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1. Introduction

An important application of ultrafilters is the ultraproduct construction and

 Los theorem which also leads to an algebraic proof of the compactness theorem.

A basic fact used in this construction is that ultralimits of sequences of elements

in compact sets exist. In particular, if (xi)i∈I , is a sequence of elements in the

unit interval and U is an ultrafilter on I, then limi,U xi exists (i.e. the unique

x such that for every open x ∈ U , {i : xi ∈ U} ∈ U). Moreover, ultralimits

are preserved by continuous functions. It turns out that, in the interval case,

ultralimits coincide with integration with respect to the corresponding 0 − 1

valued measure. Integration preserves only linear maps. However, it makes

sense for arbitrary finitely additive measures (see [4]). This fact was used in [2]

to prove a linear variant of  Los theorem. In this paper, we use this theorem to
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prove a linear variant of compactness theorem for the fragment of continuous

logic obtained by restricting to linear connectives.

Ultrafilters are also widely used in set theory. Rudin-Keisler ordering (see

[8] and [7]) is a way of comparing complexity of ultrafilters. This relation can

be characterized by means of embeddings between ultrapowers of first order

models. So, higher in this ordering, bigger ultrapowers generates the ultrafilter.

This ordering can be defined for maximal probability charges in a similar way.

We show that the extended ordering is characterized by means of embeddings

between power ultrameans in a similar way.

In the next section, we introduce linear formulas and state the ultramean

theorem. We then use it to prove the linear compactness theorem and also

axiomatizability theorem. In the third section we study Rudin-Keisler ordering

on maximal probability charges.

2. Ultramean and compactness

We assume the reader is familiar with continuous logic (see [3]). In the stan-

dard presentation, the unit interval is used as value space. We first introduce

the fragment of continuous logic obtained by restricting to linear connectives.

For this purpose, we need to shift from the unit interval to the real line. So, we

use R as value space and, addition + and scalar multiplication by r, for each

r ∈ R, as connectives. We also use the quantifier symbol ‘sup’. The quantifier

‘inf’ is an abbreviation for − sup−. As usual, we have an infinite list x, y, z, . . .

of individual variables. Compactness of the value space is a crucial requirement

which is retained locally by imposing bounds on formulas.

Let L be a first order language consisting of constant symbols and function

and relation symbols of various arities. We always assume it contains a distin-

guished binary relation symbol d for metric. Suppose to each function symbol

F is assigned a Lipschitz constant λF > 0 and also to each relation symbol

R is assigned a Lipschitz constant λR > 0 and a bound bR > 0 (we may put

bd = λd = 1). With such a data L is called a Lipschitz language.

Let L be a Lipschitz language. Below, if (M,d) is a metric space, we put

the metric on Mn defined by d(ā, b̄) =
∑
i d(ai, bi).

Definition 2.1. An L-prestructure is a pseudo-metric space (M,d) of diameter

at most bd equipped with:

- for each c ∈ L, an element cM ∈M
- for each n-ary function symbol F a function FM : Mn →M such that

d(FM (ā), FM (b̄)) 6 λF d(ā, b̄) ∀ā, b̄

- for each n-ary relation symbol R a function RM : Mn → [−bR,bR] such

that

RM (ā)−RM (b̄) 6 λRd(ā, b̄) ∀ā, b̄.
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So, for example, RM is λR-Lipschitz and bounded by bR. L-terms and their

Lipschitz constants are inductively defined as follows:

- constant symbols and variables are terms with Lipschitz con-

stants respectively 0 and 1;

- if F is a n-ary function symbol and t1, . . . , tn are terms

with Lipschitz constants respectively λt1 , . . . , λtn , then t =

F (t1, . . . , tn) is a term with Lipschitz constant λt = λF · (λt1 +

· · ·+ λtn).

