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ABSTRACT. The celebrated Radon-Nikodym theorem and Stone represen-
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these theorems by using ideas from logic and application of an important
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more important goal is to try to reveal more the power of logical methods
in analysis in particular measure theory, and make stronger connections
between two fields of analysis and logic. Through the paper, we use a log-
ical setting called ”integration logic” which is a framework for studying
measure and probability structures through logical means. The paper is
mostly written for general mathematicians, in particular the people active
in logic or analysis as the main audiences. It is self-contained and does
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1. INTRODUCTION

The general theme of this paper belongs to the area of applications of model
theory (a subfield of mathematical logic) in mathematics. The Radon-Nikodym
theorem and Stone representation theorem for measure algebras are two im-
portant classical existence result in analysis. These theorems have been widely
used in the literature. On the other hand, one of the missions of the mathe-
matical logic is to study mathematical objects by logical means. Indeed, there
are numerous applications of ideas and techniques from mathematical logic
in analysis, probability theory, dynamical systems, etc (see for example [3]
or [5] where logic gets involved with probability theory and dynamical sys-
tems). Probability logics, such as the variants introduced in [2], [3] and [8], are
among various classical logical frameworks designed to deal with probability
and measure structures. These frameworks have been investigated from differ-
ent perspectives in particular model theory (see [1] and [3]). Integration logic
is one of the forms of probability logics which was investigated in [3], and then
was further developed in [1]. This setting enables one to use integral opera-
tion as a logical quantifier. It was used for giving new proofs for the classical
Daniell-Stone theorem and Riesz representation theorem in [6]. It is worth
mentioning that in [7], integration logic is represented as a specific example of
a more abstract and general framework with a viewpoint close to functional
analysis.

During the course of our investigation in this paper, we mainly pursue two
main goals. One is to provide new proofs with logical flavor in the setting of
integration logic for Radon-Nikodym theorem and also the Stone representation
theorem for measure algebras. The main logical ingredient of our proofs is the
logical compactness theorem. The second and even more important goal is
to elaborate, highlight and emphasize the power of the logical methods in the
realm of analysis, in particular measure theory, and make stronger connections
between these two fields. Indeed, our proofs, beside the fact that are some new
proofs for two classical theorems which might be of interest of its own right,
indicates the strength of the logical methods in analysis and measure theory.
Although the methods of the proofs involves techniques from mathematical
logic, the reader does not need to have any significant amount of prerequisite
knowledge from logic to follow the proofs or even be possibly able to apply
its ideas for proving similar results. These proofs can be considered as some
applications of the setting of the integration logic. Employing suitable logical
frameworks can sometimes enables one to provide uniform proofs with similar
techniques for seemingly different theorems. It is the case in this paper and both
theorems are proved by using the technique of the logical compactness theorem.
There are many facts in analysis that can be considered in this way. In fact,
the method and strategy of the proof here seems to be more general than the
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result of this paper and is possibly applicable, to some degree, in more results
in measure theory. Logical compactness theorem is easy to be used in practice
for a general mathematician. In a suitable logical setting, it roughly states that
if we have a family of properties formally stated in that setting and every finite
subset of them is satisfied in some structure, then there exists a structure which
satisfies all of them together. There are many interesting notions, properties or
claims in measure theory that can be expressed by an infinite number of simple
statements. Then, by applying the compactness theorem, the truth of such
notions or claims is reduced to the satisfiability of every finite number of those
statements. The paper is self-contained and we mention all prerequisites from
logic and measure theory in it. It is mostly written for general mathematicians,
in particular those active in logic or analysis as the main audiences.
Presentation of the rest of the paper is as follows. In Section 2, we briefly
review basic measure theoretic concepts and give a concise introduction to the
integration logic. We also introduce some technical notions and prove some
lemmas which we need later in the paper. Section 3 contains the the main
results of the paper namely the proofs of the Radon-Nikodym theorem and the
Stone representation theorem for measure algebras by using logical tools.

2. PRELIMINARIES

A measure on a g-algebra B of subsets of a set M is a real-valued function
p: B — [0,00] such that u()) = 0 and for any countable sequence Ay € B of
disjoint sets, we have pu(lJ, Ar) = > (Ar). As usual, the notion of “almost
everywhere” (usually abbreviated by “a.e.”) in a given measure space means
everywhere in that space except on a subset with measure zero. We recall the
definition of a subspace measures. For any measure space (N, B, u), the outer
measure p* on N is defined by p*(X) := inf{u(A)| X C A € B} for every
X CN.If M CN, then By := {AN M| A € B} forms a o-algebra of subsets
of M and the restriction of p* to it, denoted by uys, is a measure. Indeed,
elements of By, are p*|pr-measurable. s is called the subspace measure on M.
If f: N = R is a measurable function, then by [, f|a we mean [, (f|ar)dpns
where f|ps is the notation for the restriction of f to M.

