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ABSTRACT. The aim of this research work is to define and characterize a
new class of n-ary multialgebra that may be called canonical (m,n)—

hypermodules. These are a generalization of canonical n-ary hypergroups,
that is a generalization of hypermodules in the sense of canonical and a
subclasses of (m,n)—ary hypermodules. In addition, three isomorphism
theorems of module theory and canonical hypermodule theory are derived

in the context of canonical (m, n)-hypermodules.
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1. INTRODUCTION

Dornte introduced n-ary groups in 1928 [15], which is a natural generaliza-
tion of groups. The notion of n—hypergroups was first introduced by Davvaz
and Vougiouklis as a generalization of n—ary groups [11], and studied mainly by
Davvaz, Dudek and Vougiouklis [13] and many other authors [13, 21, 22]. Gen-
eralization of algebraic hyperstructures (see [14, 18, 24]) especially of n—ary
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hyperstructures is a natural way for further development and deeper under-
standing of their fundamental properties.

Krasner has studied the notion of a hyperring in [19]. Hyperrings are es-
sentially rings, with approximately modified axioms in which addition is a
hyperoperation (i.e., a + b is a set). Then this concept has been studied by
a number of authors. The principal notions of hyperstructure and hyperring
theory can be cited in [6, 7, 10, 12, 25, 26].

(m, n)-rings were studied by Crombez [8], Crombez and Timm [9] and Dudek
[16]. Recently, the notation for (m,n)-hyperrings using was defined by Mirvakili
and Davvaz and they obtained (m,n)-rings from (m,n)-hyperrings using fun-
damental relations [23]. Also, they defined a certain class of (m, n)-hyperrings
called Krasner (m,n)-hyperrings. Krasner (m,n)-hyperrings are a generaliza-
tion of (m,n)-rings and a generalization of Krasner hyperrings [23].

Recently, the reseearch of (m,n)-ary hypermodules over (m,n)-ary hyper-
rings has been initiated by Anvariyeh, Mirvakili and Davvaz who introduced
these hyperstructures in [4]. In addition, in [5], Anvariyeh and Davvaz defined
a strongly compatible relation on a (m,n)—ary hypermodule and determined
a sufficient condition such that the strongly compatible relation is transitive.

In this paper, we consider a new class of n-ary multialgebra and we defined
a certain class of (m,n)—ary hypermodules called canonical (m,n)—ary hyper-
modules. Canonical (m,n)—ary hypermodules can be considered as a natural
generalization of hypermodules with canonical hypergroups and also a gener-
alization of (m,n)—ary modules. In addition, several properties of canonical
(m,n)—hypermodules are presented.

Finally, we adopt the concept of normal (m,n)—ary canonical subhyper-
modules and we prove the isomorphism theorems for canonical (m,n)—ary
hypermodules.

2. PRELIMINARIES AND BASIC DEFINITION

Let H be a non-empty set and h be a mapping h : H x H — p*(H),
where p*(H) is the set of all non-empty subsets of H. Then h is called a binary
hyperoperation on H. We denote by H" the cartesian product H X ... x H,
which appears n times and an element of H™ will be denoted by (x1,...,x,),
where z; € H for any ¢ with 1 <4 < n. In general, a mapping h : H™ — p*(H)
is called an n—ary hyperoperation and n is called the arity of hyperoperation.

Let h be an n—ary hyperoperation on H and A, ..., A, subsets of H. We
define

h(Ay,... An) = J{h(@r, .. 2|2 € Aji=1,... n}.

We shall use the following abbreviated notations: the sequence z;, ziy1, ..., T;
will be denoted by xz Also, for every a € H, we write h(a,...,a) = h((g)) and
——

n
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for j < 4, xz is the empty set. In this convention for j < i, :cz is the empty set
and also

h(xl, . ;xi;yi-i-h e 7yj7xj+17 .. .,J,‘n)
will be written as h(ﬂci,yfﬂ, )

A non-empty set H with an n—ary hyperoperation h : H* — P*(H) will
be called an n—ary hypergroupoid and will be denoted by (H,h). An n—ary
hypergroupoid (H, h) is commutative if for all o € S,, and for every a} € H,
we have h(al]) = h(aa(n)).

