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Abstract. In this paper, for any ideal I of BCH-algebra X, we introduce

the concept of
√
I and show that it is an ideal of X, when I is a closed

ideal. Then we verify some useful properties of it and prove that it is

the union of all k−nil ideals of I. Moreover, if I is a closed ideal of X,

then
√
I is a closed translation ideal and so we can construct a quotient

BCH-algebra. We prove this quotient BCH-algebra is a P-semisimple

BCI-algebra and so it is an abelian group. Finally, we use the concept

of radical in order to construct the second and the third isomorphism

theorems.

Keywords: Ideal, radical, Quotient BCH-algebra, Maximal, Translation.

2000 Mathematics subject classification: 06F35, 03G25.

1. Introduction and Preliminaries

In 1966, Imai and Iséki [13, 14] introduced two classes of abstract algebras

: BCK-algebras and BCI-algebras. It is well-known that the class of BCK-

algebras is a proper subclass of the class of BCI-algebras. Since then many

authors work on various aspects of these algebras such as hyper and fuzzy struc-

ture [1, 8, 9, 20], topological view [19]. In 1983, Hu and Li [10, 11] introduced

a new class of algebras so-called BCH-algebras. They proved that the class

of BCI-algebras is a proper subclass of BCH-algebras. They studied some

properties of this algebra. In [6], Dudek and Jun introduced the notion of k-nil
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radical in BCH-algebras. They showed that when I is a translation ideal of

X , then the k-nil radical of I is also a translation ideal of X . In this paper, we

generalize this concept and define the notion of radical in BCH-algebras. We

prove that in any BCH-algebra (BCI-algebra) the radical (the k-nil radical)

of a closed ideal (of an ideal) is a translation ideal. Then we verify some prop-

erties of radical and use it to construct a BCH-algebra without any nilpotent

elements.

Definition 1.1. [10, 11] A BCH-algebra is an algebra (X, ∗, 0) of type (2, 0)

satisfying the following conditions:

(BCH1) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(BCH2) x ∗ x = 0,

(BCH3) x ∗ y = 0 and y ∗ x = 0 imply y = x .

In any BCH-algebra X , the following hold: for any x, y ∈ X ,

(BCH4) x ∗ 0 = x,

(BCH5) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y),
(BCH6) 0 ∗ (0 ∗ (0 ∗ x)) = 0 ∗ x.

The set P = {x ∈ X |0 ∗ (0 ∗ x) = x} is called P-semisimple part of X . A

BCH-algebra X is said to be P-semisimple if P = X .

A BCH-algebra X is called BCI-algebra if ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

for all x, y, z ∈ X . The set B = {x ∈ X |0 ∗ x = 0} is called the BCK-

part of X . Moreover, if X is a BCI-algebra and B = {0}, then X is a P-

semisimple BCI-algebra. We will also use the following notation for simplicity:

x ∗ yn = (...(x ∗
n time

︷ ︸︸ ︷

y) ∗ ...) ∗ y, where x, y ∈ X and n ∈ N. A BCI-algebra X is

called nilpotent if for any x ∈ X there is n ∈ N such that 0 ∗ xn = 0.

Definition 1.2. [10, 11] A non-empty subset I of a BCH-algebra X is called

an ideal if 0 ∈ I and y ∗ x ∈ I and x ∈ I imply y ∈ I, for all x, y ∈ X . An

ideal I is called proper, if I 6= X and it is called closed, if x ∗ y ∈ I, for all

x, y ∈ I. If S is a subset of X , then the least ideal of X containing S is called

the generated ideal of X by S and is denoted by 〈S〉. If X is a BCH-algebra,

I and J are ideals of X , then we use I + J to denote the ideal of X generated

by I ∪ J .

Theorem 1.3. [21] A BCI-algebra X is nilpotent if and only if all ideals of

X are closed.

Theorem 1.4. [21] Let S be a nonempty subset of a BCI-algebra X and

A = {x ∈ X |(...((x∗a1)∗a2)∗ ...)∗an = 0, for some n ∈ N and a1, ..., an ∈ S }
Then 〈S〉 = A ∪ {0}. If S contains a nilpotent element, then 〈S〉 = A.
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Note 1.5. If I is a closed ideal of BCH-algebra X and x ∈ I, then 0 ∗ x ∈ I.

Moreover, if J is an ideal of BCH-algebra X such that 0∗x ∈ J , for any x ∈ J ,

then by (BCH1), (x ∗ y) ∗ x = 0 ∗ y ∈ J , for any x, y ∈ J . Since J is an ideal,

then x ∗ y ∈ J , for any x, y ∈ J . Therefore, J is a closed ideal of X .

Lemma 1.6. [6] Let X be a BCH-algebra. Then the following hold:

(i) 0 ∗ (0 ∗ x)n=0 ∗ (0 ∗ xn), for any n ∈ N,

(ii) 0 ∗ (x ∗ y)n=(0 ∗ xn) ∗ (0 ∗ yn), for any n ∈ N.

Definition 1.7. [18] Let X and Y be two BCH-algebras. A map f : X → Y

is called a BCH-homomorphism if f(x ∗ y) = f(x) ∗ f(y), for all x, y ∈ X .

Clearly, if f is a BCH-homomorphism, then f(0) = 0.

Lemma 1.8. Let X be a BCH-algebra. Then the map fn : X → X, is defined

by fn(x) = 0 ∗ xn, is a BCH-homomorphism, for all n ∈ N.