Proposition 2.1. (see [4], Subsection 214) Assume that (N, B, u) is a measure
space, M C N and f an integrable function on N. Then f|pr is par-integrable.
Moreover, If u*(M) = u(N) or f is equal to 0 almost everywhere on N — M,

then fo|M:fo.

As usual, for every two real-valued functions f and g, we denote max(f, g)
and min(f,g) by fV g and f A g respectively. In a measure space and for any
a.e
two measurable subsets A and B of it, by the notation A C B we mean that
A\ B has measure zero with the respected measure.
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<

Now we consider logic and briefly review the framework of the
logic”. This logical framework was investigated in [1], [2] and [3] for studying
measure and probability structures by logical methods. We use the terminology
of [1]. Using this framework enables us to formalize and express certain measure

‘integration

theoretic properties of spaces, functions on them, etc, in a unified way. We first
briefly review some essential concepts and then formally define some notions.

By a simple relational structure (or simply, a structure), intuitively we mean
a measure space we wish to study equipped with a family of relations where a
relation is a real-valued measurable function on (some power of) the measure
space. Also there might be a family of elements of the domain set of the measure
space which are required to be considered as distinguished elements. We usu-
ally assign a symbol corresponding to each of such relations and distinguished
elements and call them relation symbols and constant symbols respectively. We
also call the family of such symbols a (relational) language and usually denote
it by the notation L.

We call any structure in which the symbols in £ are interpreted, a L-structure
(it formally will be defined in Definition 2.2 below). Indeed, in order for us to
systematically study one or a family of structures by logical means, we usually
first choose a suitable language £ consisting of the symbols corresponding to
all relations and distinguished elements we intend to investigate in our struc-
ture(s). Now those structure(s) can be viewed as L-structure(s). Then, we
can use symbols in £ as well as variable symbols (which will be defined below)
and logical symbols (namely, connectives and quantifiers as explained below)
to write formal logical expressions (called formulas, statements and sentences)
describing our L-structure(s) logically. This enables us to study mathematical
properties of the structure(s) in hand through formal logical tools and syntac-
tical methods.

It should be mentioned that in most of the structures in this paper, the
real-valued functions on the spaces play the main role. Therefore, it would be
sufficient for us to only work with relational structures and avoid introducing
or working with function symbols in a fundamental way.

We always assume that any language £ contains a distinguished binary rela-
tion symbol e for equality. Moreover, we assume that to each relation symbol
R a nonnegative real number bg is assigned which is called its universal bound.
In particular, for the equality relation we have be = 1. As will be explained
more in Definition 2.3, logical symbols consist of the binary functions +, -, the
unary absolute value function | | and a 0-ary function r for every real number
r. We consider these as connectives in this logical setting on integration logic.
The integration symbol [ is also considered as a logical symbol and used as a
quantifier. We also use an infinite list z,y,... of individual variable symbols.
We call the family of all variable symbols and constant symbols, the collection
of L-terms in this logical setting.


http://dx.doi.org/10.61882/ijmsi.20.2.173
http://ijmsi.ir/article-1-2111-en.html

[ Downloaded from ijmsi.ir on 2026-01-29 ]

[ DOI: 10.61882/ijmsi.20.2.173 ]

Some Mathematical Logical Proofs for the Radon-Nikodym Theorem ... 177

Definition 2.2. Let £ be a relational language. By a simple relational L-
structure, or simply a L-structure), we mean a a nonempty measure space
(M, B, 1), in which every singleton is measurable and (M) = 1, and is equipped
with the following;:

(1) For each constant symbol ¢ € £ (if there is any), there is an element
Me M.

(2) For each n-ary relation symbol R € L (if there is any), there is a
measurable function RM : M™ — R with |[RM(a)| < bg for each @ € M.

We call RM and ¢™ the interpretations of the relation and constant symbols
R and cin M.

Regarding Definition 2.2, it worth to emphasize that p or B are not logical
symbols or formulas or elements of the syntax of the logic. Instead, they are
just part of the notion of structure which satisfy the conditions mentioned in
the definition.

Note that in every structure, the binary equality relation e(z,y) is inter-
preted as a two variable function taking value 1 if x = y and 0 otherwise.

Definition 2.3. For a language L, the family of L-formulas is inductively
defined as follows.

(1) If R is a m-ary relation symbol in £ and ¢1,...,t, are L-terms, then
R(ty,...,tn) is a formula. In particular, e(z,y) is a formula.

(2) For any r € R, r is a formula.

(3) If ¢ and ¢ are formulas then |@|, ¢ + 1, ¢ Vb, d Atp and ¢ - ¢ are all
formulas too.

(4) If ¢(z,y) is a formula, then [ ¢(Z,y)dy is a formula.