a(1)
i—1 n—i
An element e € H is called scalar neutral element, if x = h(( e ),x,( e ))

for every 1 < i < n and for every x € H.
An n—ary hypergroupoid (H,h) will be an n—ary semihypergroup if and
only if the following associative axiom holds:

hlay™ (@), e h) = hlad () ),

J > g
for every i,j € {1,2,...,n} and z1,22,..., 22,1 € H.
An n—ary semihypergroup (H, h), in which the equation b € h(ai™*, z;, aiy )
has the solution z; € H for every a1,...,a;—1,041,...,a,,b € Hand 1 <i <

n, is called n— ary hypergroup.
If H is an n—ary groupoid and ¢t = [(n—1)+1, then the t—ary hyperoperation
given by

I(n—1)+1 n — I(n—1)+1
h(l)(xl(n * ) = h(h( ] h(h(xl )a x?ﬁkll)a c ')a x(gil)()rj_,l)Jrg)v

will be denoted by h.
According to [17], an n-ary polygroup is an n-ary hypergroup (P, f) such
that the following axioms hold for all 1 < 4,5 <n and z,2} € P:

(i—1) (n—1)
1. There exists a unique element 0 € P such that z = f( 0 ,z, 0 ),

2. There exists a unitary operation — on P such that « € f(z}) implies
that z; € f(—xi_l, ey, L1, T, =Ty ey —J,‘H_l).

It is clear that every 2-ary polygroup is a polygroup. Every m-ary group
with a scalar neutral element is an n-ary polygroup. Also, Leoreanu-Fotea in
[20] defined a canonical n-ary hypergroup. A canonical n-ary hypergroup is a
commutative n-ary polygroup.

An element 0 of an n-ary semihypergroup (H, g) is called zero element if for
every x4 € H we have

g(oaxg) = g((Eg,O,(E?) == g(xS,O) =0.

(n—-1)
If 0 and 0" are two zero elements, then 0 = g(0’, 0 ) = 0" and so zero element

is unique.
A Krasner hyperring [19] is an algebraic structure (R, +,-) which satisfies
the following axioms:

(1) (R,+) is a canonical hypergroup, i.e.,
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i) for every z,y,2 € R, v+ (y + 2) = (x + y) + 2,
ii) for every x,y € R, x +y =1y + x,
iii) there exists 0 € R such that 0+ z = z for all z € R,
iv) for every z € R there exists a unique element =’ € R such that
0€x+a;
(We shall write —z for 2’ and we call it the opposite of z.)
v) z€x+yimpliesy € —x+z and x € z — y;
(2) Relating to the multiplication, (R,-) is a semigroup having zero as a
bilaterally absorbing element.
(3) The multiplication is distributive with respect to the hyperoperation

+.
Definition 2.1. [23]. A Krasner (m,n)-hyperring is an algebraic hyperstruc-
ture (R, f, g) which satisfies the following axioms:
(1) (R, f) is a canonical m-ary hypergroups,
(2) (R,g) is a n-ary semigroup,
(3) the n—ary operation g is distributive with respect to the m—ary hy-
peroperation f, i.e., for every ai_l, aty et € R, 1<i<n,
g(aiilv f(x;n)a aszrl) = f(g(aiilv L1, aszrl)v ce vg(aiilv Lm, aszrl))v
(4) 0 be a zero element (absorbing element) of n—ary operation g, i.e., for
every 25! € R, we have

9(0,1‘3) = g(l‘g,o,l‘g) =...= g(%g,O) =0.

ExaMPLE 1. Let (R, +, ) be a ring and G be a normal subgroup of (R,-), i.e.,
for every € R, 2G = Gz. Set R = {Z|r € R}, where Z = 2G and define
m-ary hyperoperation f and n-ary multiplication g as follows:

{ F@1,tm) ={E2C 3+ 42,
g(flv'“;jn) =T1T2...%n-

It can be verified obviously that (R, f, g) is a Krasner (m,n)-hyperring.

EXAMPLE 2. If (L, A, V) is a relatively complemented distributive lattice and
if f and g are defined as:

flar,a2) ={c€ LlagrNe=axANc=ay Aag, a1,az € L},
glal,...,an) =V ja;, Yay € L.

Then it follows that (L, f, g) is a Krasner (2, n)-hyperring.

