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Carrera 30 45-03 (111321), Colombia
cMathematics Department, Universidad Nacional de Colombia, Bogotá,
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a Stochastic Differential Equation (SDE) model. We calculate formulas

for the expected value and variance, enabling statistical evaluation and

prediction of the drug’s concentration trajectory and its uncertainty. The

unknown parameters in the model are estimated using the method of mo-

ments. We apply our proposed methods to a real-world dataset, providing

useful insights analysis of drug concentration and the determination of its

therapeutic range.
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1. Introduction

In the study and planning of effective and safe therapies in drug adminis-

tration to a patient, the development of mathematical models that describe

the time evolution of the absorption, distribution, metabolism and elimination

of the drug plays a very important role. This area of knowledge is known as

pharmacokinetics (PK).

In general, these phenomena are modeled by differential equations [16] and

are based on the following assumptions:

a) The body as a whole is considered as a single compartment or a network

of compartments that represent the different organs of the body where

the drug is distributed, absorbed and degraded.

b) Drug input is instantaneous.

c) The distribution of the drug throughout the body is uniform and ho-

mogeneous.

d) The elimination of the drug is proportional to the amount of drug

present in the body (i.e. a first-order process).

However, these models do not take into account that drug concentration levels

vary among different patients according to their weight, age, stress or genetic

factors [21] and [19].

Since these factors can not be explicitly incorporated into the models, some

authors have used stochastic differential equations by grouping all of them in

a random term. To model the concentration decay of a drug administered in

a single dose and distributed instantaneously, Ramanathann [14] used a geo-

metric Brownian motion (GBM), noting that this description gives insight into

why drugs concentration are distributed log normally. Next, in [15] the same

author proposed an in-homogeneous geometric Brownian motion (IGBM) for

the study of continuous dosing; furthermore, in order to design drug therapeu-

tic regimens, closed-form expressions for expected value and time-dependent

variance are derived by solving the auxiliary differential moment equations.

On the other hand, to model continuous dosing. In [5], the intensity fac-

tor of the noise term is considered as a constant in the stochastic differential

equations (SDE), leading to the Vasicek model [23]. Further, a maximum

likelihood procedure is given to obtain the model parameter estimators con-

structed from observations. In [12] the Ornstein-Uhlenbeck process is used

as the PK model with intravenous (IV) bolus dose for each individual and

combine the First-Order Conditional Estimation (FOCE) method and the Ex-

tended Kalman Filter for model identification. In similar line of research, more

complex compartments models in which drug elimination or absorption over

time have been considered, for example in: [3], [5], [10], [13], [17] and [22].

Most of these works do not consider a state-dependent noise term in the SDE

model and parameter estimators are obtained by maximizing the likelihood [4].
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In this paper, we propose a one compartment model based on SDE that takes

into account the variability among individuals under a multiple doses regimen,

which has not been considered in the literature. In this respect, the results

presented here complements works of [14] and [15] for a one compartment

model under a single dose regimen and a constant dose, both models will be

revisited for the sake of completeness. From a mathematical point of view,

these models correspond to an autonomous linear SDE whose solutions are

well known and are obtained by the parameter variation formula (See [9] and

[20]). However, when we analyze the case of multiple doses, the source term

in our model is a piecewise continuous function of exponential order for t > 0,

so we use a combination of the Laplace transform and Itô calculus to obtain

the exact solution. Furthermore, the exact solution allows us to deduce closed-

form expressions for the expected value and variance, that are very useful in

establishing the therapeutic range of a drug, as well as, to estimate model

parameters from empirical data. The advantage of the proposed models is that

they can be statistically validated and offer the possibility not only of predicting

the realistic trajectory of the drug concentration but also the uncertainty of

prediction.