Free variables of formulas are easily defined (inductively) as the variables
which are not bounded by the quantifies . For example, in the formula [(2z+
y) dy + |3z, the variables x and z are free while y is bounded by the quantifier
J. One writes ¢(z1,...,x,) to indicate that all free variables of the formula
¢ are among x1,...,T,. By a closed formula we mean a formula without any
free variable. If ¢(Z) is a formula and @ € M!?!, then the value of ¢(a) in M,
denoted by ¢M (@), is defined inductively in the natural way. For example

(@ +¥)M(@ =o¢"(@ +v"@), (ove)M(a)=¢"(a) Ve (a),

([ o) @ = [ o@ua.

Thus, ¢(Z) gives rise to a real-valued function on M!*! which is called the
interpretation of the formula ¢ and is denoted by ¢™. Note that, in particular,
if ¢ is a closed formula, then for any L-structure M, ¢M is a uniquely deter-
mined constant function with a fixed real number as its value. For example if
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¢ = [(y)dy where ¢(y) is a formula, then we have
s O
M

Definition 2.4. By a statement, we mean an expression of the form ¢(x) > r
or ¢(x) = r for some formula ¢(x) and some r € R. If ¢ is a closed formula,
then we call the statement a closed statement (or sentence). We call any set
of closed statements a theory.

Obviously expressions such as ¢(z) < 7, ¢(z) = ¥(z)+r or ¢p(z) = Y(z)+r,
where ¢(z) and ¢ (x) are formulas, are statements since they can be written in
the form —¢(x) > —r, ¢(x) —¥(x) = r or ¢(x) — ¥ (x) = r while we know that
—¢(z) and ¢(x) — Y (z) are again formulas. A closed statement ¢ =1 or ¢ > r
is called satisfied in a simple L-structure M, denoted by M F “¢ = r” and
M E “¢ > r”, if we have oM = r and ¢™ > r respectively. We call a simple
L-structure M a model of a theory T, denoted by M E T, if each statement
in T is satisfied in M. A theory is called satisfiable if it has a model. Also a
theory is called finitely satisfiable if every finite subset of it has a model.

The main logical tool used in this paper is the following theorem. It is
basically Theorem 4.7 of [1].

Theorem 2.5. (The logical compactness theorem) Every finitely satisfiable
theory is satisfiable.

In the following remark, we mention some basic measure theoretic properties
expressible in the logical setting of integration logic.

Remark 2.6. For any formulas ¢(z) and v (z) with the same free variables x (in
a relevant language in the integration logic), the expressions “¢(x) = 0 almost
everywhere” and “¢(z) = 1(z) almost everywhere” can be expressed by the
closed statements [ |¢(x)| dz = 0 and [ |¢(z) — ¢ (x)| dz = 0 respectively
in integration logic, where we recall that the interpretations of formulas ¢ and
1 are measurable functions on our measure space. If A := {ry,...,r,} CR,
then the expression “i takes its values in A almost everywhere” (or equiva-
lently speaking, “range(v)) C A (a.e)”), is expressible by the closed statement
Jl(p(z) = r1).(¢p(x) = 72) ... (¢(x) — 7p)|dx = 0. In particular, the expression
¢(x) = 0 or 1 is expressible by the statement [ |(¢(z) — 0).(¢(z) — 1)|dz = 0.

2.1. Some new notions and facts. In this subsection, we introduce some
notions and prove some lemma which will be used later in the proof of our main
results. We first recall the definition of “absolute continuity” in the measure
theory. Let (M, B, i) be a measure space of finite measure and v be another
finite measure on (M, B). We say that v is absolutely continuous with respect
to p if v(B) = 0 whenever u(B) = 0. We introduce the following notion and
will use it in our proofs later.
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Definition 2.7. Let (M, B,u) be a measure space of finite measure. Also
let v be a finite measure on (M, B). For each A € B with pu(A4) > 0 define
r(A) =: :Eﬁ% and call it the (v, u)-ratio of A (or simply the ratio of A). Also
if u(A) = 0 let r(A) := 0. For a non-negative & € R and any M’ C M, we
say that M’ is a-dominated if for each measurable subset U C M’, we have
r(U) < a.

Let (M, B, ) be a measure space of finite measure and v be another finite
measure on (M, B). For each n > 2, define U,, to be the family of all A € B with
ratio > n. Also define H,, to be the family of the members of B with u-positive
measure which are n-dominated. For every Ay, Ay € B, define A7 ~ Ay if
(A1 AAs) = 0. Obviously, ~ is an equivalence relation on B (and also every
Uy, and H,,). For every A € B, denote A/ ~ (the class of the element A in this
equivalence relation) by A. Also denote the quotient space B/ ~ by B. For
every A1, As € B, define A, <u Ay if Ay C Ay (a.e. with respect to u). By
Ay <u Ay we mean A <u Ay but Ay + Ay, Tt is easy to see that (B, <y)isa
poset. Let U, := U,/ ~ and H, = H,,/ ~ be the quotient spaces. Obviously,
U, and H,, are posets too when equipped with the order defined by < ws and
in fact are sub-posets of (B, <,,).