Definition 2.2. A non-empty set M = (M, h, k) is an (m,n)—ary hypermod-

ule over an (m,n)—ary hyperring (R, f,g), if (M, h) is an m—ary hypergroup
and there exists the map

E:Rx...x RxM — p"(M)
—_——

n—1
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such that
(1) k(r?fll,h(xi”)) = il(k(riklaxl); -1-~,/f(7”?711,$m))7 - )
(2) k;(rzf ,f(s‘“fb),rﬁfl ) = h(k(r] ", 81,7500 %), k(T S, T, X)),
(8) Kri gy ) ) = K k(2 )
(4) k‘(rifl,O,rZ_j ,x) =0,

where 7;,s;, € R and z,z; € M.

3. CANONICAL (m,n)—ARY HYPERMODULES

A canonical (m, n)—ary hypermodule (namely canonical (m, n)—hypermodule)
is an (m, n)—ary hypermodule with a canonical m—ary hypergroup (M, h) over
a Krasner (m,n)-hyperring (R, f,g).

In the following in this paper, an (m,n)—ary hypermodule is a canonical
(m,n)—ary hypermodule.

EXAMPLE 3. Let M be a module over ring (R, +, ) and G be a normal subgroup
of (R,-), then by Example 1, (R, f, g) is a Krasner (m, n)-hyperring. Now, we
define on M an equivalence relation ~ defined as follows:

r~y <= =ty teG.

Let M = {Z|x € M} be the set of the equivalence classes of M modulo ~. We
define hyperoperation h and k as follows:
hZ1y. .o Zm) ={0|w C Ty + ...+ T}, where 27" € M
k(71,...,Ppn-1,T) = T1T2 - - Tn_1T, where 7{”1 € Rand x € M.
It is not difficult to verify that (M, h, k) is a canonical (m,n)—hypermodule
over a Krasner (m,n)-hyperring (R, f, g).

ExXAMPLE 4. Let (H, f,g) be a Krasner (m,n)-hyperring in Example 1, and
set M = H, h= f and k = g, then (M, h, k) is a canonical (m,n)-hypermodule
over the Krasner (m, n)-hyperring (H, f, g). In general, If R is a Krasner (m, n)-
hyperring, then (R, f,g) is a canonical (m,n)-hypermodule over the Krasner
(m,n)-hyperring R.

Lemma 3.1. Let (M, h, k) be a canonical (m, n)-hypermodule over an (m,n)—ary
hyperring (R, f,g), then
(1) For every x € M, we have —(—z) =z and —0 = 0.

(m=2)
(2) For everyx € M, 0¢€ h(x,—z, 0 ).

(3) Foreveryzl", —h(z1,...,2m) = h(—21,...,—Tm), where —A={—ala €
A}
(4) For every 7~ € R, we have k(r?~*,0) = 0.

(m—1) (m—2)
Proof. (1) x = h(z, 0 ), hence we have 0 € h(—z,2, 0 ) and this means
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(m-1) (m-1)
(2) x =h(xz, 0 ) implies that 0 € h(z,—z, 0
(3) We have
(m-1)
0 € h(]?l, —-x1, O

(2m—5)
C hey(af, —(21), 0 )

Thus, we obtain

and

So —h(z7") € —(=h(=(21"))) = h(—(21")). Hence
—h(z1, ..., xm) = h(—21,...,—Zm).
(4) We have

(n—1)
k(rp=h0) = k(P E(C 0 ,0)

(n—1)
k(r?izvg(’r”—l’ 0 )70)
k(r?=2,0,0)
0

O

Let N be a non-empty subset of canonical (m,n)-hypermodule (M, h, k). If
(N, h,k) is a canonical (m,n)-hypermodule, then N called a subhypermodule
of M. It is easily to see that N is a subhypermodule of M if and only if

(1) N is a subhypergroup of the canonical m-ary hypergroup (M, h), i.e.,
(N, h) is a canonical m-ary hypergroup.
(2) For every "' € Rand z € M, k(7 *,z) C N.

Lemma 3.2. A non-empty subset N of a canonical (m,n)-hypermodule is a
subhypermodule if
(1) 0e N.
(2) For every z € N, —x € N.
(3) For every a* € N, h(a]*) C N.
(4) For every r? ' € R, and x € N, k(r7',2) C N.