The paper is organized as follows: In Section 2, we present the exact solu-

tions of SDE model. In Section 3, we used the obtained exact general solution

to analyze the drug concentration under some specifics dosage regimens (con-

stant dosage, unique dosage and repeated doses), also, we determine expres-

sions for the expected value and variance for each regimen. The adjustment

methodology of our proposed model to real data via the method of moments

and numerical simulation are shown in Section 4. In Section 5, we present

some conclusions and finally, in the appendices we show the deduction details

of closed formulas for the expected value and variance for each case of study

instead of solving the corresponding moment equations and avoiding the use of

simulations.

2. Mathematical model and general solution

Based on the assumptions described in the introduction, we consider the

following stochastic differential equation (SDE){
dX(t) =

(
−rX(t) + f(t)

)
dt+ cX(t) dW (t)

s.t. X(0) = X0,
(2.1)

where X(t) represents the drug concentration in the body at time t, r the

mean rate at which the drug is removed from the body, W (t) is the Brownian

motion, cX(t) dW (t)/dt random fluctuations of the concentration due to the

environmental variation, the positive constant c is the diffusion coefficient, X0

is the initial dose of drug which depends of the body mass index (BMI) and f(t)
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the dosage regimen of the drug per unit of time, we will consider the following

three cases:

C1. Single dose: f(t) = 0.

C2. Constant dosage: f(t) = rXp, with Xp positive constant.

C3. Repeated dose: f(t) = X0

n∑
k=1

δ(t− kτ), where the drug is provided

every τ hours and δ(·) is the Dirac’s delta “function”.

Since the source function f(t) is continuous or piecewise continuous for t > 0

and of exponential order γ, we employ Laplace transform to solve in general

way the equation (2.1). Another approach to solve the SDE (2.1) can be found

in [9].

Theorem 2.1. Let be the SDE (2.1) for some f(t) continuous and of expo-

nential order. The solution to this SDE that satisfies the initial condition is

given by

X(t) = X0 e
−(r+ 1

2 c
2)t+cW (t)

+ e−
1
2 c

2t+cW (t)L−1
{

1

s+ r

∫ ∞

0

e−(s− 1
2 c

2)u e−cW (u)f(u) du

}
, (2.2)

where L−1
is the inverse Laplace transform operator and s is the Laplace trans-

form parameter.

Proof. To determine the solution to problem (2.1), we use the integration factor

method (see [7]) as follows:

(1) We solve the non-deterministic part of equation (2.1). That is,

dX(t) = cX(t) dW (t) (2.3)

dX(t)

X(t)
= c dW (t)

d
[
lnX(t)

]
= c dW (t).

Applying Itô formula [11] with F (X, t) = ln(X) it follows that

dF (X, t) = Ft dt+ FX dX +
1

2
FXX (dX)2, (2.4)

where

Ft = 0, FX =
1

X(t)
, FXX = − 1

X(t)2
. (2.5)

By substituting (2.5) into (2.4), we get

dF =
1

X(t)

(
cX(t) dW (t)

)
+

1

2

(
− 1

X2(t)

)(
cX(t) dW (t)

)2
= c dW (t)− 1

2
c2 dt. (2.6)
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Integrating (2.6) with respect to t, results

F (X, t) = A− 1

2
c2t+ cW (t).

Thus,

X(t) = Ke−
1
2 c

2t+cW (t). (2.7)

(2) Applying the method of variation of parameters, we make the constant

K of the non-deterministic solution (2.7) vary as a function of time, so

X(t) is of the form

X(t) = K(t)e−
1
2 c

2t+cW (t) = K(t)G(t), (2.8)

where G(t) satisfies equation (2.3). Then,

dX(t) = d
[
K(t)G(t)

](
−rX(t) + f(t)

)
dt+ cX(t) dW (t) = G(t) dK(t) +K(t) dG(t).

By substituting (2.8) in the above equation, we have(
−rK(t)G(t) + f(t)

)
dt+ cK(t)G(t) dW (t) = G(t)

[
dK(t) + cK(t) dW (t)

]
.

In this way, we get the following initial value problem
dK(t)

dt
+ rK(t) =

f(t)

G(t)

s.t. K(0) = X0.