Proof. See Lemma 1.6(ii). �

Lemma 1.9. [5] Let X be a BCH-algebra and f0 be the map is defined in

Lemma 1.8, Then f0(X) is a BCI-algebra.

Note 1.10. Let A be an ideal of a BCI-algebra X . Define a binary relation θ

on X as follows: (x, y) ∈ θ if and only if x∗ y, y ∗x ∈ A, for all x, y ∈ X . Then,

θ is a congruence relation and it is called the congruence relation induced by A.

We usually denote Ax for [x] = {y ∈ X |(x, y) ∈ θ}. Moreover A0 is the greatest

closed ideal of X contained in A. Set X/A = {Ax|x ∈ X}. Then (X/A, ∗, A0)

is a BCI-algebra, where Ax ∗Ay = Ax∗y, for all x, y ∈ X (See [21]).

Theorem 1.11. [18] Let X,Y be two BCH-algebras and f : X → Y be a

BCH-algebra homomorphism. Then f(X) ∼= X/Ker(f).

Theorem 1.12. [21] Let A be a closed ideal of a BCI-algebra X, I(X,A) be

the collection of all ideals of X containing A and I(X/A) be the collection of

all ideals of X/A. Then ϕ : I(X,A) → I(X/A), defined by I 7→ I/A, is a

bijection.

Theorem 1.13. [4] The category of BCH-algebras has arbitrary products.

Let {Xj|j ∈ J} be a family of BCH-algebras. Then
∏

j∈J

Xj = {(xj)j∈J |xj ∈

Xj, ∀j ∈ J} is the product of this family.

Definition 1.14. Let (X, ., 0) be an abelian group. Then (X, ∗, 0) is a P-

semisimple BCI-algebra, where x ∗ y = x.y−1, for all x, y ∈ X . This BCI-

algebra is called the adjoint BCI-algebra of (X, ., 0) (See [21], Example 1.3.1.).

From now on, in this paper, we assume X = (X, ∗, 0) be a BCH-algebra ,

unless otherwise stated.
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2. Radical in BCH-algebras

In 1992, W. P. Huang [12] introduced the notion of nil ideal in BCI-algebras.

In 1999, E. H. Roh and Y. B. Jun introduced nil ideals in BCH-algebras. They

introduced nil subsets using nilpotent elements. Then W. A. Dudek and Y. B.

Jun [6] introduced the notion of k-nil radicals in BCH-algebras. They showed

that, if I is an ideal of X , then k-nil radical of I is an ideal, too. Moreover,

k-nil radical of a translation ideal is again a translation ideal.

Lemma 2.1. For any x ∈ X and n,m ∈ N, the following hold:

(i) 0 ∗ (0 ∗ (0 ∗ xn)) = 0 ∗ xn.

(ii) 0 ∗ (0 ∗ xn)m = 0 ∗ (0 ∗ xnm).

Proof. (i) Let x ∈ X and n ∈ N. Then

0 ∗ (0 ∗ (0 ∗ xn)) = 0 ∗ (0 ∗ (0 ∗ x)n), by Lemma 1.6(i)

= 0 ∗ (0 ∗ (0 ∗ x))n, by Lemma 1.6(i)

= (0 ∗ (0 ∗ (0 ∗ x))) ∗ (0 ∗ (0 ∗ x))n−1

= (0 ∗ x) ∗ (0 ∗ (0 ∗ x))n−1
, by (BCH6)

= ((0 ∗ x) ∗ (0 ∗ (0 ∗ x))) ∗ (0 ∗ (0 ∗ x))n−2

= ((0 ∗ (0 ∗ (0 ∗ x))) ∗ x) ∗ (0 ∗ (0 ∗ x))n−2
, by (BCH1)

= (0 ∗ x2) ∗ (0 ∗ (0 ∗ x))n−2
, by (BCH6)

...

= (0 ∗ xn−1) ∗ (0 ∗ (0 ∗ x))

= (0 ∗ (0 ∗ (0 ∗ x))) ∗ xn−1
, by (BCH1)

= (0 ∗ x) ∗ xn−1
, by (BCH6)

= 0 ∗ xn
.

(ii) Suppose that x ∈ X and n,m ∈ N. Then

0 ∗ (0 ∗ xn)m = (...(0 ∗

m time

︷ ︸︸ ︷

(0 ∗ xn)) ∗ ...) ∗ (0 ∗ xn)

= (...((0 ∗ (0 ∗ xn)) ∗

m−1 time

︷ ︸︸ ︷

(0 ∗ xn)) ∗ ...) ∗ (0 ∗ xn)

= (...((0 ∗ (0 ∗ x)n) ∗

m−1 time

︷ ︸︸ ︷

(0 ∗ xn)) ∗ ...) ∗ (0 ∗ xn), by Lemma 1.6(i)

= ((...(0 ∗

m−1 time

︷ ︸︸ ︷

(0 ∗ xn)) ∗ ...) ∗ (0 ∗ xn)) ∗ (0 ∗ x)n, by (BCH1)

= ((...(0 ∗

m−2 time

︷ ︸︸ ︷

(0 ∗ xn)) ∗ ...) ∗ (0 ∗ xn)) ∗ (0 ∗ x)2n

...

= 0 ∗ (0 ∗ x)mn
.