L-formulas and their Lipschitz constants and bounds are inductively defined

as follows:

- for each r ∈ R, r is an atomic formula with Lipschitz constant

0 and bound |r|;
- if R is a n-ary relation symbol and t1, . . . , tn are terms

then R(t1, . . . , tn) is an atomic formula with Lipschitz constant

λR · (λt1 + . . .+ λtn) and bound bR;

- if φ, ψ are formulas and r, s ∈ R then rφ+ sψ is a formula

with Lipschitz constant |r|λφ + |s|λψ and bound |r|bφ + |s|bψ;

- supx φ is a formula with Lipschitz constant λφ and bound

bφ.

The notion of free variable and the notation φ(x1, . . . , xn) have their obvious

meanings. A sentence is a formula without free variable. For every prestructure

M , the value of a term t(x̄) at ā ∈ M , denoted by tM (ā), is defined in the

usual way (by induction). For each formula φ(x̄), the interpretation of φ in M

is defined by induction and is a real valued function denoted by φM (x̄). It is

easily seen that with |x̄| = n

Proposition 2.2. φM (x̄) is λφ-Lipschitz function on Mn bounded by bφ.

Interesting prestructures are those which are complete metric spaces. They

are called L-structures. Every prestructure can be easily transformed to an L-

structure by first forming the quotient metric and then completing. By uniform

continuity, interpretations of function and relation symbols induce well-defined

function and relations on the resulting complete metric space. We state the

main result and refer the reader to [3] for further details.

Proposition 2.3. Let M be a prestructure in a language L. Then there exists

an L-structure M and a map π : M → M such that π[M ] is dense in M and

for every formula φ(x̄)

φM (a1, . . . , ak) = φM (πa1, . . . , πak) ∀a1, . . . , ak ∈M.

From now on M,N, . . . denote structures in the language L.

Definition 2.4. M,N are elementarily equivalent, denoted by M ≡ N , if for

every sentence σ, σM = σN . A function f : M → N is an embedding if for
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each quantifier-free formula φ(x̄) and ā ∈ M , owe have φM (ā) = φN (f(ā)).

It is an elementary embedding if this condition holds for every formula. Sub-

structure relation M ⊆ N and elementary substructure relation M � N are

defined in the obvious way.

Let L be a (Lipschitz) language. Expressions of the form φ 6 ψ and φ = ψ,

where φ, ψ are formulas, are called a conditions. They are called closed if φ, ψ

are sentences. A theory is a set of closed conditions. The notions M � (φ 6
ψ)(ā) and M � T are defined in the obvious way. A theory T is said to be

linearly closed if for every finite number of conditions φ1 6 ψ1, ..., φk 6 ψk
in T and real numbers r1, ..., rk > 0, the condition

∑
i riφi 6

∑
i riψi belongs

to T . The set of all such combinations is called the linear closure of T . Note

that T and its linear closure are equivalent, i.e. have the same models. If

T consists of equalities, we may allow the above coefficients to be negative.

The corresponding closure set is again equivalent to T . A theory T is linearly

satisfiable if every member of its linear closure has a model.

We now define the ultramean construction (see [2] for further details) and use

it to prove linear compactness theorem. Let I be a nonempty set. A probability

charge on I is a finitely additive measure ℘ : B → [0, 1] where B is a Boolean

algebra of subsets of I. It is called maximal if B = P(I). Ultrafilters may be

regarded as 0 − 1 valued maximal charges. Let ℘ be a maximal probability

charge on I. For each i ∈ I let (Mi, di) be an L-structure. For a, b ∈
∏
iMi set

d(a, b) =

∫
di(ai, bi) d℘

where the integration is according to the theory of D-integration with respect

to finitely additive measures [4]. Then d is a pseudometric on
∏
iMi and

d(a, b) = 0 an equivalence relation on it. The equivalence class of (ai) is

denoted by [ai] and the quotient set by N =
∏
℘Mi. The metric induced on

N is denoted again by d. We define an L-structure on N as follows. For each

relation symbol R (say unary for simplicity) set

RN ([ai]) =

∫
RMi(ai)d℘.

