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Abstract. The aim of this research work is to define and characterize a

new class of n-ary multialgebra that may be called canonical (m,n)−
hypermodules. These are a generalization of canonical n-ary hypergroups,
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in the context of canonical (m, n)-hypermodules.
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1. Introduction

Dörnte introduced n-ary groups in 1928 [15], which is a natural generaliza-

tion of groups. The notion of n−hypergroups was first introduced by Davvaz

and Vougiouklis as a generalization of n−ary groups [11], and studied mainly by

Davvaz, Dudek and Vougiouklis [13] and many other authors [13, 21, 22]. Gen-

eralization of algebraic hyperstructures (see [14, 18, 24]) especially of n−ary
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hyperstructures is a natural way for further development and deeper under-

standing of their fundamental properties.

Krasner has studied the notion of a hyperring in [19]. Hyperrings are es-

sentially rings, with approximately modified axioms in which addition is a

hyperoperation (i.e., a + b is a set). Then this concept has been studied by

a number of authors. The principal notions of hyperstructure and hyperring

theory can be cited in [6, 7, 10, 12, 25, 26].

(m,n)-rings were studied by Crombez [8], Crombez and Timm [9] and Dudek

[16]. Recently, the notation for (m,n)-hyperrings using was defined by Mirvakili

and Davvaz and they obtained (m,n)-rings from (m,n)-hyperrings using fun-

damental relations [23]. Also, they defined a certain class of (m,n)-hyperrings

called Krasner (m,n)-hyperrings. Krasner (m,n)-hyperrings are a generaliza-

tion of (m,n)-rings and a generalization of Krasner hyperrings [23].

Recently, the reseearch of (m,n)-ary hypermodules over (m,n)-ary hyper-

rings has been initiated by Anvariyeh, Mirvakili and Davvaz who introduced

these hyperstructures in [4]. In addition, in [5], Anvariyeh and Davvaz defined

a strongly compatible relation on a (m,n)−ary hypermodule and determined

a sufficient condition such that the strongly compatible relation is transitive.

In this paper, we consider a new class of n-ary multialgebra and we defined

a certain class of (m,n)−ary hypermodules called canonical (m,n)−ary hyper-

modules. Canonical (m,n)−ary hypermodules can be considered as a natural

generalization of hypermodules with canonical hypergroups and also a gener-

alization of (m,n)−ary modules. In addition, several properties of canonical

(m,n)−hypermodules are presented.

Finally, we adopt the concept of normal (m,n)−ary canonical subhyper-

modules and we prove the isomorphism theorems for canonical (m,n)−ary

hypermodules.

2. Preliminaries and basic definition

Let H be a non-empty set and h be a mapping h : H × H −→ ℘∗(H),

where ℘∗(H) is the set of all non-empty subsets of H. Then h is called a binary

hyperoperation on H. We denote by Hn the cartesian product H × . . . × H,

which appears n times and an element of Hn will be denoted by (x1, . . . , xn),

where xi ∈ H for any i with 1 ≤ i ≤ n. In general, a mapping h : Hn −→ ℘∗(H)

is called an n−ary hyperoperation and n is called the arity of hyperoperation.

Let h be an n−ary hyperoperation on H and A1, . . . , An subsets of H. We

define

h(A1, . . . , An) =
⋃

{h(x1, . . . , xn)|xi ∈ Ai, i = 1, . . . , n}.
We shall use the following abbreviated notations: the sequence xi, xi+1, . . . , xj

will be denoted by xj
i . Also, for every a ∈ H, we write h(a, . . . , a︸ ︷︷ ︸

n

) = h(
(n)
a ) and
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for j < i, xj
i is the empty set. In this convention for j < i, xj

i is the empty set

and also

h(x1, . . . , xi, yi+1, . . . , yj, xj+1, . . . , xn)

will be written as h(xi
1, y

j
i+1, x

n
j+1).

A non-empty set H with an n−ary hyperoperation h : Hn −→ P ∗(H) will

be called an n−ary hypergroupoid and will be denoted by (H,h). An n−ary

hypergroupoid (H,h) is commutative if for all σ ∈ Sn and for every an1 ∈ H ,

we have h(an1 ) = h(a
σ(n)
σ(1) ).

An element e ∈ H is called scalar neutral element, if x = h(
(i−1)
e , x,

(n−i)
e )

for every 1 ≤ i ≤ n and for every x ∈ H.

An n−ary hypergroupoid (H,h) will be an n−ary semihypergroup if and

only if the following associative axiom holds:

h(xi−1
1 , h(xn+i−1

i ), x2n−1
n+i )) = h(xj−1

1 , h(xn+j−1
j ), x2n−1

n+j )),

for every i, j ∈ {1, 2, . . . , n} and x1, x2, . . . , x2n−1 ∈ H.

An n−ary semihypergroup (H,h), in which the equation b ∈ h(ai−1
1 , xi, a

n
i+1)

has the solution xi ∈ H for every a1, . . . , ai−1, ai+1, . . . , an, b ∈ H and 1 ≤ i ≤
n, is called n− ary hypergroup.