Now, by Lemma 1.6(i), we obtain 0 ∗ (0 ∗ xn)m = 0 ∗ (0 ∗ xnm). �
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Definition 2.2. Let I be an ideal of X . The set

{x ∈ X | 0 ∗ xn ∈ I and 0 ∗ (0 ∗ xn) ∈ I, for some n ∈ N}
is called the radical of I and is denoted by

√
I.

Example 2.3. Let (Z,−, 0) be the adjoint BCI-algebra of the abelian group

(Z,+, 0). Let Y = {0, b, c, d}. Define the binary operation “∗′” on Y by the

following table:

Table 1

∗′ 0 b c d

0 0 0 0 0

b b 0 d d

c c 0 0 c

d d 0 0 0

Then (Y, ∗′, 0) is a BCH-algebra (See [3], Example 2.3). Now, let X =

Z ∪ {b, c, d} and define the operation “*” on X , by

x ∗ y =







x− y if x, y ∈ Z,

x ∗′ y if x, y ∈ Y,

−y if x ∈ Y, y ∈ Z− {0},
x if x ∈ Z, y ∈ Y.

Clearly, ∗ is well-defined and x∗x = 0, for any x ∈ X . Let x∗y = 0 = y ∗x, for
some x, y ∈ X . Since (Y, ∗′, 0) and (Z,−, 0) are BCH-algebras, then x, y ∈ Z

or x, y ∈ Y , implies x = y. If x ∈ Y and y ∈ Z − {0}, then 0 = x ∗ y = −y

and so y = 0. On the other hand, 0 = x ∗ y = x ∗ 0 = x. Hence x = y. By a

similar way if x ∈ Z− {0} and y ∈ Y , then 0 = x ∗ y = x and so x = 0. Hence

“*” satisfies in (BCH3). Moreover, if x, y, z ∈ X . Then clearly, x, y, z ∈ Y or

x, y, z ∈ Z implies (x∗y)∗z = (x∗z)∗y. If x ∈ Z, then (x∗y)∗z = x = (x∗z)∗y.
Now, let x ∈ Y . If y = 0 or z = 0, then clearly, (x ∗ y) ∗ z = (x ∗ z) ∗ y. Let

y, z ∈ Z− {0}, then (x ∗ y) ∗ z = −y − z = −z − y = (x ∗ z) ∗ y. If y ∈ Y , then

(x∗y)∗z = (x∗′y)∗z = −z = −z∗y = (x∗z)∗y. Finally, if z ∈ Y and y ∈ Z, then

(x∗y)∗z = (−y)∗z = −y = (x∗z)∗y. Therefore, (X, ∗, 0) is aBCH-algebra. Let

I = {0}. If x ∈ Z, then 0 ∗xn = 0 implies −nx = 0 and so x = 0, for all n ∈ N.

Hence
√
I = {x ∈ X |0 ∗ xn = 0, 0 ∗ (0 ∗ xn) = 0 for some n ∈ N} = {0, b, c, d}.

Corollary 2.4. If I is a closed ideal, then
√
I = {x ∈ X | 0 ∗ xn ∈ I, for some n ∈ N}.

Definition 2.5. [6] Let I be a non-empty subset of X . Then the set k
√
I =

{x ∈ X |0 ∗ xk ∈ I} is called the k-nil radical of I.

In Corollary 2.6 we will obtain the relation between
√
I and n

√
I, for any

n ∈ N.
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Corollary 2.6. Let I be a closed ideal of X. Then,

(i)
√
I =

⋃

n∈N

n
√
I.

(ii) If x, y ∈
√
I, then there exists m ∈ N such that, x, y ∈ m

√
I.

Proof. (i) Let x ∈ X . Then

x ∈
√
I ⇔ 0 ∗ xn, 0 ∗ (0 ∗ xn) ∈ I, for some n ∈ N

⇔ 0 ∗ xn ∈ I, since I is a closed ideal

⇔ x ∈ n
√
I, for some n ∈ N .

Therefore,
√
I =

⋃

n∈N

n
√
I, for some n ∈ N.

(ii) Let x, y ∈
√
I. Then there are s, t ∈ N such that, 0 ∗ xs, 0 ∗ (0 ∗ xs) ∈ I

and 0 ∗ yt, 0 ∗ (0 ∗ yt) ∈ I. Since I is closed, we have 0 ∗ (0 ∗ xs)t ∈ I and

0∗(0∗yt)s ∈ I. Now, Lemma 2.1(ii), implies 0∗(0∗xst) ∈ I and 0∗(0∗yts) ∈ I

and so 0 ∗ (0 ∗ (0 ∗ xst)) ∈ I and 0 ∗ (0 ∗ (0 ∗ yts)) ∈ I. Hence by Lemma 2.1(i),

we have 0 ∗ xst, 0 ∗ yts ∈ I, so x, y ∈ st
√
I. �

Theorem 2.7. Let I be a closed ideal of X. Then
√
I is a closed ideal of X.

Proof. Obviously, 0 ∈
√
I. Let x, y ∈ X such that x ∗ y, y ∈

√
I. Since I is

closed, so by Corollary 2.4, 0∗(x∗y)n ∈ I and 0∗ym ∈ I, for some n,m ∈ N. By

lemma 2.1(ii), we have (0∗ (0∗ (x∗y)2n)) = (0∗ (0∗ (x∗y))n)∗ (0∗ (x∗y))n ∈ I.

By a similar argument we get that (0 ∗ (0 ∗ (x ∗ y)mn)) ∈ I. Since I is a closed

ideal of X , 0∗(0∗(0∗(x∗y)mn))) ∈ I. Then, by Lemma 2.1(i), 0∗(x∗y)mn ∈ I.