Then RN is a λR-Lipschitz function:

RMi(ai) 6 R
Mi(bi) + λRd(ai, bi)∫

RMi(ai) di 6
∫
RMi(bi) di+ λR

∫
d(ai, bi) di

RN ([ai]) 6 R
N ([bi]) + λRd([ai], [bi]).

Also, for each function symbol F (say unary again) set

FN ([ai]) = [FMi(ai)].
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One then verifies easily that for each term t(x̄) and a1i , ..., a
n
i ∈Mi one has that

tN ([a1i ], ..., [a
n
i ]) = [tMi(a1i , ..., a

n
i )].

Proof of the following theorem can be found in [2].

Theorem 2.5. (Ultramean theorem) For every linear formula φ(x1, ...xn) and

[a1i ], ..., [a
n
i ]

φN ([a1i ], ..., [a
n
i ]) =

∫
φMi(a1i , ..., a

n
i )d℘.

If Mi = M for all i, the ultramean is denoted by M℘ and is called the power

ultramean.

Corollary 2.6. The diagonal embedding d : M →M℘ is elementary.

To prove the linear compactness theorem, we need two known results from

analysis. Let E be partially ordered vector space. A subspace G is called

majorizing if for every x ∈ E there is a y ∈ G such that x 6 y.

Theorem 2.7. (Kantorovich, [1], Th. 1.32) Let E be an ordered vector spaces

and F a Dedekind complete Riesz space. Let G be a majorizing vector subspace

of E and Λ : G → F a positive linear map. Then Λ has an extension to a

positive linear map on E.

Theorem 2.8. ([4], Th 4.7.4) Let F be a field of subsets of a set I and Λ

be a continuous positive linear functional on C(I,F) (the set of F-continuous

functions on I). Then there exists a unique bounded positive charge µ on F
such that for every f ∈ C(I,F)

Λ(f) =

∫
fdµ.

Further, ||Λ|| = sup{|Λ(f)| ; |f | ≤ 1} = µ(I).

In case F = P(I), C(I,F) is the space of all bounded real functions on I

and is a Banach lattice with the sup-norm.

Theorem 2.9. Let T be a set of conditions of the form φ = r. Assume every

linear combination of conditions in T is satisfiable. Then T is satisfiable.

Proof. Without loss of generality assume that T is linearly closed and contains

the conditions r = r for all r ∈ R. Let I = {φ : ∃r φ = r ∈ T} and for each

φ ∈ I let φT be the unique r such that φ = r ∈ T . For each φ ∈ I let Mφ be a

model of φ = φT and set

φ̄ : I → R, φ̄(ψ) = φMψ

Let G = {φ̄ : φ ∈ I}. Then G is a majorizing linear subspace of C(I, P (I)).

Let

Λ0(φ̄) = φT .
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Then Λ0 is a positive linear functional on G with Λ0(1) = 1 and hence by

Theorem 2.7 has an extension to positive linear functional Λ on C(I,P(I))

(which is necessarily continuous). By Theorem 2.8, there is a probability charge

℘ on P(I) such that for each f ∈ C(I,P(I))

Λ(f) =

∫
fd℘.

Therefore, if φ = r ∈ T , we have that

r = Λ(φ̄) =

∫
φMid℘ = φ

∏
℘Mi

and hence
∏
℘Mi (as well as its completion) is a model of T . �

To obtain a more general form of linear compactness, we need first to com-

plete T . Note that, by using a suitable ultraproduct over N, one can show that

if for each ε > 0, the theory T, θ > −ε is linearly satisfiable, then T, θ > 0

is linearly satisfiable. A linearly satisfiable theory T is complete if for every

sentence φ there is a (unique) real number r such that φ = r ∈ T .

Lemma 2.10. Every linearly satisfiable theory is contained in a complete one.