In the proof of the Radon-Nikodym theorem we will need the following
technical statements.

Lemma 2.8. Let p and v are finite measures on the same space and o-algebra
(M, B). Moreover, assume that v is absolutely continuous with respect to p.
Then, for every n > r(M), Hy, # 0 and has mazimal element as a <,-poset.

Proof. We use the notations defined before. If U, is empty (for some ng > 2),
then M would be ng-dominated and so for every n > ng, 7-ln # () (since for
example M would belong to 7-2,,) and also it is easily seen that M itself would
be the maximal element of H,,. So, from now on, we may assume that U,,’s are
all nonempty. We first show (by Zorn’s lemma) that U,, has maximal element
with respect to <, order. Let P = {/L-}Ka be a <,-increasing proper chain
in U, where « is an ordinal, 4; € U, for each i < o and by proper we mean
that the members of the chain are distinct. Since P is proper, u(A;+1\ 4;) >0
for each i < a. So, we must have o < wy (which means that « is a countable
ordinal) since otherwise p (M) would be infinite. Therefore, A := J,_,, A; is
measurable and one can verify that has ratio > n. So A € U, and is an upper
bound for the chain P. Now, by Zorn’s lemma, U,, has a maximal element
say S, where S, := B,, for some B,, € U,,. We claim that w(BS) > 0. The
reason is that if u(BS) = 0, then u(B,) = (M) and by the absolute continuity
assumption, we would have v(B¢) = 0 which would follow that v(B,,) = v(M).
Hence, we would have
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which would be a contradiction. So p(Bg) > 0. Also BS is n-dominated since
otherwise there would exist C' C BE with p(C) > 0 such that r(C) > n. This
would imply that T,, € U,, where T}, := B,, UC. The reason is that
r(T,) = v(Tn) _ v(Bn) +v(C) _ r(Bn)i(Bn) +r(C)p(C)
n) — - -
W(To) ~ 1(Ba) + 1(C) w(By) + 1(C)
np(Br) + nu(C) _
p(Bn) + p(C)

But it would contradict the maximality of B, in U, since B, <u T So,
we conclude that B¢ is n-dominated and also as was shown above u(BS) > 0.
Thus, B € H,, and H,, # 0. It follows that H,, # 0.

Now we will show (again, by using Zorn’s lemma) that #,, has maximal
element. Let P = {A }ica be a <, -increasing proper chain in H,, where a is
an ordinal and A; € H,, for each ¢ < «. Similar to above, we have o < wy and

A := ;.o Ai is measurable. We show that A is n-dominated. Assume not.
So there is L C A such that ZEB > n. Choose € > 0 small enough such that
(L() 73 < >n. Since A = J,;_, A, there is index iy < o such that v(AAA;) < e.

Let L' := LN A;,. So v(LAL") < e. Thus,

v(L) —v(L) <e.

Hence,
L L) -
oy = M) D) e
W@y~ (D)
which contradicts the fact that A;, € H,. It follows that A is n-dominated or
equlvalently speaking, A € H,. So, A is an upper bound for the chain P in

H,. Now, by Zorn’s lemma, (H,,,<,) has maximal element. O

Lemma 2.9. Let (M,B,u) be a measure space of finite measure and v be
another finite measure on (M, B). Also assume that v is absolutely continuous
with respect to p. Then, there is a countable measurable partition { M}, of M
such that each M, is a,-dominated for some a,, € R.

Proof. We use the notations defined before. If U, is empty (for some n > 2),
then M would be n-dominated and we would be done. So, from now on, we
may assume that U,,’s are all nonempty. Let ng be an integer larger than T(M ).
By Lemma 2.8, for every integer n > ng, #,, has a maximal element say D,
for some D,, € H,. One can observe that D,, C D, (a.e. with respect to
u) for each n > ng since otherwise, if we let O := D,, U D,,y1, then, using
the (n + 1)-domination, it would not be very hard to verify that O € Hpt1,
Oe Hn+1 and Dn+1 <u O which contradicts the maximality of Dn+1 in Hn+1
Now define M,, := D,, \ D,,_; for each n > ng and M, := D,,,. Also define
N :=M\|J M,,. Note that each M,, is n-dominated since M,, C D,,. If we

n>=ngo
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are able to show that (V) = 0, then {N} U {M, },>n, would be a countable
partitioning of M as desired and we would be done.

Assume for contradiction that p(N) > 0. Let m be an integer larger than
both 7(N) and ng. Applying Lemma 2.8 on the measure space (N, B’, ') and
measure v/, one can find a m-dominated subset E of N with p(E) > 0 where
B,/ and v are the restrictions of B, u and v on N. Note that END,, =0
since E C N and NND,, = 0. Now V := D,, UFE is m-dominated and
D,, < i V. But this contradicts the maximality of D, in Hp. It follows that
#(N) = 0. Now the proof is complete. (Il

3. MAIN RESULTS

In this section, we give new proofs for two celebrated classical theorems
in analysis, namely, Radon-Nikodym theorem and the Stone representation
theorem for measure algebras, both by using ideas from logic and by application
of an important theorem namely the logical compactness theorem in the setting
of the integration logic. These proofs can be viewed as some instances of
how the logical techniques, in particular logical compactness theorem, can be
employed in measure theory in a systematic way for proving certain measure
theoretic results.