Proof. Tt is straightforward. O

Lemma 3.3. Let M be a canonical (m,n)—hypermodule. Then

(1) If N1,..., Ny, are subhypermodules of M, then h(N{") is a subhyper-
module of M.
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(2) If {N;}ier are subhypermodules of M, then ﬂ N; is a subhypermodule
iel
of M.
(3) If N is a subhypermodule of M and a3* € N, then h(N,a3') = N.
Proof. (1) Let N = h(NJ*). Then for every a* € N we have a; = h(z¥"),
where z;; € N; and 1 <4,j < m. Hence

h(a?) = h(h(x1f), ..., h(z™7)), h is commutative and associative,
= h(h(z7:1), ..., h(z7¥™)), N; is a subhypermodule,

Ch(Ni,. ..\ Ny).
Let a € N, then there exists z; € N; , 1 <14 < m such that a = h(z}"). Hence
(m)

we obtain —a = —h(2]") = h(—(z}")) € h(N{*) = N. Also, 0 = h(0) €
h(N{*) = N. Therefore (N, h) is a canonical m-ary hypergroup.

Now, let 7{“1 € R, then

k(r?ilv h(x{n)) - h(k(r?ila 1‘1), EERE) k(r?ilv xm)) - h(Nlm)

Therefore (N, h, k) is a subhypermodule of M.

(2) Tt is clear.

(3) Since N is a subhypermodule, then for every a5* € N, we have h(N, a3") C
N. Also, we obtain

N=nN,"0") € h(N, haz,0), —h(a,0), "0 ")
— BN, h(ag',0), h(—(a§),0), 0 )
— B(A(N, (@), a3 hlam, 0 )
C h(N,a3")
Therefore N = h(N,a}?). O

Definition 3.4. A subhypermodule N of M is called normal if and only if for

every x € M,
(m=3)
h(—z,N,z, 0 )CN.

If N is a normal subhypermodule of a canonical (m,n)-hypermodule M,
then
(m—-1) (m=2) (m=-2) (m=3)
N:h(Na 0 )Qh(N,h(—x,x, 0 )7 0 ):h(_vavxv 0 )QN
(m=3)
Thus for every x € M, h(—z,N,z, 0 )= N.

(m—2) (m—3) (m—3)
If se h(N,z, 0 ),then h(N,s, 0 )Ch(N,h(N,z, 0 )

(m—3)
=h(N,z, 0 ).
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(m=2)0 . (m=2) (m—2)

Also, s € h(N,z, 0 ) implies that » € h(—N,s, 0 ) = h(N,s, 0 )
(m—2) (m—2)

and so we obtain (N, z, m0 ) C h(N, s, m0 ). Therefore we have

(m—2) (m—2) (m—2)
s€h(N,z, 0 )= h(N,z, 0 )=h(N,s, 0 ).

Lemma 3.5. Let N be a normal subhypermodule of a canonical (m,n)-

(m—2)
hypermodule M. Then for every s; € h(N,z;, 0 ), i = 2,...,m, we have
h(N,z5") = h(N, s5").

Proof. We have

(m—2) (m—2)
h(N,s5") Ch(N,h(N,z2, 0 ),...,h(N,zp, 0 ))
(m) ((m=2)(m—1)+1)

- h(h(N)vxgnvh(m—Q)( 0 ))

= h(N, z3").

(m—2) (m—2) (m—2)
Also, we have h(N,z;, 0 )=h(N,s;, 0 )andsox; €h(N,s;, 0 ). The
similar way implies h(N, z5") C h(N, s5"). O

ExAMPLE 5. (Construction). Let (M, +,-) be a canonical R—hypermodule
over a Krasner hyperring R. Let f be an m-ary hyperoperation and g be an
n-ary operation on R as follows:

f@) =Y ", Val'€R,

i=1

n
g(z]) = H:ci, vzl € R.
i=1
Then it follows that (R, f,¢g) is a Krasner (m, n)-hyperring. Let h be an m-ary
hyperoperation and k£ be an n-ary scalar hyperoperation on M as follows:

h(z?") = in, Vo' € M,

i=1

n—1
k(ri,...,rn-1,2) = (H ;) - T
i=1

Since + and - are well-defined and associative so h and k are well-defined and
associative. If 0 is a zero element of (M,+,-), then 0 is a zero element of
(M, h, k). Now, let 1 < j <m and z,z]* € M. Then

x € h(z])
=37, x, + is commutative
=x1+...+Tj—1+Tjp1+ ...+ T, + T
=X+z;, X=21+...+zj1+Tjp1+...+Tp.
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Thus z € z + x; such that z € X and hence x; € —z+z, But —z2 € - X =
—(z1+...+xj—1 +xj41 + ...+ ). Therefore

zj € (—zj—1)+...+(—z)+az+(—zn)+...+ (—2j41) =

M—zj_1,...,—21,2, —Tm, ..., —Tj41).
This implies that (M, h) is a canonical m—ary hypergroup.
Since M is an R-hypermodule, it is not difficult to see that the properties of
M as an R-hypermodule, guarantee that the canonical m—hypergroup (M, h, k)
is a canonical (m,n)-hypermodule.