Likewise, we can we obtain 0 ∗ ymn ∈ I. Since I is an ideal of X , by Lemma

1.6, 0∗xmn ∈ I and so x ∈
√
I. Hence

√
I is an ideal of X . Now, let x, y ∈

√
I.

By a similar way as the proof of the last part, we can obtain 0 ∗ xmn ∈ I and

0 ∗ ymn ∈ I, for some m,n ∈ N. Hence,0 ∗ (x ∗ y)mn = (0 ∗xmn) ∗ (0 ∗ ymn) ∈ I

and so x ∗ y ∈
√
I. Therefore,

√
I is a closed ideal of X . �

Definition 2.8. An element x of X is called nilpotent if 0 ∗ xn = 0, for some

n ∈ N. The set of all nilpotent elements of X is denoted by N(X) or
√
0.

Proposition 2.9.
√
0 is a closed ideal of X.

Proof. Since I = {0} is a closed ideal of X , then by Theorem 2.7,
√
0 is a closed

ideal of X . �

Example 2.10. (i) Let (G, ., e) be the cyclic group of order three, X = (Z, ∗, 0)
and Y = (G, ∗, e) be the adjoint BCI-algebras of the abelian groups (Z,+, 0),

and (G, ., 0) respectively. Then by Theorem 1.13, we have X × Y is a BCH-

algebra. In X × Y , we have (0, e) ∗ (x, e)n 6= (0, e), for all x ∈ Z\{0}. Hence

(x, e) /∈
√

(0, e), for all x ∈ Z\{0}. Also, (0, e) ∗ (0, y)3 = (0, e), for all y ∈ G.

Therefore,
√

(0, e) is a proper ideal of X × Y .

(ii) Let X = (R, ∗, 0) be the adjoint BCI-algebra of abelian group (R,+, 0).
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That is x ∗ y = x + (−y), for all x, y ∈ R. Let a ∈ Q, where Q is the set of

all rational numbers and 〈{a,−a}〉 be the ideal generated by {a,−a}. Then

〈{a,−a}〉 = {x ∈ X | x∗an = 0, for some n ∈ N} = {...,−2a,−a, 0, a, 2a, 3a, ...}
and so

√

〈{a,−a}〉 = {x ∈ R| 0 ∗ xn ∈ 〈{a,−a}〉, ∃n ∈ N}
= {x ∈ R| − (nx) = ±ma, ∃n,m ∈ N}
= {±m

n
a| n,m ∈ N} ⊆ Q.

Therefore,
√

〈{a,−a}〉 is a proper ideal of (R, ∗, 0).

In Proposition 2.11, we want to verify relation between
√
I and the set of

all nilpotent elements of X/I, for any ideal I of X .

Proposition 2.11. Let X be a BCI-algebra, I be an ideal of X and Ix is

an equivalence class of X containing x with respect to the congruence relation

which is defined in Note 1.10, for any x ∈ X. Then
√
I = {x ∈ X | Ix ∈

N(X/I)}.

Proof. Let x ∈ X . Then

Ix ∈ N(X/I) ⇔ I0 ∗ Inx = I0, for some n ∈ N

⇔ I0∗xn = I0

⇔ 0 ∗ xn, 0 ∗ (0 ∗ xn) ∈ I

⇔ x ∈
√
I.

Hence
√
I = {x ∈ X | Ix ∈ N(X/I)}. �

Theorem 2.12. Let X be a BCI-algebra and I be an ideal of X. Then
√
I is

a closed ideal of X.

Proof. Let y, x ∗ y ∈
√
I. Then by Proposition 2.11, Ix∗y, Iy ∈ N(X/I). By

Proposition 2.9, we obtain Ix ∈ N(X/I). Now, Proposition 2.11, implies x ∈√
I. Hence

√
I is an ideal of X .

Let x, y ∈
√
I. Then Proposition 2.11 implies that Ix, Iy ∈ N(X/I). Now, by

proposition 2.11, we have Ix∗y = Ix ∗ Iy ∈ N(X/I). Therefore, x ∗ y ∈
√
I. �

In the next proposition, we try to obtain some useful properties of radical

in BCH-algebras.

Proposition 2.13. Let I and J be two ideals of X. Then the following asser-

tions hold:

(i) If I is a closed ideal of X, then I ⊆
√
I.

(ii) If I ⊆ J , then
√
I ⊆

√
J .

(iii) If I and J are closed, then
√
I ∩ J =

√
I ∩

√
J .
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(iv) If I is a closed or X is a BCI-algebra, then
√√

I =
√
I.

(v) Let Y be a BCH-algebra, and f : X → Y be a BCH-homomorphism. If

I is an ideal of X and J is an ideal of Y , then
√

f−1(J) = f−1(
√
J) and

f(
√
I) ⊆

√

f(I). Moreover, if f is onto and kerf ⊆ I, then f(
√
I) =

√

f(I).

Proof. (i) Let x ∈ I. Since I is closed, then 0 ∗ x ∈ I and so x ∈
√
I.

(ii) Straightforward.

(iii) Since I and J are closed ideals, I ∩ J is also a closed ideal. Now, let

x ∈
√
I ∩ J . Then by Corollary 2.6(i), there is an n ∈ N such that 0 ∗ xn, 0 ∗

(0 ∗ xn) ∈ I ∩ J and so x ∈
√
I ∩

√
J . Hence, we have

√
I ∩ J ⊆

√
I ∩

√
J .