IfH is an n−ary groupoid and t = l(n−1)+1, then the t−ary hyperoperation

given by

h(l)(x
l(n−1)+1
1 ) = h(h(. . . , h(h(xn

1 ), x
2n−1
n+1 ), . . .), x

l(n−1)+1
(l−1)(n−1)+2),

will be denoted by h(l).

According to [17], an n-ary polygroup is an n-ary hypergroup (P, f) such

that the following axioms hold for all 1 ≤ i, j ≤ n and x, xn
1 ∈ P :

1. There exists a unique element 0 ∈ P such that x = f(
(i−1)

0 , x,
(n−i)

0 ),

2. There exists a unitary operation − on P such that x ∈ f(xn
1 ) implies

that xi ∈ f(−xi−1, . . . ,−x1, x,−xn, . . . ,−xi+1).

It is clear that every 2-ary polygroup is a polygroup. Every n-ary group

with a scalar neutral element is an n-ary polygroup. Also, Leoreanu-Fotea in

[20] defined a canonical n-ary hypergroup. A canonical n-ary hypergroup is a

commutative n-ary polygroup.

An element 0 of an n-ary semihypergroup (H, g) is called zero element if for

every xn
2 ∈ H we have

g(0, xn
2 ) = g(x2, 0, x

n
3 ) = . . . = g(xn

2 , 0) = 0.

If 0 and 0′ are two zero elements, then 0 = g(0′,
(n−1)

0 ) = 0′ and so zero element

is unique.

A Krasner hyperring [19] is an algebraic structure (R,+, ·) which satisfies

the following axioms:

(1) (R,+) is a canonical hypergroup, i.e.,
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i) for every x, y, z ∈ R, x+ (y + z) = (x+ y) + z,

ii) for every x, y ∈ R, x+ y = y + x,

iii) there exists 0 ∈ R such that 0 + x = x for all x ∈ R,

iv) for every x ∈ R there exists a unique element x′ ∈ R such that

0 ∈ x+ x′;
(We shall write −x for x′ and we call it the opposite of x.)

v) z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y;

(2) Relating to the multiplication, (R, ·) is a semigroup having zero as a

bilaterally absorbing element.

(3) The multiplication is distributive with respect to the hyperoperation

+.

Definition 2.1. [23]. A Krasner (m,n)-hyperring is an algebraic hyperstruc-

ture (R, f, g) which satisfies the following axioms:

(1) (R, f) is a canonical m-ary hypergroups,

(2) (R, g) is a n-ary semigroup,

(3) the n−ary operation g is distributive with respect to the m−ary hy-

peroperation f, i.e., for every ai−1
1 , ani+1, x

m
1 ∈ R, 1 ≤ i ≤ n,

g(ai−1
1 , f(xm

1 ), ani+1) = f(g(ai−1
1 , x1, a

n
i+1), . . . , g(a

i−1
1 , xm, ani+1)),

(4) 0 be a zero element (absorbing element) of n−ary operation g, i.e., for

every xn−1
2 ∈ R, we have

g(0, xn
2 ) = g(x2, 0, x

n
3 ) = . . . = g(xn

2 , 0) = 0.

Example 1. Let (R,+, ·) be a ring and G be a normal subgroup of (R, ·), i.e.,
for every x ∈ R, xG = Gx. Set R̄ = {x̄|x ∈ R}, where x̄ = xG and define

m-ary hyperoperation f and n-ary multiplication g as follows:{
f(x̄1, . . . , x̄m) = {z̄|z̄ ⊆ x̄1 + . . .+ x̄m},
g(x̄1, . . . , x̄n) = x1x2 . . . xn.

It can be verified obviously that (R̄, f, g) is a Krasner (m,n)-hyperring.

Example 2. If (L,∧,∨) is a relatively complemented distributive lattice and

if f and g are defined as:⎧⎨
⎩

f(a1, a2) = {c ∈ L| a1 ∧ c = a2 ∧ c = a1 ∧ a2, a1, a2 ∈ L},
g(a1, . . . , an) = ∨n

i=1ai, ∀an1 ∈ L.

Then it follows that (L, f, g) is a Krasner (2, n)-hyperring.

Definition 2.2. A non-empty set M = (M,h, k) is an (m,n)−ary hypermod-

ule over an (m,n)−ary hyperring (R, f, g), if (M,h) is an m−ary hypergroup

and there exists the map

k : R× . . .×R︸ ︷︷ ︸
n−1

×M −→ ℘∗(M)
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such that

(1) k(rn−1
1 , h(xm

1 )) = h(k(rn−1
1 , x1), . . . , k(r

n−1
1 , xm)),

(2) k(ri−1
1 , f(sm1 ), rn−1

i+1 , x) = h(k(ri−1
1 , s1, r

n−1
i+1 , x), . . . , k(r

i−1
1 , sm, rn−1

i+1 , x)),

(3) k(ri−1
1 , g(ri+n−1

i ), rn+m−2
i+m , x) = k(rn−1

1 , k(rn+m−2
m , x)),

(4) k(ri−1
1 , 0, rn−1

i+1 , x) = 0,

where ri, si ∈ R and x, xi ∈ M .

3. Canonical (m,n)−ary hypermodules

A canonical (m,n)−ary hypermodule (namely canonical (m,n)−hypermodule)

is an (m,n)−ary hypermodule with a canonicalm−ary hypergroup (M,h) over

a Krasner (m,n)-hyperring (R, f, g).

