Acad, 42, (1966), 19-22.
- K. Iséki, An Algebra Rrelated With a Propositional Calculus, Japan Acad, 42, (1966), 26-29.
- 15. Y. B. Jun, A Note on Nil Ideals in BCI-Algebras, $Math.\ Japonica,$ 38, (1993), 1017-1021.
- Y. B. Jun and E. H. Roh, Nil Subsets in BCH-Algebras, East Asian Math. Japonica, 22, (2006), 207-213.
- 17. E. H. Roh, Radical Approach in BCH-Algebras, IJMMS, 70, (2004), 3885-3888.
- E. H. Roh, S. Y. Kim and Y. B. Jun, On a Proplem in BCH-Algebras, Math. Japonica, 52 (2),(2000), 279-283.
- T. Roudabri and L. Torkzadeh, A topology on BCK-algebras via left and right stabilizers, Iranian Journal of Mathematical Sciences and Informatics, 4(2), (2009), 1-8.

- $20.\ \, \text{T. Roudbari and M. M. Zahedi} \;, \\ \text{Some result on simple hyper K-algebras}, \\ \textit{Iranian Journal of Mathematical Sciences and Informatics}, \; \mathbf{3}(2), \; (2008), \; 29\text{-}48.$
- 21. H. Yisheng, $BCI\text{-algebra},\,Science\,Press,\,China,\,(2006).$