Let x ∈
√
I ∩

√
J . Then, there exist m,n ∈ N such that 0 ∗ xn ∈

√
I and

0 ∗ xm ∈
√
J . By using the proof of Theorem 2.7, we have 0 ∗ xmn ∈ I ∩ J .

Since I ∩ J is a closed ideal of X , then x ∈
√
I ∩ J . Hence

√
I ∩ J =

√
I ∩

√
J .

(iv) Let I be a closed ideal of X . Then by (i), I ⊆
√
I and so (ii), implies√

I ⊆
√√

I. Now, let x ∈
√√

I. Then there exists n ∈ N such that 0∗xn ∈
√
I.

Likewise, there is m ∈ N such that 0∗(0∗xn)m ∈ I. By Lemma 2.1(ii), we have

0 ∗ (0 ∗ xmn) ∈ I. Since I is closed we obtain 0 ∗ xmn = 0 ∗ (0 ∗ (0 ∗ xmn)) ∈ I.

Hence x ∈
√
I, whence

√
I ⊆

√√
I. Now, let X be a BCI-algebra and I be

an ideal of X . Then by (i), (ii), and Theorem 2.12, we have
√
I ⊆

√√
I. Let

J =
√
I and x ∈

√
J . Then there exists n ∈ N such that, 0∗xn, 0∗ (0∗xn) ∈ J .

Thus, 0 ∗ (0 ∗ xn)m, 0 ∗ (0 ∗ (0 ∗ xn)m) ∈ I, for some m ∈ N. Also, by Lemma

2.1(ii), we have 0 ∗ (0 ∗ xn)m = 0 ∗ (0 ∗ xnm) and 0 ∗ (0 ∗ (0 ∗ xn)m) = 0 ∗ xmn.

Hence 0 ∗ xmn, 0 ∗ (0 ∗ xmn) ∈ I and so x ∈
√
I = J . Therefore,

√
J = J .

(v) Let x ∈ X . Then

x ∈
√

f−1(J) ⇔ 0 ∗ xn, 0 ∗ (0 ∗ xn) ∈ f−1(J), for some n ∈ N

⇔ f(0) ∗ f(x)n, f(0) ∗ (f(0) ∗ f(x)n) ∈ J, for some n ∈ N

⇔ 0 ∗ f(x)n, 0 ∗ (0 ∗ f(x)n) ∈ J, for some n ∈ N

⇔ f(x) ∈
√
J ⇔ x ∈ f−1(

√
J).

Hence f−1(
√
J) =

√

f−1(J).

Let b ∈ f(
√
I). Then there exists a ∈

√
I such that f(a) = b and so 0 ∗ an ∈

I and 0 ∗ (0 ∗ an) ∈ I, for some n ∈ N. Since f is a homomorphism, we

have 0 ∗ f(a)n, 0 ∗ (0 ∗ f(a)n) ∈ f(I). Hence, b = f(a) ∈
√

f(I), whence

f(
√
I) ⊆

√

f(I). Now, let f be an onto homomorphism such that kerf ⊆ I

and y ∈
√

f(I). Then there exists m ∈ N such that 0 ∗ ym ∈ f(I) and

0 ∗ (0 ∗ ym) ∈ f(I). Since f is onto, then y = f(x), for some x ∈ X and

so f(0 ∗ xm) = 0 ∗ f(x)m = 0 ∗ ym ∈ f(I). Hence there is b ∈ I, such that

f(0 ∗ xm) = f(b) and so f((0 ∗ xm) ∗ b) = f(0 ∗ xm) ∗ f(b) = 0. It follows

that (0 ∗ xm) ∗ b ∈ kerf ⊆ I. Since b ∈ I, then 0 ∗ xm ∈ I. By a similar way

we have 0 ∗ (0 ∗ xm) ∈ I and so x ∈
√
I. Therefore, y = f(x) ∈ f(

√
I), so

√

f(I) ⊆ f(
√
I). �
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Proposition 2.14. Let I and J be two closed ideals of BCI-algebra X. Then√
I + J =

√√
I +

√
J .

Proof. Since I, J are closed ideals, we have I ⊆
√
I and J ⊆

√
J and so

I + J ⊆
√
I +

√
J . Hence by Proposition 2.13(ii),

√
I + J ⊆

√√
I +

√
J . Let

u ∈
√√

I +
√
J . Then 0 ∗ un ∈

√
I +

√
J , for some n ∈ N. By Theorem 1.4,

there are m ∈ N and a1, ..., am ∈
√
I such that

(...((0 ∗ un) ∗ a1) ∗ ...) ∗ am ∈
√
J , (1)

By Corollary 2.6(ii), we can find s ∈ N such that 0 ∗ asi ∈ I, for all i ∈
{1, 2, ...,m}. On the other hand, (1) implies there is t ∈ N such that 0 ∗
((...((0 ∗un)∗a1)∗ ...)∗am)t ∈ J . Since I and J are closed ideals of X , likewise

the proof of Theorem 2.7, we have 0 ∗ atsi ∈ I, for all i ∈ {1, 2, ...,m} and

0 ∗ ((...((0 ∗ un) ∗ a1) ∗ ...) ∗ am)ts ∈ J and so by Lemma 1.6(ii),

(...((0 ∗ (0 ∗ un)ts) ∗ (0 ∗ ats1 )) ∗ ...) ∗ (0 ∗ atsm) ∈ J , (2) .