For those readers who are not familiar with logic, we give a general picture
of how logic and the logical compactness theorem comes to the picture and
plays role in our proofs and also roughly explain the steps of the proofs. In
the first step, we express (by suitable logical expressions in the integration
logic) some properties of a measure structure which will help to prove the
existence of the object we are looking for. These expressions are close to the
ordinary ways in mathematics to express the properties of a measure space or
a measurable function and form a possibly infinite list of expressions which,
as usual, is called a theory T. Then, in the second step, we prove the finitely
satisfiability of 7. It means that for every finite subset of T, say T’, we find
a model of T”, where by a model, as defined in preliminaries section, we mean
a measure structure satisfying all expression in 7. In the third step, we use
the logical compactness theorem in integration logic to conclude (from finitely
satisfiability) that T itself has a model. It means that there exists a measure
structure satisfying all expressions in 7". Finally, this model helps us to quickly
find the object (function or measure) we were looking for at the beginning.

3.1. Radon-Nikodym theorem. In this part, we give a new logical proof for
the Radon-Nikodym theorem which is an important classical result in analysis.

Assume that (X, B, P) is a probability space and A a sub-c-algebra of B.
We remind that the conditional expectation of a random variable f : X — R
with respect to A is the unique .A-measurable random variable E(f|.A) such


http://dx.doi.org/10.61882/ijmsi.20.2.173
http://ijmsi.ir/article-1-2111-en.html

[ Downloaded from ijmsi.ir on 2026-01-29 ]

[ DOI: 10.61882/ijmsi.20.2.173 ]

182 A. Mofidi

that
/Af dP:/AE(f|A) dr

for every A € A.

Theorem 3.1. (Radon-Nikodym theorem) Let (M, B, 1) be a measure space of
finite measure and v be a finite measure on (M, B) which is absolutely contin-
uwous with respect to u. Then, there exists a measurable function h > 0, called
the Radon-Nikodym derivative, such that for every B € B, v(B) = [ h dp.

Proof. We may assume pu(M) = v(M) = 1. First, suppose there is an « such
that M is a-dominated (see Definition 2.7).

Step 1: Choosing a suitable language and formalizing the properties
of the required space and function

Let £ be the language (see definitions of Section 2) consisting of a unary
relation symbol f, a constant symbol ¢, for each a € M and a unary relation
symbol R4 for each A € B. We let by = o and b, = 1 for each A. Let T
be a L-theory consisting of the following expressions (axioms) which can be
carefully written as some closed statements in integration logic in the language
L (one can get help from Remark 2.6 for stating them).

(1) For every distinct a,b € M, add the closed statement “e(cq,cp) = 07
to T.

(2) For each a € M and A € B, write the expression Ra(c,) = xa(a) in
the form of a closed statement and add it to T'.

(3) For each A € B, write the expression R4(x) =0 or 1 (a.e.) in the form
of a closed statement and add it to 7.

(4) For each A, B € B, write the expression Rynp = Ra A Rp (a.e.) in the
form of a closed statement and add it to 7.

(5) For each A € B, write the expression Rqe =1 — R4 (a.e.) in the form
of a closed statement and add it to T'.

(6) For each A € B write the expression [ Ra dx = p(A) in the form of a
closed statement and add it to 7.

(7) Write the expression f(z) > 0 a.e. in the form of a closed statement
and add it to 7.

(8) For each A € B, write the expression [ f-Ra dz = v(A) in the form
of a closed statement and add it to 7.

We first briefly talk about the intuition behind the above axioms. Assume
that a L-structure (with a domain set, say N) satisfies all the above axioms.
Then, for example axiom (1) above intuitively states that the interpretations of
¢q’s will be distinct elements of N. So, by using that, M can be seen a subset
of N by identifying every a € M with the interpretation of ¢, in N. Also axiom
(2) says that the interpretation of every relation symbol R4 (which would be
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a function on N) will be the characteristic function of A when we restrict it to
M. Similarly, axiom (3) guaranties that the interpretation of every R4 would
be a {0, 1}-valued function almost everywhere with respect to the measure on
our L-structure. Axiom (8) guaranties that the interpretation of the function
symbol f will have a property close to the Radon-Nikodym derivative. But
that interpretation would be a function on N not M (and indeed, some part of
the rest of the proof will be for finding the Radon-Nikodym derivative on M
by restricting that interpretation of f from N to M).