In the following in this paper, an (m,n)−ary hypermodule is a canonical

(m,n)−ary hypermodule.

Example 3. LetM be a module over ring (R,+, ·) andG be a normal subgroup

of (R, ·), then by Example 1, (R̄, f, g) is a Krasner (m,n)-hyperring. Now, we

define on M an equivalence relation ∼ defined as follows:

x ∼ y ⇐⇒ x = ty, t ∈ G.

Let M̄ = {x̄|x ∈ M} be the set of the equivalence classes of M modulo ∼. We

define hyperoperation h and k as follows:

h(x̄1, . . . , x̄m) = {w̄|w̄ ⊆ x̄1 + . . .+ x̄m}, where xm
1 ∈ M

k(r̄1, . . . , r̄n−1, x̄) = r1r2 . . . rn−1x, where rn−1
1 ∈ R and x ∈ M .

It is not difficult to verify that (M̄, h, k) is a canonical (m,n)−hypermodule

over a Krasner (m,n)-hyperring (R̄, f, g).

Example 4. Let (H, f, g) be a Krasner (m,n)-hyperring in Example 1, and

set M = H , h = f and k = g, then (M,h, k) is a canonical (m,n)-hypermodule

over the Krasner (m,n)-hyperring (H, f, g). In general, If R is a Krasner (m,n)-

hyperring, then (R, f, g) is a canonical (m,n)-hypermodule over the Krasner

(m,n)-hyperring R.

Lemma 3.1. Let (M,h, k) be a canonical (m,n)-hypermodule over an (m,n)−ary

hyperring (R, f, g), then

(1) For every x ∈ M, we have −(−x) = x and −0 = 0.

(2) For every x ∈ M , 0 ∈ h(x,−x,
(m−2)

0 ).

(3) For every xm
1 , −h(x1, . . . , xm) = h(−x1, . . . ,−xm), where −A = {−a | a ∈

A}.
(4) For every rn−1

1 ∈ R, we have k(rn−1
1 , 0) = 0.

Proof. (1) x = h(x,
(m−1)

0 ), hence we have 0 ∈ h(−x, x,
(m−2)

0 ) and this means

x ∈ h(−(−x),
(m−1)

0 ) = −(−x).
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(2) x = h(x,
(m−1)

0 ) implies that 0 ∈ h(x,−x,
(m−1)

0 ).

(3) We have

0 ∈ h(x1,−x1,
(m−1)

0 )

⊆ h(2)(x
2
1,−(x2

1),
(2m−5)

0 )

. . .

⊆ h(h(xm
1 ), h(−(xm

1 )),
(m−2)

0 ).

Thus, we obtain

h(−(xm
1 )) ⊆ h(−h(xm

1 ),
(m−1)

0 ) = −h(xm
1 )

and

h(xm
1 ) ⊆ h(−h(−(xm

1 ),
(m−1)

0 ) = −h(−(xm
1 )).

So −h(xm
1 ) ⊆ −(−h(−(xm

1 ))) = h(−(xm
1 )). Hence

−h(x1, . . . , xm) = h(−x1, . . . ,−xm).

(4) We have

k(rn−1
1 , 0) = k(rn−1

1 , k(
(n−1)

0 , 0))

= k(rn−2
1 , g(rn−1,

(n−1)

0 ), 0)

= k(rn−2
1 , 0, 0)

= 0.

�

Let N be a non-empty subset of canonical (m,n)-hypermodule (M,h, k). If

(N, h, k) is a canonical (m,n)-hypermodule, then N called a subhypermodule

of M . It is easily to see that N is a subhypermodule of M if and only if

(1) N is a subhypergroup of the canonical m-ary hypergroup (M,h), i.e.,

(N, h) is a canonical m-ary hypergroup.

(2) For every rn−1
1 ∈ R and x ∈ M , k(rn−1

1 , x) ⊆ N .

Lemma 3.2. A non-empty subset N of a canonical (m,n)-hypermodule is a

subhypermodule if

(1) 0 ∈ N .

(2) For every x ∈ N , −x ∈ N .

(3) For every am1 ∈ N , h(am1 ) ⊆ N .

(4) For every rn−1
1 ∈ R, and x ∈ N , k(rn−1

1 , x) ⊆ N .

Proof. It is straightforward. �

Lemma 3.3. Let M be a canonical (m,n)−hypermodule. Then

(1) If N1, . . . , Nm are subhypermodules of M , then h(Nm
1 ) is a subhyper-

module of M .
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(2) If {Ni}i∈I are subhypermodules of M , then
⋂
i∈I

Ni is a subhypermodule

of M.

(3) If N is a subhypermodule of M and am2 ∈ N , then h(N, am2 ) = N .

Proof. (1) Let N = h(Nm
1 ). Then for every am1 ∈ N we have ai = h(xim

i1 ),

where xij ∈ Nj and 1 ≤ i, j ≤ m. Hence

h(am1 ) = h(h(x1m
11 ), . . . , h(xmm

m1 )), h is commutative and associative,

= h(h(xm1
11 ), . . . , h(xmm

1m )), Ni is a subhypermodule,

⊆ h(N1, . . . , Nm).