Proof. We may assume T is linearly closed. We first show that for each θ,

either T, θ > 0 or T,−θ > 0 is linearly satisfiable. Suppose not. Then, there

are r, r′, s, s′ > 0, ε > 0 and η > 0, η′ > 0 in T such that every model satisfies

rη + sθ 6 −ε and r′η′ − s′θ 6 −ε. Since s, s′ and hence r+ r′ can be not zero,

this leads easily to a contradiction. Now, use Zorn’s lemma to find a maximal

linearly satisfiable T̄ ⊇ T . Given a sentence φ, let α = sup {r : r 6 φ ∈ T̄} and

β = inf {s : φ 6 s ∈ T̄}. So, by maximality, α 6 φ 6 β belongs to T̄ . Also,

for each ε > 0 we have that (α + ε) 6 φ /∈ T̄ . So, φ 6 α + ε ∈ T̄ . Therefore,

β 6 α+ ε and since ε is arbitrary, β = α. �

Theorem 2.11. (Linear compactness) Let T be a linearly satisfiable set of

conditions of the form φ 6 ψ. Then T is satisfiable.

As a special case, if both σ 6 0 and σ > 0 have model, then σ = 0 has a

model. Note that finite satisfiability implies linear satisfiability so that linear

compactness is a stronger result than ordinary compactness. One can also

easily verify that if T � φ > 0 then for each ε > 0 there exists a finite ∆ ⊆ T

such that ∆ � φ > −ε. A class K of L-structures is elementary if there exists

a theory T such that K = Mod(T ).

Theorem 2.12. (Axiomatizability) A class K is elementary if and only if it

is closed under ultramean and elementary equivalence.

Proof. Let us prove the nontrivial direction. Assume K is closed under ultra-

mean and elementary equivalence. Let T = Th(K), i.e. the set of conditions
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holding in every M ∈ K. We show that K = Mod(T ). Clearly, K � T .

Conversely assume M is an arbitrary model of T . Note that for each σ > 0 in

Th(M), there exists N ∈ K such that N � σ > 0. Since, otherwise, K � σ 6 −ε
for some ε > 0 and hence M � σ 6 −ε which is a contradiction. Now, every

condition in Th(M) is satisfiable in K. Hence, by the proof of Theorem 2.11,

M is elementarily equivalent to an ultramean of members of K. So, by the

assumptions, M ∈ K. �

We end this section by reviewing the situation in many sorted case. Usually,

structures in analysis are unbounded and must be considered as many sorted

ones. For example, a Banach spaceX can be considered as a structure
(
(Bn|n >

1), 0, {Imn}m<n, {r·}r∈R,+, ‖ ‖
)

where Bn is the ball of radius n in X, Imn :

Bm → Bn is the inclusion map, + : B2
m → B2m etc. In the many sorted

situation, terms are defined in the natural way. If R is a relation symbol

of sort 〈s1, ..., sn〉 and t1, ..., tn are terms of sorts s1, ..., sn respectively, then

R(t1, ..., tn) is a formula. We can then add formulas, multiply them by scalars

or quantify over variables of any sort as usual.

Let Mi = {Ms,i}s∈S , i ∈ I, be a family of many sorted structures in a

language L. Let ℘ be a maximal probability charge on I. For each s ∈ S,

set Ms =
∏
℘Ms,i as a metric space. Then an L-structure is defined on M =

{Ms}s∈S in the natural way. For example, let R be a relation symbol of sort

(s1, ..., sk). Then, for [ak] of sort sk, k = 1, ..., n,

RM ([a1], ..., [an]) =

∫
RMi(a1i , ..., a

n
i ) d℘.

The reader can then state similar variants of the ultramean, diagonal embed-

ding, compactness and axiomatizability theorems. The last one helps us to

prove that the theory of Hilbert spaces is not expressible linearly. Let I = {0, 1}
with ℘(0) = ℘(1) = 1

2 . If H is a Hilbert space, then
∏
℘H is a Banach space

but its norm does not satisfy the parallelogram law. For example, if H = R
and a = (1, 0), b = (0, 1) then 2 = ‖a+ b‖2 + ‖a− b‖2 6= 2‖a‖2 + 2‖b‖2 = 1.