Step 2: Proving the finitely satisfiability of T

Let’s show that T is finitely satisfiable. Obviously, M is itself an L-structure
satisfying the first six axioms of T' (with interpreting R4 (for each A € B) in
M with the characteristic function of A). So, the satisfiability of any finite part
of T reduces to the satisfiability of any finite number of the statements of the
form

f(@) =0 ae, /f “Ra, dp=v(A;) i=1,.,k

in M where we may assume (by using the axioms) that A;’s are pairwise dis-
joint. So we need to interpret the function symbol f in M in a suitable way.
In this situation, for each x € M set

v(A; .
() ::{ UL we A& p(A) £0;

0 otherwise.

Then, with this interpretation of f on M, the above mentioned finite number
of statements are satisfied in M. Also due to our assumption in the beginning
of the proof that M is a-dominated, we have % < «a for every A € B which
follows that f* is bounded by a(= bf). So with this way of defining and
interpreting symbols in M, M itself would be a model for every finite subset

of the set of the axioms T'. It follows that T is finitely satisfiable.

Step 3: Applying logical compactness theorem, constructing a suit-
able measure structure and pushing down the interpretation of f to
find the Radon-Nikodym derivative

Since T' was proven in previous step to be finitely satisfiable, by applying
the logical compactness theorem (Theorem 2.5) which is the main logical tool
we use in our proof, we conclude that T is satisfiable and has model. Let
(N, Co, po) be a model of T. Let C C Cy be the minimal o-algebra that makes
the interpretations of all formulas measurable. Also let p be the restriction of
po on C. Notice that (IV,C, p) is also a model of T and from now on, we work
with this model. By identifying every a € M with ¢ (the interpretation of ¢,
in N) and also using axiom (1), we can view M as a subset of N. Using this
identification and also by using axiom (2), one can see that for every A € B,
the equality RY |ys = x4 holds where we remind that RY is the interpretations
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of the relation symbol R4 on N and x4 is the characteristic function of A in
M respectively. For each A € B define

AN ={zre N: RY(z)=1}.

So, AN N M = A. By using the axioms, specially axiom (5), for every A € B,
we have (AN)¢ = (A°)N (p-a.e.) where by p-a.e. we mean almost everywhere
with respect to the measure p. Also by the axioms (3) and (6), it is easy to
see that pu(A) = [y RY dp = p(AYN). Moreover, if A,B € B and A C B,
then AN C BY (p-a.e.) where the reason is that by using axiom (4), we have
RY = RY.p = RY A RY (p-ae.) which follows that AN C BV (p-ae.).
If {A,}, is a countable family of pairwise disjoint members of B, then for
each index ng we have A,, C J,, 4, and so by what just above mentioned,
AN € (U, A" (p-a.e.). Therefore, |J, AY C (U, An)Y (p-a.c.). Also, again
by using some axioms in particular axiom (4), every two of such AN’s are
almost disjoint (which means that the p-measure of their intersection is zero).
So we have

p(lLJAY) =D p(A)) =" u(4n) = uJAn) = p((JA)™).

Putting the above facts together, we have |J, AY = (U, An)" (p-a.e.). By
some more efforts and using the axioms, if A,’s in above are not necessarily
disjoint, then still |J,, AY = (U,, 4n)" (p-a.e.) holds.

Now using the above facts, the family of the sets of the form AN U E where
A€ B, EcC and p(FE) =0 forms a sub-o-algebra of C which we denote by G.
We can assume that this sub-c-algebra G is equal to C itself since otherwise,
we can replace C with this G in N and also replace fV with the conditional
expectation of fV with respect to G, and then by these changes, it would be
easy to observe that we can obtain a new model of T' with G as its o-algebra
and we can work with that model instead of (N,C, p) since then.

It is worth to mention that the existence of the conditional expectation can
be itself deduced from the Radon-Nikodym theorem. Also it can be directly
proved without using this theorem, for example in [9](page 136) which is ob-
tained without using Radon-Nikodym theorem. If one wants to not use the
assumption of the existence of the conditional expectation here in our proof, it
would be enough to embed the argument of [9] for that existence in this part
of the proof. So, from now on, we may assume that C is the o-algebra of the
sets of the form A" U E mentioned above and also f~ is C-measurable.

Now, every set in C with positive p-measure have nonempty intersection
with M since such set should be of the form AN UE for some AN with positive
measure and, as mentioned above, we have AN N M = A. It follows that every
member of C containing M has full p-measure. By the definition of the outer
measure, it implies that our initial measure y on M is exactly the same as the
subspace measure induced by p from N and that M has full outer measure in
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N (which means that p*(M) = p(N)) where recall that we are viewing M as
a subset of N. Let h be the restriction of f~ to M. Then, by axiom (8) and
Proposition 2.1, for each A we have that

o) = [ PR do= [ (R = [ hexadi= [ hdp.