Since I is an ideal of X and 0 ∗ atsi ∈ I, for all i ∈ {1, 2, ...,m}, then 0 ∗
(0 ∗ un)st ∈ I + J . Hence 0 ∗ un ∈

√
I + J and so u ∈

√√
I + J . Hence by

Proposition 2.13(iv), u ∈
√
I + J . Summing up the above statements, we get√

I + J =
√√

I +
√
J . �

The following example shows that if, I and J are not closed then, Proposition

2.14 may not be true.

Example 2.15. Let X = (Z,−, 0) be the BCI-algebra in Example 2.10(i).

Assume that I = {0, 3, 6, 9, ...} and J = {0,−3,−6,−9, ...}. Then clearly, I

and J are ideals of X . Since 9, 6 ∈ I and 6 ∗ 9 = −3 /∈ I, I is not closed. By a

similar way, we can deduced that J is not closed. Moreover,
√
I = {x ∈ X | 0 ∗ xn, 0 ∗ (0 ∗ xn) ∈ I, for some n ∈ N }

= {x ∈ X | nx,−nx ∈ I, for some n ∈ N }
= {0}.

Similarly, we can obtain
√
J = {0}. Therefore,

√√
I +

√
J =

√

{0} = {0}.
Also we have

I + J = 〈{3,−3}〉 = {x ∈ Z| x ∗ an = 0, for some n ∈ N, a ∈ {3,−3} }
= {...,−6,−3, 0, 3, 6, ...}.

Hence
√
I + J = {x ∈ Z| 0 ∗ xn, 0 ∗ (0 ∗ xn) ∈ I + J, for some n ∈ N } = Z.

Therefore,
√
I + J 6=

√√
I +

√
J .

Proposition 2.16. Let M be a maximal ideal of a BCI-algebra X such that

M is closed. Then
√
M = X.
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Proof. Since M is a closed ideal of X , then by Theorem 1.12, {M/M,X/M} is

the set of all ideals of X/M . Hence all ideal of X/M are closed (M/M is a zero

ideal of X/M and so it is closed). Thus, by Theorem 1.3, X/M is nilpotent

and so

∀x ∈ X, ∃n ∈ N such that M0 ∗Mn
x = M0 ⇒ M0∗xn = M0.

Hence for all x ∈ X , 0 ∗ xn ∈ M and so
√
M = X . �

In the next example, we will show that if the ideal M is not closed, then

Proposition 2.16 may not be true, in general.

Example 2.17. Let X be the BCI-algebra in Example 2.15, and let M =

N ∪ {0}. Clearly, M is not closed (Since 2 ∗ 3 = 2 − 3 = −1) and M is a

maximal ideal of X (See [21], Example 5.3.2). Let x ∈ X . Then

x ∈
√
M ⇔ 0 ∗ xn, 0 ∗ (0 ∗ xn) ∈ M

⇔ 0− nx ∈ M and 0− (0− nx) ∈ M

⇒ nx,−nx ∈ M

⇔ x = 0.

Therefore,
√
M = {0}.

By Note 1.10, if I is an ideal of BCI-algebra X , then the relation θ =

{(x, y) ∈ X ×X |x ∗ y, y ∗ x ∈ I}, is a congruence relation of X , but it is not

true for BCH-algebra in general case.

Example 2.18. Let X = {0, a, b, c, d, e, f, g, h, i, j, k}. Define the binary oper-

ation “*” on X by the following table:

Table 2

* 0 a b c d e f g h i j k

0 0 0 0 0 0 0 0 0 h h h h

a a 0 a 0 a 0 a 0 h h h h

b b b 0 0 f f f f i h k k

c c b a 0 g f g f i h k k

d d d 0 0 0 0 d d j h h j

e e e a 0 a 0 e d j h h j

f f f 0 0 0 0 0 0 k h h h

g g f a 0 a 0 a 0 k h h h

h h h h h h h h h 0 0 0 0

i i i h h k k k k b 0 f f

j j j k k k k j j d 0 0 d

k k k h h h h h h f 0 0 0
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Then (X, ∗, 0) is a BCH-algebra (See [2] Example 7). Let I = {0, b, d, f}.
Clearly, I is an ideal of X . Let θ = {(x, y) ∈ X × X |x ∗ y, y ∗ x ∈ I}. Then

c ∗ a = b and a ∗ c = 0 and so (a, c) ∈ θ. Moreover, e ∗ c = 0 and c ∗ e = f and

so (e, c) ∈ θ. But, (c∗ c, e∗a) = (0, e) /∈ θ. It follows that θ is not a congruence

relation on X .

Definition 2.19. [18] A translation ideal of X is an ideal U of X such that:

∀x, y, z ∈ X, x ∗ y ∈ U, y ∗ x ∈ U ⇒ (x ∗ z) ∗ (y ∗ z) ∈ U, (z ∗ x) ∗ (z ∗ y) ∈ U.

Remark 2.20. Let U be a translation ideal of BCH-algebra X . Then the

relation θ, was defined in Note 1.10, is a congruence relation on X . By Ux we

denote the equivalence class containing x and by X/U we denote the set of all

equivalence classes with respect to this congruence relation. Then (X/U, ∗, U0)

is a BCH-algebra, where Ux ∗ Uy = Ux∗y, for all x, y ∈ X . Moreover, kerf is

a translation ideal for any BCH-homomorphism f (See [18]).