(2.9)

Therefore, to solve the initial value problem (2.9) we use the Laplace

transform, then

L
{
dK(t)

dt

}
+ rL{K(t)} = L

{
f(t)

G(t)

}
sK(s)−K(0) + rK(s) =

∫ ∞

0

e−(s− 1
2 c

2)t e−cW (t)f(t) dt

(s+ r)K(s) = X0 +

∫ ∞

0

e−(s− 1
2 c

2)t e−cW (t)f(t) dt

K(s) =
X0

s+ r
+

1

s+ r

∫ ∞

0

e−(s− 1
2 c

2)t e−cW (t)f(t) dt.

Applying Laplace inverse transform,

K(t) = X0 e
−rt +L−1

{
1

s+ r

∫ ∞

0

e−(s− 1
2 c

2)t e−cW (t)f(t) dt

}
. (2.10)

By substituting (2.10) into (2.8), finally we obtain the general solution

of equation (2.1)

X(t) = X0 e
−(r+ 1

2 c
2)t+cW (t)

+ e−
1
2 c

2t+cW (t)L−1
{

1

s+ r

∫ ∞

0

e−(s− 1
2 c

2)u e−cW (u)f(u) du

}
,
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where u is a dummy variable. That’s what we wanted to prove. □

Remark 2.2. Observe that the integral (2.2) can not be computed explicitly

due to the Brownian Motion in some cases. For example, when f(t) = rXp we

need to evaluate X(t) numerically, as we can see in section 4.1.

3. Dosage regimens

In this section, we analyze the behavior of the drug concentration in the

body under the three different dosage regimens presented in the introduction.

3.1. Constant dosage of the drug. Some chronic diseases treatments re-

quire the administration of a drug for extended periods of time, for this, a

constant amount of the drug is supplied continuously. Examples of this type

of administration are: intravenous infusion, certain oral formulations based on

the phenomenon of osmosis and certain transdermal patches.

Theorem 3.1. Let the source function f(t) = rXp be such that Xp is a positive

constant and represents the concentration of the drug that is administered at

all time t > 0. Then the concentration of the drug is given by

X(t) = a(t) ecW (t) +

∫ t

0

κ(t− u) ec(W (t)−W (u)) du, (3.1)

where

a(t) := X0 e
−(r+ 1

2 c
2)t, (3.2)

and

κ(t− u) := rXp e
−(r+ 1

2 c
2)(t−u). (3.3)

Proof. Replacing f(t) in (2.2) we get

X(t) =X0 e−(r+ 1
2
c2)t+cW (t) +L−1

{
rXp

s+ r

∫ ∞

0
e−(s− 1

2
c2)u e−cW (u) e−

1
2
c2t+cW (t) du

}
=X0 e−(r+ 1

2
c2)t+cW (t) +L−1

{
rXp

s+ r

∫ ∞

0
e−su e−

1
2
c2(t−u) ec(W (t)−W (u)) du

}
,

applying theorem of convolution, we get

X(t) =X0 e
−(r+ 1

2 c
2)t+cW (t) + rXp

{
e−rt ∗ e− 1

2 c
2(t−u) ec(W (t)−W (u))

}
=X0 e

−(r+ 1
2 c

2)t+cW (t) + rXp

∫ t

0

e−r(t−u) e−
1
2 c

2(t−u) ec(W (t)−W (u)) du

=X0 e
−(r+ 1

2 c
2)t+cW (t) + rXp

∫ t

0

e−(r+ 1
2 c

2)(t−u) ec(W (t)−W (u)) du

=X0 e
−(r+ 1

2 c
2)t+cW (t) +

∫ t

0

rXp e
−(r+ 1

2 c
2)(t−u) ec(W (t)−W (u)) du.

Finally, we obtain

X(t) = a(t) ecW (t) +

∫ t

0

κ(t− u) ec(W (t)−W (u)) du,
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where a(t− u) and κ(t− u) are given in (3.2) and (3.3). □

If Xp = 0 in equation (3.3), we obtain the following result.