It proves the result of the theorem but with assuming the extra assumption
we added in the beginning, namely, that there is an « such that M is a-
dominated. Now we give an argument for general case without that extra
assumption. If such « in the assumption does not exist, then still by Lemma
2.9, there exists a countable measurable partitioning {M,, },<., of M such that
each M, is ay,-dominated for some «,, € R. Then, it is sufficient to apply the
whole above argument for each M,, and find a Radon-Nikodym derivative h,,
on that M,,. Then, the union of h,’s on those disjoint domains M,,’s gives rise
to a Radon-Nikodym derivative h on whole M. It completes the proof. O

3.2. Stone representation theorem for measure algebras. In this part,
we give a new logical proof for the Stone representation theorem for measure
algebras which is an important classical result in analysis. We use the frame-
work of the integration logic and the logical compactness theorem (Theorem
2.5) holding in it to prove this theorem.

We first review some notions from the theory of measure algebras in analysis.
Recall that a Boolean algebra is o-complete if every countable nonempty subset
a1, az, ... of it has a least upper bound V;a; (or sup,,, a;) and a greatest lower
bound A;a; (or inf;<,, a;). A measure algebra is a o-complete Boolean algebra
(B,A,V, ’,0,1) equipped with a map u: B — [0, 00] such that (i) p(a) =0 if
and only if ¢ = 0, and (ii) if a1, ae, . . . are pairwise disjoint (i.e. a; Aa; = 0 for
every distinct 4 and j), then p(V;a;) = Y. p1(a;). Note that the notations A, V
and ’ in here stand for their corresponding operations in the Boolean algebra
B and shouldn’t be confused with the A and V defined above which stood for
the “max” and “min” of two functions. If u(1) = 1, the measure algebra is
called a probability algebra. A o-order-continuous isomorphism (or sequentially
order-continuous isomorphism) between measure algebras By, By is a measure
preserving Boolean isomorphism ¢ : By — Bs such that ¢(Via;) = Vip(a;)
for every increasing sequence aj,as,... in B;. We recall that in any Boolean
algebra, a partial order relation < is naturally defined by a < b if and only if
aAb=a.

To every measure space (M, A, [i), a measure algebra is associated as follows.
Say X1, Xo € A are equivalent if their symmetric difference is measure zero with
the respected measure. The equivalence class of X is denoted by [X]. Then
the set of equivalence classes forms a Boolean algebra in the natural way and
#([X]) = 5(X) makes of it a measure algebra.
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Theorem 3.2. (The Stone representation theorem for measure algebras) Let
(B, ) be a measure algebra such that u is a bounded function. Then, there
is a measure space (M,B, i) whose associated measure algebra is o-order-
continuous isomorphic to (B, ).

Proof. We may assume that p(1) = 1. It is easy to see that if we prove
the theorem with this assumption, then the general case also would be easily
concluded. We present the proof in the following steps.

Step 1: Choosing a suitable language and formalizing the properties
of the required space

We start by introducng a suitable language (see defnitions of Section 2) to
work with. Let £ be a language consisting of a unary relation symbol R,
with universal bound 1 for each a € B. Let T be a L-theory consisting of the
following expressions (axioms) which can be carefully written as some closed
statements in integration logic in the language £ (one can get help from Remark
2.6 for stating them).

(1) For each a € B, write the expression “R,(z) = 0 or 1 (a.e.)” in the
form of a closed statement and add it to 7.

(2) For each a € B, write the expression “ [ Ry (x)dz = p(a)” in the form
of a closed statement and add it to 7.

(3) For each a,b € B, write the expression “Rgvp(z) = Ra(x) V Ry(z)
(a.e.)” in the form of a closed statement and add it to 7'

(4) For each a € B, write the expression “R, (z) = 1 — Ry(x) (a.e.)” in
the form of a closed statement and add it to 7.

Note that in axiom (3) above, the notation V in the left side of the equality
addresses the Boolean algebra operation while in the right side refers to the
logical connective “max” between two formulas (as defined after Definition 2.3).

Step 2: Proving the finitely satisfiability of T'

We will show that T is finitely satisfiable. Let Ty be a finite subset of axioms
of T. We must show that Ty is satisfiable and for that we need to show it has
a model. Let By be a finite sub measure algebra of B containing every a € B
for which R, appears in axioms in Ty. Also let M := {aq, ..., ax} be the atomic
elements of By, where a € By is called an atom of By if given any b € By such
that b < a, either b = 0 or b = a. Then, p naturally induces a probability
measure v on the finite space (M, P(M)) (indeed, p induces a weighting on
a;’s and by that easily forms the probability measure v on P(M)).

Now to prove the satisfiability of Ty, we make a model of it over the under-
lying finite measure space M = (M, P(M),v) by interpreting relation symbols
Ry’s (a € B) in M. For each a € By, interpret R, with the function RM
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defined by

- < .
Rg/[(ai) — { 1 0; X a3

0 otherwise

for any a; € M. Also for any a € B\ By, interpret R, by any arbitrary {0,1}-
valued function on M. Then, the resulting L-structure is a model of Ty. This
shows that T is finitely satisfiable.