Dudek and Jun in [6], prove that if U is a translation ideal of X , then so is
n
√
U , for any n ∈ N. In Theorem 2.21, we will show that if I is a closed ideal

of X , then n
√
I is a translation ideal of X , for any n ∈ N.

Theorem 2.21. Let I be a closed ideal of X. Then,

(i) n
√
I is a translation ideal of X, for all n ∈ N.

(ii)
√
I is a translation ideal of X.

Proof. (i) Let x, y, z ∈ I, such that x ∗ y, y ∗ x ∈ n
√
I. Then 0 ∗ (x ∗ y)n ∈ I and

0 ∗ (y ∗ x)n ∈ I. By Lemma 1.9, we have

([(0∗(0∗xn))∗(0∗(0∗zn))]∗[(0∗(0∗yn))∗(0∗(0∗zn))])∗[(0∗(0∗xn))∗(0∗(0∗yn))] = 0.

Since I is a closed ideal, then 0 ∗ (0 ∗ (x ∗ y)n) ∈ I and so by Lemma 1.6(ii),

(0 ∗ (0 ∗ xn)) ∗ (0 ∗ (0 ∗ yn)) ∈ I. Hence [(0 ∗ (0 ∗ xn)) ∗ (0 ∗ (0 ∗ zn))] ∗ [(0 ∗ (0 ∗
yn)) ∗ (0 ∗ (0 ∗ zn))] ∈ I. Now, since I is closed, then 0 ∗ ([(0 ∗ (0 ∗xn)) ∗ (0 ∗ (0 ∗
zn))] ∗ [(0 ∗ (0 ∗ yn)) ∗ (0 ∗ (0 ∗ zn))]) ∈ I, so Lemma 2.1(i) and 1.6, imply that

0 ∗ ((x ∗ z) ∗ (y ∗ z))n = [(0 ∗ xn) ∗ (0 ∗ zn)] ∗ [(0 ∗ yn) ∗ (0 ∗ zn)] ∈ I.

Hence, (x ∗ z) ∗ (y ∗ z) ∈ n
√
I. By a similar way, (z ∗ x) ∗ (z ∗ y) ∈ n

√
I. Thus,

n
√
I is a translation ideal of X .

(ii) Let x, y, z ∈ X such that x ∗ y, y ∗ x ∈
√
I. By Corollary 2.6(ii), there is

n ∈ N such that x∗y, y∗x ∈ n
√
I and so by (i), (x∗z)∗(y∗z), (z∗x)∗(z∗y) ∈ n

√
I.

Hence, by Corollary 2.6(i), (x ∗ z) ∗ (y ∗ z), (z ∗x) ∗ (z ∗ y) ∈
√
I. Therefore,

√
I

is a translation ideal of X . �

Corollary 2.22. Let I be a closed ideal of X. Then (X/
√
I, ∗, (

√
I)0) is a

BCH-algebra.

Proof. By Theorem 2.21,
√
I is a translation ideal of X , so by Remark 2.20,

(X/
√
I, ∗, 0) is a BCH-algebra. �
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In Corollary 2.22, we proved that if I is a closed ideal of X , then X/
√
I

is a BCH-algebra. In the next proposition we show that it has no non zero

nilpotent elements.

Proposition 2.23. Let J be a closed ideal of X and I =
√
J . Then BCH-

algebra (X/I, ∗, I0) does not have any non zero nilpotent elements.

Proof. Let Ix ∈ X/
√
0. Then

Ix is nilpotent ⇔ I0 ∗ Inx = I0, for some n ∈ N ⇔ I0∗xn = I0

⇔ 0 ∗ xn, 0 ∗ (0 ∗ xn) ∈ I.

Therefore, 0 ∗ (0 ∗ xn)m ∈ J and 0 ∗ (0 ∗ (0 ∗ xn))t ∈ J , for some n, t ∈ N.

By 0 ∗ (0 ∗ xn)m ∈ J and Lemma 2.1(ii), one has 0 ∗ (0 ∗ xmn) ∈ J . Also by

Lemma2.1 and 1.6(i), the following hold:

0 ∗ (0 ∗ x)mn = 0 ∗ (0 ∗ xmn) ∈ J. (1)

By 0 ∗ (0 ∗ (0 ∗ xn))t ∈ J and Lemma 1.6(i), we have

0 ∗ (0 ∗ (0 ∗ xnt) = 0 ∗ (0 ∗ (0 ∗ xn)t) = 0 ∗ (0 ∗ (0 ∗ xn))t ∈ J.

and so Lemma 2.1(i), implies that

0 ∗ (0 ∗ (0 ∗ xnt) = 0 ∗ xnt ∈ J (2) .

It follows from (1),(2) and Corollary 2.4 that 0 ∗ x, x ∈
√
J = I. Thus I0 = Ix.

Therefore, I0 is the only nilpotent element of X/I. �

Proposition 2.24. For any x, y, z ∈ X, we have ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) ∈
N(X). Moreover, {((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y)| x, y, z ∈ X} ⊆

√
I, for all ideal I

of X.

Proof. Let x, y, z ∈ X . Then Lemma 1.6(i), implies

0∗(((x∗y)∗(x∗z))∗(z∗y)) = (((0∗x)∗(0∗y))∗((0∗x)∗(0∗z)))∗((0∗z)∗(0∗y)).