Corollary 3.2. Single dose administration If Xp = 0, i.e, f(t) = 0 and

the dose is supplied at the initial time (t = 0). From equation (3.1) the con-

centration is given by

X(t) = X0 e
−(r+ 1

2 c
2)tecW (t). (3.4)

Proof. The corollary is an immediate consequence of the theorem. □

3.1.1. Expected value and variance. In this section we determine the mean and

variance of the process given by (3.1).

Proposition 3.3. The expected value and variance of the stochastic process

X(t) are defined as

E
[
X(t)

]
= Xp − (Xp −X0) e

−rt, (3.5)

and

V ar
[
X(t)

]
=
(
Xp −X0

)2
e−2rt

(
ec

2t − 1
)
+

c2X2
p

c2 − 2r

(
e(c

2−2r)t − 1
)

− 2c2Xp

c2 − r

(
Xp −X0

)
e−rt

(
e(c

2−r)t − 1
)
. (3.6)

Proof. To determine the expected value of (3.1), is it necessary to determine

first a(t) ecW (t) by using the fact that E
[
ecW (t)

]
is the moment-generating

function MW (t)(c) of the random variable W (t). By doing that we get

E
[
a(t) ecW (t)

]
= X0 e

−(r+ 1
2 c

2)tE
[
ecW (t)

]
= X0 e

−(r+ 1
2 c

2)tMW (t)(c)

= X0 e
−(r+ 1

2 c
2)t e

1
2 c

2t = X0 e
−rt. (3.7)

Similarly, the variance of X(t), is given by

V ar
[
a(t) ecW (t)

]
= E

[
a2(t) e2cW (t)

]
−
(
E
[
a(t) ecW (t)

])2
= E

[
X2

0 e
−2(r+ 1

2 c
2)t+2cW (t)

]
−X2

0 e
−2rt

= X2
0 e

−2(r+ 1
2 c

2)tE
[
e2cW (t)

]
−X2

0 e
−2rt

= X2
0 e

−2(r+ 1
2 c

2)tMW (t)(2c)−X2
0 e

−2rt

= X2
0 e

−2(r+ 1
2 c

2)te2c
2t −X2

0 e
−2rt

= X2
0 e

−2rt
(
ec

2t − 1
)
. (3.8)

It is well-known that, if S ∼ N(0, t), then its moment-generating function is

E
[
ecS
]
= e

1
2 c

2t. Therefore, since W (t)−W (u) ∼ N(0, t−u) and ec(W (t)−W (u))

is a log-normal distribution, it follows that

E
[
ec(W (t)−W (u))

]
= e

1
2 c

2(t−u)
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V ar
[
ec(W (t)−W (u))

]
= ec

2(t−u)
(
ec

2(t−u) − 1
)
.

Then, the expected value of X(t) in (3.1) is given by

E
[
X(t)

]
= a(t)E

[
ecW (t)

]
+

∫ t

0

κ(t− u)E
[
ec(W (t)−W (u))

]
du

= a(t) e
1
2 c

2t +

∫ t

0

κ(t− u) e
1
2 c

2(t−u) du

= X0e
−rt + rXp

(
e−r(t−u)

r

∣∣∣∣u=t

u=0

)
= X0e

−rt +Xp

(
1− e−rt

)
= Xp −

(
Xp −X0

)
e−rt,

and the variance is given by

V ar
[
X(t)

]
=

(
X2

0 +
2rXp

(
Xp −X0

)
r − c2

−
2rX2

p

2r − c2

)
e−2(r− 1

2 c
2)t +

c2X2
p

2r − c2

− 2c2

r

rXp

r − c2
(
Xp −X0

)
e−rt −

(
Xp −X0

)2
e−2rt.

(3.9)

We obtain the formula (3.9) from the mathematical definition of the variance,

in contrast to the method of differential equations of moments employed in [14].