Let a ∈ N , then there exists xi ∈ Ni , 1 ≤ i ≤ m such that a = h(xm
1 ). Hence

we obtain −a = −h(xm
1 ) = h(−(xm

1 )) ∈ h(Nm
1 ) = N . Also, 0 = h(

(m)

0 ) ∈
h(Nm

1 ) = N . Therefore (N, h) is a canonical m-ary hypergroup.

Now, let rn−1
1 ∈ R, then

k(rn−1
1 , h(xm

1 )) = h(k(rn−1
1 , x1), . . . , k(r

n−1
1 , xm)) ⊆ h(Nm

1 )

Therefore (N, h, k) is a subhypermodule of M .

(2) It is clear.

(3) SinceN is a subhypermodule, then for every am2 ∈ N, we have h(N, am2 ) ⊆
N. Also, we obtain

N = h(N,
(m−1)

0 ) ∈ h(N, h(am2 , 0),−h(am2 , 0),
(m−3)

0 )

= h(N, h(am2 , 0), h(−(am2 ), 0),
(m−3)

0 )

= h(h(N,−(am2 )), am−1
2 , h(am,

(m−1)

0 ))

⊆ h(N, am2 ).

Therefore N = h(N, am2 ). �

Definition 3.4. A subhypermodule N of M is called normal if and only if for

every x ∈ M ,

h(−x,N, x,
(m−3)

0 ) ⊆ N.

If N is a normal subhypermodule of a canonical (m,n)-hypermodule M ,

then

N = h(N,
(m−1)

0 ) ⊆ h(N, h(−x, x,
(m−2)

0 ),
(m−2)

0 ) = h(−x,N, x,
(m−3)

0 ) ⊆ N.

Thus for every x ∈ M , h(−x,N, x,
(m−3)

0 ) = N .

If s ∈ h(N, x,
(m−2)

0 ), then h(N, s,
(m−3)

0 ) ⊆ h(N, h(N, x,
(m−3)

0 )

= h(N, x,
(m−3)

0 ).
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Also, s ∈ h(N, x,
(m−2)

0 ) implies that r ∈ h(−N, s,
(m−2)

0 ) = h(N, s,
(m−2)

0 )

and so we obtain h(N, x,
(m−2)

0 ) ⊆ h(N, s,
(m−2)

0 ). Therefore we have

s ∈ h(N, x,
(m−2)

0 ) =⇒ h(N, x,
(m−2)

0 ) = h(N, s,
(m−2)

0 ).

Lemma 3.5. Let N be a normal subhypermodule of a canonical (m,n)-

hypermodule M . Then for every si ∈ h(N, xi,
(m−2)

0 ), i = 2, . . . ,m, we have

h(N, xm
2 ) = h(N, sm2 ).

Proof. We have

h(N, sm2 ) ⊆ h(N, h(N, x2,
(m−2)

0 ), . . . , h(N, xm,
(m−2)

0 ))

⊆ h(h(
(m)

N ), xm
2 , h(m−2)(

((m−2)(m−1)+1)

0 ))

= h(N, xm
2 ).

Also, we have h(N, xi,
(m−2)

0 ) = h(N, si,
(m−2)

0 ) and so xi ∈ h(N, si,
(m−2)

0 ). The

similar way implies h(N, xm
2 ) ⊆ h(N, sm2 ). �

Example 5. (Construction). Let (M,+, ·) be a canonical R−hypermodule

over a Krasner hyperring R. Let f be an m-ary hyperoperation and g be an

n-ary operation on R as follows:

f(xm
1 ) =

m∑
i=1

xi, ∀xm
1 ∈ R,

g(xn
1 ) =

n∏
i=1

xi, ∀xn
1 ∈ R.

Then it follows that (R, f, g) is a Krasner (m,n)-hyperring. Let h be an m-ary

hyperoperation and k be an n-ary scalar hyperoperation on M as follows:

h(xm
1 ) =

m∑
i=1

xi, ∀xm
1 ∈ M,

k(r1, . . . , rn−1, x) = (

n−1∏
i=1

ri) · x.

Since + and · are well-defined and associative so h and k are well-defined and

associative. If 0 is a zero element of (M,+, ·), then 0 is a zero element of

(M,h, k). Now, let 1 ≤ j ≤ m and x, xm
1 ∈ M . Then

x ∈ h(xm
1 )

=
∑m

i=1 xi, + is commutative

= x1 + . . .+ xj−1 + xj+1 + . . .+ xm + xj

= X + xj , X = x1 + . . .+ xj−1 + xj+1 + . . .+ xm.
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Thus x ∈ z + xj such that z ∈ X and hence xj ∈ −z + x, But −z ∈ −X =

−(x1 + . . .+ xj−1 + xj+1 + . . .+ xm). Therefore

xj ∈ (−xj−1) + . . .+ (−x1) + x+ (−xm) + . . .+ (−xj+1) =

h(−xj−1, . . . ,−x1, x,−xm, . . . ,−xj+1).

This implies that (M,h) is a canonical m−ary hypergroup.

Since M is an R-hypermodule, it is not difficult to see that the properties of

M as anR-hypermodule, guarantee that the canonicalm−hypergroup (M,h, k)

is a canonical (m,n)-hypermodule.