Definition 3.6. The canonical (m,n)-hypermodule (M, h,k) derived from
canonical hypermodule (M, +,0) in Example 5, denote by
(M, h, k) = der(y ny (M, +,-).

Theorem 3.7. Every canonical (m,n)-hypermodule M extended by a canonical
(2, n)-hypermodule.

Proof. We define the hyperoperation + as follows:
(m=2)

r+y=nh(r,y, 0 ), Vo,y€R.

It is clear that + is commutative and associative. Also, 0 is a scalar neutral
(m—2)
and a zero element of (M,+,k). Now, let x € y + z then = € h(z,y, 0 ).
(m—2)
This implies that y € h(—z,y, 0 )= —x +y and so (M, +) is a canonical

hypergroup. It is easy to see that n—ary operation k is distributive with respect
to the hyperoperation +. Therefore (M, +, k) is a canonical (2, n)-hypermodule.
O

4. RELATIONS ON A CANONICAL (m,n)-HYPERMODULES

In this section, we introduce two relations on a canonical (m,n)-
hypermodule M. In addition, three isomorphism theorems of module the-
ory and canonical hypermodule theory are derived in the context of canonical
(m,n)-hypermodules by these relations. In order to see the relations on the
hypermodules, one can see [1, 2, 3]. Also, the concepts of normal (m,n)-ary
canonical subhypermodules are defined.

Suppose that N is a normal subhypermodule of M.

(1) The relation N* on M is defined as follows:

(m=2)

x N* yif and only if h(z,—y, 0 )NN#Q, Vx,ye M.
(2) Also, the relation N, on M may be defined as follows:
x N, yif and only if there exist 5" € M, such that z,y € h(N,z3"), Va,y € M.



26 S. M. Anvariyeh and S. Mirvakili

Lemma 4.1. The relation N* is an equivalence relation on a canonical (m,n)-
hypermodule M .

(m=2)

Proof. Since 0 € h(z,—z, 0 )NN, then the relation N* is reflexive. If z N*y,

(m=2)
then there exists an element a € N such that a € h(z,—y, 0 ). Therefore,
(m—2) (m—2)
we have —a € —h(z, —y, m0 ) = h(—2,y, m0 ) and commutativity of (M, h)
(m=2)
implies that —a € h(y, —z, m0 )N N. So yN*z and the relation N* is sym-

metric. Now, suppose that tN*y and yN*z. Then there exist a,b € N such
_ (m—2) (m=2)

( )
that @ € h(z,—y, 0 )and b€ h(y,—z, 0 ). Thus z € h(a,y, 0 ) and

(m=2)
—z € h(—y,b, 0 ).But, N is a normal subhypermodule of N and we obtain:

(m—2) (m—2) (m—2) (m-2)
h(z,—z, 0 ) Ch(h(a,y, 0 ),h(=y,b, 0 ), 0 )
(m—2) (m=3)
= h(yah(aaba O )a_ya O )
(m=3)
g h(ya Na -, 0 )
C N.
Therefore xN*z and the relation N* is transitive. O

Let N*[z] be the equivalence class of the element x € M, then

Lemma 4.2. If N is a normal subhypermodule of a canonical (m,n)-hypermodule
M, then

(m=2)
N*[z] = h(N,z, 0 ).

Proof. we have

N*[z] ={yeM |yN*z}

(m=2)
={y € M | Ja € N such that a € h(y,—z, 0 )}
(m—2)
={y € M | Ja € N such that y € h(a,z, 0 )}
(m=2)
=h(N,z, 0 ).

O

Lemma 4.3. Let N be a normal subhypermodule of a canonical (m, n)-hypermodule
M. Then for all af* € M, we have h(N,a3") = N*[z] for all z € h(N, al").