3. Rudin-Keisler ordering for maximal charges

The Rudin-Keisler ordering is an important ordering defined on ultrafilters.

Let U and F be ultrafilters on I and J respectively. Write F ≤RK U if there

exists f : I → J such that for every X ⊆ J , X ∈ F if and only if f−1(X) ∈ U .

Then ≤RK is a preordering on the class of all ultrafilters. Set U ≡RK F if

F ≤RK U and U ≤RK F . This defines an equivalence relation on ultrafilters.

Rudin-Keisler ordering has a close connection to elementary embeddings in

first order logic. It can be shows that F ≤RK U if and only if for every first

order language L and L-structure M , MF is elementarily embeddable in MU .

Similarly, U ≡RK F if and only if MU 'MF for all M (see [7], [5]). We extend
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this ordering to the class of maximal probability charges and investigate linear

variants of these theorems.

Let (I,B, ℘) be a charge space and f : I → J a function. Then f(℘)

is the charge on J defined by f(℘)(X) = ℘(f−1(X)) for every X ⊆ J for

which f−1(X) ∈ B. To relate maximal probability charges to linear elemen-

tary embeddings, we need the change of variables formula for finitely additive

measures.

Proposition 3.1. (Change of variables) Let (I, ℘), (J, ν) be charge spaces and

f : I → J be a function such that f(℘) = ν. Then for each bounded D-integrable

function u : J → R ∫
J

u dν =

∫
I

u ◦ f d℘.

Proof. The claim holds for simple functions and can be extended to other

integrable functions as in the classical case (see [9] Prop 15.1). �

Definition 3.2. Let ℘ and ν be maximal probability charges on I and J re-

spectively. We write ν ≤ ℘ if there exists f : I → J such that ν = f(℘). We

write ℘ ≡ ν if ℘ ≤ ν and ν ≤ ℘.

It is clear that ≤ coincides with the Rudin-Keisler ordering on ultrafilters.

Moreover, ≤ is a preordering and ≡ is an equivalence relation on the class of

maximal probability charges. If ℘ is an ultrafilter and ν ≤ ℘ then ν is an

ultrafilter. So, ultrafilters form an initial segment in this partial ordering.

Let ν ≤ ℘ via the function f : I → J and M be an L-structure. Define a

map f∗ : Mν →M℘ as follows:

f∗([a]ν) = [a ◦ f ]℘ ∀a ∈
∏
J

M.

Lemma 3.3. f∗ is an elementary embedding.

Proof. Let φ(x1, ..., xn) be a formula and a1, ..., an ∈
∏
JM . Then by the

ultramean theorem

φM
ν

([a1]ν , ..., [a
n]ν) =

∫
φM (a1(j), ..., an(j)) dν.

=

∫
φM
(
(a1 ◦ f)(i), ..., (an ◦ f)(i)

)
d℘

= φM
℘

([a1 ◦ f ]℘, ..., [a
n ◦ f ]℘)

= φM
℘

(f∗([a1]ν), ..., f∗([an]ν)).

�

Let J be a nonempty set and L be the first order language consisting of

relation and function symbols for every relation (i.e. a subset on Jn) and

operation on J . Then J is endowed with a first order L-structure in the natural
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way called the complete structure on J . Let us denote the complete structure

on J by M . Note that L is indeed a Lipschitz language. Moreover, every

a ∈M is the interpretation of a constant symbol (i.e. a 0-ary function symbol).

Therefore, every structure linearly elementary equivalent to M contains an

elementary substructure isomorphic to M .

Lemma 3.4. Let ℘ and ν be maximal probability charges on I and J respec-

tively. Let M be the complete structure on J . Then for every elementary

embedding

ξ : Mν →M℘

there exists a unique (up to ℘-null sets) f : I → J such that ν = f(℘) and

ξ = f∗.