Definition 3.6. The canonical (m,n)-hypermodule (M,h, k) derived from

canonical hypermodule (M,+, ◦) in Example 5, denote by

(M,h, k) = der(m,n)(M,+, ·).
Theorem 3.7. Every canonical (m,n)-hypermodule M extended by a canonical

(2, n)-hypermodule.

Proof. We define the hyperoperation + as follows:

x+ y = h(x, y,
(m−2)

0 ), ∀x, y ∈ R.

It is clear that + is commutative and associative. Also, 0 is a scalar neutral

and a zero element of (M,+, k). Now, let x ∈ y + z then x ∈ h(x, y,
(m−2)

0 ).

This implies that y ∈ h(−x, y,
(m−2)

0 ) = −x + y and so (M,+) is a canonical

hypergroup. It is easy to see that n−ary operation k is distributive with respect

to the hyperoperation +. Therefore (M,+, k) is a canonical (2, n)-hypermodule.

�

4. Relations on a canonical (m,n)-hypermodules

In this section, we introduce two relations on a canonical (m,n)-

hypermodule M . In addition, three isomorphism theorems of module the-

ory and canonical hypermodule theory are derived in the context of canonical

(m,n)-hypermodules by these relations. In order to see the relations on the

hypermodules, one can see [1, 2, 3]. Also, the concepts of normal (m,n)-ary

canonical subhypermodules are defined.

Suppose that N is a normal subhypermodule of M .

(1) The relation N∗ on M is defined as follows:

x N∗ y if and only if h(x,−y,
(m−2)

0 ) ∩N �= ∅, ∀ x, y ∈ M.

(2) Also, the relation N∗ on M may be defined as follows:

x N∗ y if and only if there exist xm
2 ∈ M, such that x, y ∈ h(N, xm

2 ), ∀ x, y ∈ M.
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Lemma 4.1. The relation N∗ is an equivalence relation on a canonical (m,n)-

hypermodule M .

Proof. Since 0 ∈ h(x,−x,
(m−2)

0 )∩N , then the relationN∗ is reflexive. If xN∗y,

then there exists an element a ∈ N such that a ∈ h(x,−y,
(m−2)

0 ). Therefore,

we have −a ∈ −h(x,−y,
(m−2)

0 ) = h(−x, y,
(m−2)

0 ) and commutativity of (M,h)

implies that −a ∈ h(y,−x,
(m−2)

0 ) ∩ N . So yN∗x and the relation N∗ is sym-

metric. Now, suppose that xN∗y and yN∗z. Then there exist a, b ∈ N such

that a ∈ h(x,−y,
(m−2)

0 ) and b ∈ h(y,−z,
(m−2)

0 ). Thus x ∈ h(a, y,
(m−2)

0 ) and

−z ∈ h(−y, b,
(m−2)

0 ). But, N is a normal subhypermodule of N and we obtain:

h(x,−z,
(m−2)

0 ) ⊆ h(h(a, y,
(m−2)

0 ), h(−y, b,
(m−2)

0 ),
(m−2)

0 )

= h(y, h(a, b,
(m−2)

0 ),−y,
(m−3)

0 )

⊆ h(y,N,−y,
(m−3)

0 )

⊆ N.

Therefore xN∗z and the relation N∗ is transitive. �

Let N∗[x] be the equivalence class of the element x ∈ M , then

Lemma 4.2. If N is a normal subhypermodule of a canonical (m,n)-hypermodule

M , then

N∗[x] = h(N, x,
(m−2)

0 ).

Proof. we have

N∗[x] = {y ∈ M | yN∗x}
= {y ∈ M | ∃a ∈ N such that a ∈ h(y,−x,

(m−2)

0 )}
= {y ∈ M | ∃a ∈ N such that y ∈ h(a, x,

(m−2)

0 )}
= h(N, x,

(m−2)

0 ).

�

Lemma 4.3. Let N be a normal subhypermodule of a canonical (m,n)-hypermodule

M . Then for all am2 ∈ M , we have h(N, am2 ) = N∗[x] for all x ∈ h(N, am2 ).

Proof. By Lemma 4.2, we prove that h(N, am2 ) = h(N, x,
(m−2)

0 ), for all x ∈
h(N, am2 ).



Canonical (m,n)−ary hypermodules over Krasner (m,n)−ary hyperrings 27

Let x ∈ h(N, am2 ), so

h(N, x,
(m−2)

0 ) ⊆ h(N, h(N, am2 ),
(m−2)

0 )

= h(h(N,N,
(m−2)

0 ), am2 )

= h(N, am2 ).

Also, x ∈ h(N, x,
(m−2)

0 ) ⊆ h(N, h(N, am2 ),
(m−2)

0 ) implies that h(N, am2 ) ∈
h(−N, x,

(m−2)

0 ) = h(N, x,
(m−2)

0 ). Therefore, we obtain h(N, am2 ) = h(N, x,
(m−2)

0
). �

Corollary 4.4. Let N be a normal subhypermodule of a canonical (m,n)-

hypermodule M and h(N, am2 ) ∩ h(N, bm2 ) �= ∅, then h(N, am2 ) = h(N, bm2 ).