(m=-2)
Proof. By Lemma 4.2, we prove that h(N,a5*) = h(N,z, 0 ), for all z €
h(N,a3").
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Let z € h(N,a3"), so

(m—2) (m—2)
MN,z, 0 ) Ch(N,A(N.ag). 0 )

(m=2)
=h(h(N,N, 0 ),a3")

= h(N,al").

(m—2) (m—2)
Also, z € h(N,z, 0 ) C h(N,h(N,a3"), 0 ) implies that h(N,a3")

S

(m—2) (m—2) . (m—2)
h(=N,z, 0 )=h(N,z, 0 ). Therefore, weobtain h(N,a8*) = h(N,z, 0
(]

).

Corollary 4.4. Let N be a normal subhypermodule of a canonical (m,n)-
hypermodule M and h(N,a3*) N h(N,b5") # 0, then (N, al*) = h(N,b5").

Proof. Let € h(N,a3%*) N h(N,b5"), then Lemma 4.3, implies h(N,a3") =
N*[z] = h(N,b5) O

Corollary 4.5. Let N be a normal subhypermodule. Then N* = N, and the
relation N, is an equivalence relation.

Proof. Let N,[z] be the equivalence class of the element z € M. Then

Nilz] ={ye M |zN.y}
={ye M| Iy € M,z,y € h(N,ay")}.

(m=2)
Since © € h(N,a3"), thus by Lemma 4.3, N*[z] = h(N, z, m0 ) = h(N,al")

and we obtain N.[z] = {y € M |y € N*[z]} = N*[z]. Therefore N* = N,. O

Lemma 4.6. Let N be a normal subhypermodule of a canonical (m, n)-hypermodule
(M, h, k), then for all a7* € M, we have N*[h(aT")] = N*[a] for all a € h(a}").

Proof. Suppose that a € h(a]"), then N*[a] C N*[h(a]")].

(m=2) (m=2)
On the other hand, let a € N*[h(a}")] = h(N, h(a?), 0 )= h(h(N,a 1), 0
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(m=2)
,@y). Thus a,, € h(—h(N,a] "), m0 ,a) and so

hap) € bt hh(—N,— (@), "0, )

(m=3) m—1 m—1 .
= hy(h(ai, N, —a1, 0 ),a3" ", —(a3"""),0,a), N is normal,

(
(
(m73) m—1 m—1 (3) 3
= h(g)(h(az, N,—az, 0 ),a3' ", —(az'" "), 0,a), N is normal,
(

- h(2) Na agn_17 _(agn_l)7 Oa Cl)

(m—=3) (2m—2)
:h(Q(h(amaNa_amv 0 )7 0 7a)

(m—2)
Ch(N, 0 ,a)

(m=2)
0 )

= h(N,a,
= N*[a].

Therefore h(af*) € N*[a] and so N*[h(al*)] € N*[a] and this completes the
proof. ([

Theorem 4.7. Let N be a normal subhypermodule of a canonical (m,n)-
hypermodule (M, h, k). Then
(1) For all z7* € M, we have N*[Rh(N*[z1],..., N*[xn])] =
h(N*[z1],..., N*[zm])-
(2) For all vy~' € R and x € M, we have N*[N*[k(r7~ !, z)]] =
N*[k(ri™, ).

Proof. (1) The proof easily follows from Lemma 4.6.

(2) We have N*[k(r?~*,z)] € N*[N*[k(r7~', 2)]]. Now, let
a € N*[N*k(r7~" z)]]. Then, there exists b € N*[k(r7~*, z)] such that a €
N*[b]. So aN*b and bN*k(r}', ) which implies that aN*k(r7~*, x). Hence
a € N*[k(ry~t 2)] and N*[N*[k(r} !, )] € N*[k(r7™1, 2)] O

By definition of a canonical (m, n)-hypermodule and Theorem 4.7, we have:

Theorem 4.8. (Construction). Let N be a normal subhypermodule of a canon-
ical (m,n)-hypermodule (M, h, k). Then the set of all equivalence classes [M :
N] = {N*[z] | © € M} is a canonical (m,n)-hypermodule with the m-ary
hyperoperation h/N and the scalar n-ary operation k/N, defined as follows:

h/N(N*[z1],..., N [xw]) = {N*[2] | z € M(N*[z1], ..., N [zw])}, V' € M,

E/N(@?—t N*[z]) = N* k(71 N*[z])], V7' € R, 2 € M.
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EXAMPLE 6. Suppose R :={0,1,2,3} and define a 2-ary hyperoperation + on
R as follows:

+]0 2 3
00 2 3
11 {01} 3 {2,3}
212 3 0 1
303 {23} 1 {01},

It follows that (R, +) is a canonical 2-ary hypergroup. If g is an n-ary operation
on R such that
2 if a2t e€{2,3}
ny _ 1 ’ )
9(@1) = { 0 else.