Step 3: Applying logical compactness theorem and finding a measure
space satisfying all required properties

Now in here we use the essential tool from logic, namely, the logical com-
pactness theorem (Theorem 2.5). By this theorem and since 7" was proven in
previous step to be finitely satisfiable, T' has a model, say (M, C, ji; {RM }ueB),
where each RM is the interpretation of the relation symbol R, in this model.
Note that by definition of a model, ji(M) = 1. Also each RM is a measurable
function on M with respect to the o-algebra C.

Let B C C be the smallest o-algebra making every RM measurable. Also
restrict fi to B and still denote the restricted measure by f. We claim that
(M, B, ) is the desired measure space whose associated measure algebra is
o-order-continuous isomorphic to the initial measure algebra B.

Notice that by axiom (1), each RM is a characteristic function (up to a null
set). Let X, := {z € M : RM(z) = 1} for every a € B. Obviously, every X,
belongs to B. For every A € B, let [A] to be the equivalence class of A in D,
where we define D to be the associated measure algebra to the measure space
(M, B, ).

Define ¢ : B — D by ¢(a) := [X,]. We claim that ¢ is a measure algebra
o-order-continuous isomorphism. We first check the injectivity of ¢. Assume
that ¢(a) = ¢(b) for some a,b € B. So [X,] = [X}] which follows that X, = X,
with respect to the measure fi. Then X,A X} is null. One can use the axioms
to show that X,AX, & X,a, where by aAb in B we mean the element
(a Ab)V (a/ Ab). So i(Xans) = 0. Hence, by axiom (2), we have plalb) =
JRM,, = i(Xans) = 0. I\Tow, by definition of a measure algebra, we have
aéb; 0 which follows that a = b. Therefore, ¢ is injective.

Claim. Let (b;);<. be a sequence of elements of B. Then, ¢(\/
\/i<w (b(bl) and ¢(/\i<w bl) = /\'L'<w (b(bl)

Proof of Claim. First assume that (b;);<, is an increasing sequence of

b)) =

1<w

a.e
elements of B and let b := sup;_,, b;. It is easy to see that X;, C X, for

i+1
each ¢ and also Xy, C X,. So, Uicw Xb, C X,. On the other hand, again
by axioms, we have i(Xp) = [ RM = p(b) and similarly, ji(Xy,) = u(b;) for
each i. Since (b;);<. is an increasing sequence in the measure algebra B, by a

known fact we have p(sup; ., (b;)) = lim;_ o0 pe(b;) = sup; ., pt(b;). So we have
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(| X.) = sup fi(Xy,) = sup u(bi) = p(sup(bi)) = pu(b) = f(Xs).

i<w 1<w 1<w 1<w

Combination of the above facts follows that X, = U
[U; <o, Xp,]. Moreover, we have

o(\/ b)) = ¢(d) = %) = [|J Xo.) = VX1 =V o). (1)

i<w i<w i<w i<w

icw Xb;- Thus, [X3] =

It is easy to see that ¢(a’) = ¢(a)’ for every a € B. Now assume that (b;);<.
is an arbitrary (not necessarily increasing) sequence of elements of B and let
b:=sup;, b;. Let¢; := \/;=1 bj. Now (¢;)i<w is an increasing sequence and

by (1)7 ¢(\/i<w Ci) = Vi<w[Xci]. So

¢(\/ bi) = ¢(\/ ci) = \/ [Xe] = \/ (Xvi_, ;]

= VIV = VX =\ éb)

Moreover, by using this, we also have

o\ ) = o((\/ 8)) = (6(\/ 8 = (\/ o(8)) = (N (6(8))) = N (5.

i<w i<w i<w i<w i<w i<w
It completes the proof of the claim. |

Now we prove the surjectivity of ¢. Note that since each RM is a char-
acteristic function (up to a null set) of the subset X,, it is easy to see that
the measure algebra D is the same as the measure algebra associated to the
measure space (M, B’, [i|g’), where B’ is the sub o-algebra generated by X,’s.
But by the definition of a generated o-algebra, B’ is the closure of the family
of basic sets X,’s under the operations “countable unions”, “countable in-
tersections” and “complement”. So, notice that in order to show that ¢ is
surjective, it would be enough to prove that for any sequence (b;);<. of el-
ements of B, \/,_ [Xp,] and A,_ [Xs,] are in the image of ¢. But by the
above claim, we have \/,_ [Xy,] = V,.,0(bi) = o(V,., b)) € #(B) and
NicoXb:] = Nic, (b)) = 0(\; ., bi) € #(B). It follows that ¢ is surjective.
Similarly, using the above claim and arguments, ¢ is a g-order-continuous and
measure-preserving Boolean isomorphism. O
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