Proof. Let x ∈ h(N, am2 ) ∩ h(N, bm2 ), then Lemma 4.3, implies h(N, am2 ) =

N∗[x] = h(N, bm2 ) �

Corollary 4.5. Let N be a normal subhypermodule. Then N∗ = N∗ and the

relation N∗ is an equivalence relation.

Proof. Let N∗[x] be the equivalence class of the element x ∈ M . Then

N∗[x] = {y ∈ M | xN∗y}
= {y ∈ M | ∃am2 ∈ M,x, y ∈ h(N, am2 )}.

Since x ∈ h(N, am2 ), thus by Lemma 4.3, N∗[x] = h(N, x,
(m−2)

0 ) = h(N, am2 )

and we obtain N∗[x] = {y ∈ M | y ∈ N∗[x]} = N∗[x]. Therefore N∗ = N∗. �

Lemma 4.6. Let N be a normal subhypermodule of a canonical (m,n)-hypermodule

(M,h, k), then for all am1 ∈ M , we have N∗[h(am1 )] = N∗[a] for all a ∈ h(am1 ).

Proof. Suppose that a ∈ h(am1 ), then N∗[a] ⊆ N∗[h(am1 )].

On the other hand, let a ∈ N∗[h(am1 )] = h(N, h(am1 ),
(m−2)

0 ) = h(h(N, am−1
1 ),

(m−2)

0



28 S. M. Anvariyeh and S. Mirvakili

, am). Thus am ∈ h(−h(N, am−1
1 ),

(m−2)

0 , a) and so

h(am1 ) ⊆ h(am−1
1 , h(h(−N,−(am−1

1 )),
(m−2)

0 , a))

= h(2)(h(a1, N,−a1,
(m−3)

0 ), am−1
2 ,−(am−1

2 ), 0, a), N is normal,

⊆ h(2)(N, am−1
2 ,−(am−1

2 ), 0, a)

= h(2)(h(a2, N,−a2,
(m−3)

0 ), am−1
3 ,−(am−1

3 ),
(3)

0 , a), N is normal,

⊆ h(2)(N, am−1
3 ,−(am−1

3 ), 0, a)

. . .

= h(2(h(am, N,−am,
(m−3)

0 ),
(2m−2)

0 , a)

⊆ h(N,
(m−2)

0 , a)

= h(N, a,
(m−2)

0 )

= N∗[a].

Therefore h(am1 ) ⊆ N∗[a] and so N∗[h(am1 )] ⊆ N∗[a] and this completes the

proof. �

Theorem 4.7. Let N be a normal subhypermodule of a canonical (m,n)-

hypermodule (M,h, k). Then

(1) For all xm
1 ∈ M , we have N∗[h(N∗[x1], . . . , N

∗[xm])] =

h(N∗[x1], . . . , N
∗[xm]).

(2) For all rn−1
1 ∈ R and x ∈ M , we have N∗[N∗[k(rn−1

1 , x)]] =

N∗[k(rn−1
1 , x)].

Proof. (1) The proof easily follows from Lemma 4.6.

(2) We have N∗[k(rn−1
1 , x)] ⊆ N∗[N∗[k(rn−1

1 , x)]]. Now, let

a ∈ N∗[N∗k(rn−1
1 , x)]]. Then, there exists b ∈ N∗[k(rn−1

1 , x)] such that a ∈
N∗[b]. So aN∗b and bN∗k(rn−1

1 , x) which implies that aN∗k(rn−1
1 , x). Hence

a ∈ N∗[k(rn−1
1 , x)] and N∗[N∗[k(rn−1

1 , x)]] ⊆ N∗[k(rn−1
1 , x)] �

By definition of a canonical (m,n)-hypermodule and Theorem 4.7, we have:

Theorem 4.8. (Construction). Let N be a normal subhypermodule of a canon-

ical (m,n)-hypermodule (M,h, k). Then the set of all equivalence classes [M :

N ] = {N∗[x] | x ∈ M} is a canonical (m,n)-hypermodule with the m-ary

hyperoperation h/N and the scalar n-ary operation k/N , defined as follows:

h/N(N∗[x1], . . . , N
∗[xm]) = {N∗[z] | z ∈ h(N∗[x1], . . . , N

∗[xm])}, ∀xm
1 ∈ M,

k/N(rn−1
1 , N∗[x]) = N∗[k(rn−1

1 , N∗[x])], ∀ rn−1
1 ∈ R, x ∈ M.
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Example 6. Suppose R := {0, 1, 2, 3} and define a 2-ary hyperoperation + on

R as follows:
+ 0 1 2 3

0 0 1 2 3

1 1 {0, 1} 3 {2, 3}
2 2 3 0 1

3 3 {2, 3} 1 {0, 1}.
It follows that (R,+) is a canonical 2-ary hypergroup. If g is an n-ary operation

on R such that

g(xn
1 ) =

{
2 if xn

1 ∈ {2, 3},
0 else.

Then, we have (R,+, g) is a Krasner (2, n)−hyperring.

Now, set M = R, ⊕ = + and k = g, then it can be verified (M,⊕, k) is a

canonical (2, n)−hypermodule over Krasner (2, n)-hyperring (R,+, g).