Then, we have (R, +, g) is a Krasner (2,n)—hyperring.

Now, set M = R, ® = + and k = g, then it can be verified (M, ®, k) is a
canonical (2,n)—hypermodule over Krasner (2, n)-hyperring (R, +, g).

Let N := {0,1}, then N is a normal subhypermodule of M. Also, it is not
difficult to see that N*[0] = {0,1} and N*[2] = {2,3} and so

@®/N | N*[0] N*[2]

N[0} | N*[0]  N*[2]

N2 | N*[2] N*[0]

and

N*[2], if r77 ' 2 € {2,3},
N*[k/N(ri~" N*[z])] =

N*[0], else.
Then it is easily to see that ([M : N|,®/N) = (Za, +).
Let (My,hi,k1) and (Ma, ha, k2) be two canonical (m,n)-hypermodules, a

mapping ¢ : My — My is called an R—homomorphism (or homomorphism), if
for all 77~ € R and #7",z € M we have:

@(hl(xlv ) J)m)) = hQ(QO(xl)v sy @(xm))

Pk (r7 ™Y @) = ko (r7 7 ()
A homomorphism ¢ is an isomorphism if ¢ is injective and onto and we
write My = Mo if M, is isomorphic to Ms.
Lemma 4.9. Let ¢ : My — Ms be a homomorphism, then

(1) @(OMl) =01,
(2) Forallz e M, p(—x) = —p(x).
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(3) Let kerp = {x € My | ¢(x) = O, }, then ¢ is injective if and only if
ker o = {O0ar, }-
Proof. Tt is straightforward. O

Lemma 4.10. Let N{"* be subhypermodules of a canonical (m,n)-hypermodule
M and there exists 1 < j < m such that N; be a normal subhypermodule. Then

m

(1) ﬂ N; is a normal subhypermodule of Ny, where 1 < k < m.
i=1

(2) Nj is a normal subhypermodule of h(N{").

Proof. 1t is straightforward. O
The First Isomorphism Theorem comes next.

Theorem 4.11. (First Isomorphism Theorem). Let ¢ be a homomorphism
from the canonical (m,n)-hypermodule (M, h1,k1) into the canonical (m,n)-
hypermodule (Ma, ha, ko) such that K = ker ¢ is a normal subhypermodule of
My, then [My : K*] = Imep.

Proof. We define p : [My : K*] — Imgp by p(K*[z]) = ¢(x). First, we prove
that p is well-define. Suppose that K*[x] = K*[y]. Then

(m—2) (m—2)
K*[z] = K*[y] < h(K,z, Opy ) = ha(K,y, Ory )

(m—2) (m—2)
& ha(p(K), (), p(0n,)) = ha((K), p(y), (0nr, )
(m—2) (m—2)

= hQ(OMw(p(x)v 0M2 ) = hQ(OMm(p(y)a 0M2 )

< o) = ¢(y).
Therefore p is well-define.

Let K*[z1],..., K*[xm] € [M7 : K*|. Then

p(hy /KK 21, K  [zm]) = p({K*[2] | = € hy(K*[a1],.. .. K* [em])})
= P (K™ 2] | 2 € hy(ha (K, @1, Ong )y oo b (s a1
= p({K*[=] | = € hy (K, by @7), Oar, 1)
= {0(2) | = € K* [h1(=]")]}
= o(K* [h1(=7")])

e (m=2)
= @(h1 (K, h1(2]"), Oary )

(m—2)
= ha(e(K), e(h1(z1")), ¢(Onry )

(m—2)
= h2(0nry, h2(p(21), - - - e(xm)), Onry )

= ha(p(z1),. -, e(xzm))

= ha(p(z1),- .., p(zm))-
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Also, let ! € R and K*[z] € [M; : K*]. Then

p(ky /K (7~ K*[2])) = p(K* (ka (77" K7 [2])))
= {p(k(r7 ™, 2)|z € K*[z])}
= ka(r] ™, @)|w € p(K*[2]))
= ka(r}' ™", p(K*[2]).