Proof. Let id be the identity map on J . Then id determines an element [id]ν of

Mν and ξ([id]ν) ∈ M℘. Let f : I → M be such that [f ]℘ = ξ([id]ν). We show

that ν = f(℘) and ξ = f∗.

Let A ⊆ J . Then we have

χM
ν

A ([id]ν) =

∫
J

χMA (j) dν = ν(A).

On the other hand, since ξ is an elementary embedding, we have that

χM
ν

A ([id]ν) = χM
℘

A (ξ([id]ν)) = χM
℘

A ([f ]℘)

=

∫
I

χMA (f(i)) d℘ =

∫
J

χMA (j) d(f(℘)) = f(℘)(A).

This shows that ν = f(℘). Now, we show that ξ = f∗. Let [a]ν ∈ Mν . Then,

a is also a unary operation on J and

[a]ν = [a ◦ id]ν = [aM (j)]ν = aM
ν

([id]ν).

Again, since ξ is elementary, we have that

ξ([a]ν) = ξ(aM
ν

([id]ν)) = aM
℘

(ξ([id]ν)) = aM
℘

([f ]℘)

= [aM (f(i))]℘ = [a ◦ f ]℘ = f∗([a]ν).

Therefore, ξ = f∗.

For uniqueness, let g : I → J be another function such that ξ = g∗. Then

[f ]℘ = ξ([id]ν) = g∗([id]ν) = [g]℘.

This means that f = g a.e., i.e. ℘{i : |f(i)−g(i)| > ε} = 0 for every ε > 0. �

It is also clear that f∗ is an isomorphism of structures if and only if f induces

an isomorphism of the corresponding measure algebras on I and J (denoted by

℘ ' ν). A consequence of the previous lemmas is that
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Theorem 3.5. Let ℘ and ν be maximal probability charges on I and J respec-

tively. Then ν ≤ ℘ if and only if Mν is elementarily embedded in M℘ for every

M .

Let M be the complete structure on J . Assume ξ : Mν → M℘ is an

isomorphism and η : M℘ → Mν is its inverse. Let f : I → J and g : J → I

be such that f∗ = ξ and g∗ = η. Then (g ◦ f)∗ = f∗ ◦ g∗ = (idI)
∗ and hence

g ◦ f = idI a.e. Similarly, f ◦ g = idJ a.e. We deduce that if M℘ ' Mν for

all M , then ℘ ' ν and hence ℘ ≡ ν. The converse this observation holds

for ultrafilters. This is essentially because ultrafilters are rigid, i.e. have no

nontrivial automorphism (see [5], [6]). This property does not hold for arbitrary

maximal probability charges. Even more, it is quite possible that f is measure

preserving without f∗ being surjective (consider x 7→ 2x mod 1 on the unit

interval, if we suppose all subsets are measurable). For this reason, a positive

answer to the following question seems to be difficult.

Question Is it true that ℘ ≡ ν implies M℘ 'Mν for all M?

On the other hand, the existence of ultrafilters (and hence maximal proba-

bilities) depend on the axiom of choice. So, a possible counterexample to this

question must be nonconstructive and hence difficult. Moreover, even in the

language of pure metric spaces, there is no effective way of verifying two metric

spaces are isometric.

Example 3.6. Let ℘ be a maximal probability charge on a set X. For example,

℘ may be the Lebesgue measure on the unit interval if we put set theoretical

assumptions guaranteeing all subsets of the reals are measurable. Then, R �
R℘ (here we assume R is formalized in the many sorted language of Banach

lattices as in [3]). Since bounded functions are dense in L1(℘), we conclude

that R � R℘ � L1(℘). Moreover, by Theorem 3.5, if ν ≤ ℘ then Rν � R℘ and

hence L1(ν) � L1(℘).
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