Let N := {0, 1}, then N is a normal subhypermodule of M . Also, it is not

difficult to see that N∗[0] = {0, 1} and N∗[2] = {2, 3} and so

⊕/N N∗[0] N∗[2]

N∗[0] N∗[0] N∗[2]

N∗[2] N∗[2] N∗[0]

and

N∗[k/N(rn−1
1 , N∗[x])] =

⎧⎨
⎩

N∗[2], if rn−1
1 , x ∈ {2, 3},

N∗[0], else.

Then it is easily to see that ([M : N ],⊕/N) ∼= (Z2,+).

Let (M1, h1, k1) and (M2, h2, k2) be two canonical (m,n)-hypermodules, a

mapping ϕ : M1 → M2 is called an R−homomorphism (or homomorphism), if

for all rn−1
1 ∈ R and xm

1 , x ∈ M we have:

ϕ(h1(x1, . . . , xm)) = h2(ϕ(x1), . . . , ϕ(xm))

ϕ(k1(r
n−1
1 , x)) = k2(r

n−1
1 , ϕ(x))

A homomorphism ϕ is an isomorphism if ϕ is injective and onto and we

write M1
∼= M2 if M1 is isomorphic to M2.

Lemma 4.9. Let ϕ : M1 → M2 be a homomorphism, then

(1) ϕ(0M1) = 0M2 .

(2) For all x ∈ M , ϕ(−x) = −ϕ(x).
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(3) Let kerϕ = {x ∈ M1 | ϕ(x) = 0M2}, then ϕ is injective if and only if

kerϕ = {0M1}.
Proof. It is straightforward. �
Lemma 4.10. Let Nm

1 be subhypermodules of a canonical (m,n)-hypermodule

M and there exists 1 ≤ j ≤ m such that Nj be a normal subhypermodule. Then

(1)
m⋂
i=1

Ni is a normal subhypermodule of Nk, where 1 ≤ k ≤ m.

(2) Nj is a normal subhypermodule of h(Nm
1 ).

Proof. It is straightforward. �

The First Isomorphism Theorem comes next.

Theorem 4.11. (First Isomorphism Theorem). Let ϕ be a homomorphism

from the canonical (m,n)-hypermodule (M1, h1, k1) into the canonical (m,n)-

hypermodule (M2, h2, k2) such that K = kerϕ is a normal subhypermodule of

M1, then [M1 : K∗] ∼= Imϕ.

Proof. We define ρ : [M1 : K∗] → Imϕ by ρ(K∗[x]) = ϕ(x). First, we prove

that ρ is well-define. Suppose that K∗[x] = K∗[y]. Then

K∗[x] = K∗[y] ⇔ h1(K,x,
(m−2)

0M1 ) = h1(K, y,
(m−2)

0M1 )

⇔ ϕ(h1(K,x,
(m−2)

0M1 )) = ϕ(h1(K, y,
(m−2)

0M1 ))

⇔ h2(ϕ(K), ϕ(x),
(m−2)

ϕ(0M1)) = h2(ϕ(K), ϕ(y),
(m−2)

ϕ(0M1))

⇔ h2(0M2 , ϕ(x),
(m−2)

0M2 ) = h2(0M2 , ϕ(y),
(m−2)

0M2 )

⇔ ϕ(x) = ϕ(y).

Therefore ρ is well-define.

Let K∗[x1], . . . ,K
∗[xm] ∈ [M1 : K∗]. Then

ρ(h1/K(K∗[x1], . . . ,K
∗ [xm])) = ρ({K∗[z] | z ∈ h1(K

∗[x1], . . . , K
∗[xm])})

= ρ({K∗[z] | z ∈ h1(h1(K, x1,
(m−2)
0M1

), . . . , h1(K, xm,
(m−2)
0M1

))})

= ρ({K∗[z] | z ∈ h1(K, h1(x
m
1 ),

(m−2)
0M1

)})

= {ϕ(z) | z ∈ K∗[h1(x
m
1 )]}

= ϕ(K∗[h1(x
m
1 )])

= ϕ(h1(K, h1(x
m
1 ),

(m−2)
0M1

))

= h2(ϕ(K), ϕ(h1(x
m
1 )),

(m−2)

ϕ(0M1
))

= h2(0M2
, h2(ϕ(x1), . . . , ϕ(xm)),

(m−2)
0M2

)

= h2(ϕ(x1), . . . , ϕ(xm))

= h2(ρ(x1), . . . , ρ(xm)).
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Also, let rn−1
1 ∈ R and K∗[x] ∈ [M1 : K∗]. Then

ρ(k1/K(rn−1
1 ,K∗[x])) = ρ(K∗(k1(rn−1

1 ,K∗[x])))

= {ϕ(k1(rn−1
1 , x)|x ∈ K∗[x])}

= k2(r
n−1
1 , x)|x ∈ ϕ(K∗[x]))

= k2(r
n−1
1 , ρ(K∗[x])).

Therefore ρ is an R−homomorphism.

Also, we have ρ(0[M1:K∗]) = ρ(K∗[0M1 ]) = ϕ(0M1) = 0M2 .

Let y ∈ Imϕ, so there exists x ∈ M1 such that y = ϕ(x) = ρ(K∗[x]). Thus

ρ is onto.