Therefore p is an R—homomorphism.

Also, we have p(Opar,. k<)) = (K™ [0ar,]) = ¢(0nr,) = O

Let y € Imy, so there exists x € M; such that y = p(z) = p(K*[z]). Thus
p is onto.

Now, we show that p is an injective homomorphism. We have

kerp = {K*[z] € [M1: K*] | p(K*[z]) = O, }
= {K"[a] € [My: K*] | ¢(2) = Oary }
= K*(ker ), Since K = ker ¢y,

(m—2)
= hl(KaKv OMl )

- K == O[MllK*]'

Therefore p is an isomorphism and so [M; : K*] & I'myp. O

Theorem 4.12. (Second Isomorphism Theorem). If NT* are subhypermodules
of a canonical (m,n)—hypermodule (M, h,k) and there exists 1 < j < m such
that N; be a normal subhypermodule of M. Let for every Ml cRandy € M,
we have N; k(P ) = k(P N (y)]. Then

[A(NY,0,N71y) : (h(NY, 0, NJLy) 0 N;)*] 2 [R(NT") = N7,

where N[t are subhypermodules of M.

Proof. By Lemma 4.10, N; is a normal subhypermodule of h(N{*) and so
[A(N{") : N} is defined. Define p : h(N{,0, NJ%,) — [R(N{") : Nj| by p(z) =
N7[z]. Since N* is an equivalence relation then p is well-defined. It is not

difficult to see that p is an R—homomorphism. Consider N7 [y] € [A(N{") : N}],

y € h(N7"). Thus, there exists a; € Ni, 1 < k < m such that y € h(a}*). By
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Lemma 4.6, we have

Nilyl = Nlh(ap)
(m—2)
= BNy, haT), 0 )

j-1 (m2), m
h(al 7h(Njaaja 0 )aaj+1)
h(a]

i—1
(a1 7, Nj, afy)

(m—2)

= h(Nj, h(a]',0,a,), 0

= Nj[h(a™",0,a}%,)]

= h;[q’.], T e h(aiilaovaﬂl) C h(Nfil,O,Nﬂl),

=p(x), z€ h(Nf_l,O,NJT?H).
Therefore p is onto. Now, we prove that ker p = h(Nf7 0, N ;) N N;j.
zekerp & p(x)=N;
= N]’-*[x] =N;

(m=2)
@h(Nj,J?, 0 ):Nj

& @€ N;jNh(N{,0,N™)).
Now, we have [M : (ker p)*] = I'mp and so

[A(NY, 0, Nj1) « (A(NT, 0, K44) N N;)*] & [A(NT") : N},

O

Theorem 4.13. (Third Isomorphism Theorem). If A and B are normal sub-
hypermodules of a canonical (m,n)-hypermodule M such that A C B, then

[B : A*] is a normal subhypermodule of canonical (m,n)-hypermodule [M : A*]
and [[M : A*] : [B: A*]] = [M : B*].

Proof. First, we show that [B : A*] is a normal subhypermodule of canonical
(m,n)-hypermodule [M : A*]. Since 0 € B then Ojpp.a+) = A*[0] € [B :
A*). If A*[xq], ..., A%[zn] € [B @ A¥], then A*[x1],..., A*[zm] € B and since
B is a subhypermodule of M, we obtain h(A*[x1],...,A*[xs]) € B. Thus
h/N(A*[x1],..., A*[xn]) € [B : A*]. If A*[z] € |[B : A*] then A*[z] C B and
so —A*[x] C —B = B. We leave it to reader to verify that for every 7! € R
and A*[z] € [B : A*], k/N(r7~ ', A*[z]) € [B : A*]. Now, Lemma 3.2 implies
that [B : A*] is a subhypermodule of M.

Also, let A*[y] € [M : A*] and A*[x] € [B : A*], so A*[y] C M and A*[z] C

(m=3)

B. Since B is a normal subhypermodule, then h(—y,z,y, 0 ) C B. This
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implies that

(m—3) (m—3)

h(=A"yl, A*[a], A%[y], A[0]) = A*[h(=y, 2y, 0 )] €[B:A"].

Therefore [B : A*] is a normal subhypermodule of canonical (m, n)-hypermodule
[M : A*].

Now, p: [M : A*] — [M : B*] defined by p(A*[z]) = B*[z] is an R—
homomorphism and onto with kernel ker p = [B : A*]. O
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