By Lemma 1.9, f0(X) is a BCI-algebra, thus

(((0 ∗ x) ∗ (0 ∗ y)) ∗ ((0 ∗ x) ∗ (0 ∗ z))) ∗ ((0 ∗ z) ∗ (0 ∗ y)) = 0

Therefore, 0∗(((x∗y)∗(x∗z))∗(z∗y)) = 0. That is (((x∗y)∗(x∗z))∗(z∗y)) ∈
N(X). Now, let I be an ideal of X . Then by Proposition 2.13(ii), N(X) ⊆

√
I

and so {((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y)|x, y, z ∈ X} ⊆
√
I. It completes the proof of

this proposition. �

Corollary 2.25. Let I be a closed ideal of X. Then (X/J, ∗, J0) is a P-

semisimple BCI-algebra, where J =
√
I.
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Proof. By Corollary 2.22, (X/J, ∗, J0) is a BCH- algebra. Let Jx, Jy, Jz ∈
X/J . Then

((Jx ∗ Jy) ∗ (Jx ∗ Jz)) ∗ (Jz ∗ Jy) = J((x∗y)∗(x∗z))∗(z∗y).

By Proposition 2.24, ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) ∈ J . Since J is a closed ideal of

X , we obtain J((x∗y)∗(x∗z))∗(z∗y) = J0. Hence ((Jx ∗Jy) ∗ (Jx ∗Jz)) ∗ (Jz ∗Jy) =
J0. It follows that (X/J, ∗, J0) is a BCI-algebra. Now, by Proposition 2.23,

(X/J, ∗, J0) does not have any nilpotent element and so BCK-part of X/J is

the set {I0}. Therefore, (X/J, ∗, J0) is a P-semisimple BCI-algebra. �

Remark 2.26. We know that each abelian group induces a P-semisimple BCI-

algebra and the opposite process is still true (See [21]). Hence Corollary 2.25,

implies for any closed ideal I of BCH-algebra X we can find an abelian group.

It is (X/J, .), where J =
√
I and Jx.Jy = Jx∗(0∗y), for all x, y ∈ X .

Theorem 2.27. Let I and J be two ideals of X, such that I ⊆ J and let I be

a translation ideal of X. Then J/I is an ideal of X, where J/I = {Ix|x ∈ J}.
Moreover, Ix ∈ J/I if and only if x ∈ J (See [18]).

Theorem 2.28. Let H be a subalgebra of X and K be a closed ideal of X.

Then H
√
K√
K

∼= H
H∩

√
K
, where H

√
K =

⋃{(
√
K)h|h ∈ H}.

Proof. Let I =
√
K. By Theorem 2.7, I is a closed ideal of X and so I0 =

{x ∈ X |x ∗ 0, 0 ∗ x ∈ I} = I. Hence I ⊆ H
√
K. If x, y ∈ H

√
K, then there

are a, b ∈ H such that x ∈ Ia and y ∈ Ib and so Ix = Ia and Iy = Ib. Hence

x ∗ y ∈ Ix∗y = Ia∗b and a ∗ b ∈ H . It follows that x ∗ y ∈ H
√
K, so H

√
K is

a subalgebra of X containing
√
K. Thus by Corollary 2.22, H

√
K√

K
is a BCH-

algebra. Since
√
K is a translation ideal ofX , thenH∩

√
K is a translation ideal

of H and so by Remark 2.20, H
H∩

√
K

is a BCH-algebra. Define ϕ : H → HI

by ϕ(h) = Ih, for all h ∈ H . It is easily seen that, ϕ is a homomorphism. Let

Ix ∈ HI
I . Then there exists h ∈ H such that x ∈ Ih. Therefore, Ix = Ih and so

Ix = ϕ(x) = ϕ(h). Thus ϕ is epimorphism. Moreover,

x ∈ kerϕ ⇔ Ix = ϕ(x) = I0 ⇔ x ∗ 0 ∈ I ⇔ x ∈ H ∩ I.

Therefore, Ker(ϕ) = H ∩ I. Now, by Theorem 1.11, we have H
√
K√
K

∼= H
H∩

√
K
.

�

Theorem 2.29. Let K and A be two closed ideals of X and A ⊆ K. Suppose

that
√
K/

√
A = {(

√
A)x|x ∈

√
K}. Then X√

K
∼= X/

√
A√

K/
√
A
.

Proof. By Corollary 2.22, X√
K

and X√
A

are BCH-algebras. Now, let f : X√
A
→

X√
K

be defined by (
√
A)x 7→ (

√
K)x. If (

√
A)x = (

√
A)y, for x, y ∈ X , then

x ∗ y, y ∗ x ∈
√
A. Since A ⊆ K, by Proposition 2.13(ii), we have x ∗ y, y ∗

x ∈
√
K. Hence (

√
K)x = (

√
K)y. Thus f is well defined. Clearly, f is
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an epimorphic. Now, let (
√
A)x ∈ Ker(f). Then (

√
K)x = (

√
K)0 and so

x ∈
√
K. Hence (

√
A)x ∈

√
K/

√
A. On the other hand, if (

√
A)x ∈

√
K/

√
A,

then x ∈
√
K. Since

√
K is closed, we have (

√
K)x = (

√
K)0. Hence (

√
A)x ∈

Ker(f). Therefore, Ker(f) =
√
K/

√
A. Now, by Theorem 1.11, we have

X√
K

∼= X/
√
A√

K/
√
A
. �
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