Now, we show that ρ is an injective homomorphism. We have

ker ρ = {K∗[x] ∈ [M1 : K∗] | ρ(K∗[x]) = 0M2}
= {K∗[x] ∈ [M1 : K∗] | ϕ(x) = 0M2}
= K∗(kerϕ), Since K = kerϕ,

= h1(K,K,
(m−2)

0M1 )

= K = 0[M1:K∗].

Therefore ρ is an isomorphism and so [M1 : K∗] ∼= Imϕ. �

Theorem 4.12. (Second Isomorphism Theorem). If Nn
1 are subhypermodules

of a canonical (m,n)−hypermodule (M,h, k) and there exists 1 ≤ j ≤ m such

that Nj be a normal subhypermodule of M . Let for every rn−1
1 ∈ R and y ∈ M,

we have N∗
j [k(r

n−1
1 , y)] = k(rn−1

1 , N∗
j (y)]. Then

[h(N j
1 , 0, N

m
j+1) : (h(N

j
1 , 0, N

m
j+1) ∩Nj)

∗] ∼= [h(Nm
1 ) : N∗

j ],

where Nm
j+1 are subhypermodules of M .

Proof. By Lemma 4.10, Nj is a normal subhypermodule of h(Nm
1 ) and so

[h(Nm
1 ) : N∗

j ] is defined. Define ρ : h(N j
1 , 0, N

m
j+1) → [h(Nm

1 ) : N∗
j ] by ρ(x) =

N∗
j [x]. Since N∗ is an equivalence relation then ρ is well-defined. It is not

difficult to see that ρ is an R−homomorphism. Consider N∗
j [y] ∈ [h(Nm

1 ) : N∗
j ],

y ∈ h(Nm
1 ). Thus, there exists ak ∈ Nk, 1 ≤ k ≤ m such that y ∈ h(am1 ). By
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Lemma 4.6, we have

N∗
j [y] = N∗

j [h(a
m
1 )]

= h(Nj , h(a
m
1 ),

(m−2)

0 )

= h(aj−1
1 , h(Nj , aj ,

(m−2)

0 ), amj+1)

= h(aj−1
1 , Nj , a

m
j+1)

= h(Nj , h(a
j−1
1 , 0, amj+1),

(m−2)

0 )

= N∗
j [h(a

j−1
1 , 0, amj+1)]

= h∗
j [x], x ∈ h(aj−1

1 , 0, amj+1) ⊆ h(N j−1
1 , 0, Nm

j+1),

= ρ(x), x ∈ h(N j−1
1 , 0, Nm

j+1).

Therefore ρ is onto. Now, we prove that ker ρ = h(N j
1 , 0, N

m
j+1) ∩Nj .

x ∈ ker ρ ⇔ ρ(x) = Nj

⇔ N∗
j [x] = Nj

⇔ h(Nj , x,
(m−2)

0 ) = Nj

⇔ x ∈ Nj ∩ h(N j
1 , 0, N

m
j+1).

Now, we have [M : (ker ρ)∗] ∼= Imρ and so

[h(N j
1 , 0, N

m
j+1) : (h(N

j
1 , 0,K

m
j+1) ∩Nj)

∗] ∼= [h(Nm
1 ) : N∗

j ].

�

Theorem 4.13. (Third Isomorphism Theorem). If A and B are normal sub-

hypermodules of a canonical (m,n)-hypermodule M such that A ⊆ B, then

[B : A∗] is a normal subhypermodule of canonical (m,n)-hypermodule [M : A∗]
and [[M : A∗] : [B : A∗]] ∼= [M : B∗].

Proof. First, we show that [B : A∗] is a normal subhypermodule of canonical

(m,n)-hypermodule [M : A∗]. Since 0 ∈ B then 0[M :A∗] = A∗[0] ∈ [B :

A∗]. If A∗[x1], . . . , A
∗[xm] ∈ [B : A∗], then A∗[x1], . . . , A

∗[xm] ⊆ B and since

B is a subhypermodule of M , we obtain h(A∗[x1], . . . , A
∗[xm]) ⊆ B. Thus

h/N(A∗[x1], . . . , A
∗[xm]) ∈ [B : A∗]. If A∗[x] ∈ [B : A∗] then A∗[x] ⊆ B and

so −A∗[x] ⊆ −B = B. We leave it to reader to verify that for every rn−1
1 ∈ R

and A∗[x] ∈ [B : A∗], k/N(rn−1
1 , A∗[x]) ∈ [B : A∗]. Now, Lemma 3.2 implies

that [B : A∗] is a subhypermodule of M .

Also, let A∗[y] ∈ [M : A∗] and A∗[x] ∈ [B : A∗], so A∗[y] ⊆ M and A∗[x] ⊆
B. Since B is a normal subhypermodule, then h(−y, x, y,

(m−3)

0 ) ⊆ B. This
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implies that

h(−A∗[y], A∗[x], A∗[y],
(m−3)

A∗[0]) = A∗[h(−y, x, y,
(m−3)

0 )] ∈ [B : A∗].

Therefore [B : A∗] is a normal subhypermodule of canonical (m,n)-hypermodule

[M : A∗].
Now, ρ : [M : A∗] → [M : B∗] defined by ρ(A∗[x]) = B∗[x] is an R−

homomorphism and onto with kernel ker ρ = [B : A∗]. �
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