Details of our calculation of V ar
[
X(t)

]
can be seen in appendix A. □

Remark 3.4. Note that expression (3.7) coincides with the solution of (2.1) in

the absence of the stochastic term and f(t) = 0. In addition, the uncertain

measure that the drug can produce a desired pharmacological effect in most

patients with the minimum effective concentration X0, at any given time t is

P (Xt > X0) =P
(
X0 e

−(r+ 1
2 c

2)tecW (t) > X0

)
= P

(
ecW (t) > e(r+

1
2 c

2)t
)

=P

(
cW (t) >

(
r +

1

2
c2
)
t

)
= P

(
W (t)√

t
>

√
t

c

(
r +

1

2
c2
))

=1− Φ
((r

c
+

c

2

)√
t
)

where Φ(.) is the cumulative distribution function of the standard normal dis-

tribution.

Remark 3.5. In pharmacology is very important to determine the therapeutic

range of a drug, which is the range in which the drug can be used without

causing toxic or lethal effects on the individual. From equations (3.5) and

(3.6) we obtain that in the stationary state (t → ∞), the minimum effective

concentration Xmin and the concentration maximum admissible Xmax must be

such that

Xmin ≤ Xp − 2σX(t) ≤ X(t) ≤ Xp + 2σX(t) ≤ Xmax,

where σX(t) =
cXp√
2r − c2

when t → ∞.

 [
 D

O
I:

 1
0.

61
88

2/
ijm

si
.2

0.
2.

41
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
25

-1
0-

16
 ]

 

                             8 / 22

http://dx.doi.org/10.61882/ijmsi.20.2.41
http://ijmsi.ir/article-1-2096-en.html


Exact Solution of a Stochastic Differential Model for Repeated Dose Pharmacokinetics 49

3.2. Repeated doses administration. We consider the case when the drug

is administered periodically. That is, the first dose is made at time t = 0, the

drug is taken repeatedly every τ units of time. Then, if t = nτ there have

been provided n + 1 drug doses. The following results state what is the drug

concentration at time t.

Theorem 3.6. Let define the source function in (2.1) as follows

f(t) = X0

n∑
k=1

δ(t− kτ), (3.10)

where n is the number of periods and δ(·) is the Dirac’s delta “function”. Then

the concentration is given by

X(t) = X0

(
e−(r+ 1

2 c
2)t+cW (t) +

n∑
k=1

e−(r+
1
2 c

2)(t−kτ)+c(W (t)−W (kτ)) Ukτ (t)

)
(3.11)

where U is the step function (Ukτ (t) = 1 for t ≥ kτ and Ukτ (t) = 0 for t < kτ).

Proof. Substituting (3.10) into (2.10), we get

K(t) = X0e
−rt +L−1

{
H(s)

s+ r

}
, (3.12)

where

H(s) =

∫ ∞

0

e−st
(
X0

n∑
k=1

δ(t− kτ)
)
e

1
2 c

2t−cW (t) dt

= X0

n∑
k=1

∫ ∞

0

e−(s− 1
2 c

2)tδ(t− kτ) e−cW (t) dt

= X0

n∑
k=1

e−(s− 1
2 c

2)kτ−cW (kτ). (3.13)

Substituting (3.13) into (3.12), we have

K(t) = X0

(
e−rt +

n∑
k=1

e
1
2 c

2kτ−cW (kτ)L−1
{
e−skτ

s+ r

})

= X0

(
e−rt +

n∑
k=1

e
1
2 c

2kτ−cW (kτ) e−r(t−kτ)Ukτ (t)

)
, t ≥ kτ. (3.14)

Therefore, from (2.2) and (3.14), we obtain that the concentration of the drug

after n+ 1 doses is

X(t) = X0

(
e−(r+ 1

2 c
2)t+cW (t) +

n∑
k=1

e−(r+
1
2 c

2)(t−kτ)+c(W (t)−W (kτ)) Ukτ (t)

)
.

□
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3.2.1. Expected value and variance. Now, we find the mean and variance for

the stochastic process given in (3.11).

Proposition 3.7. The expected value and variance of the stochastic process

X(t) in (3.11) are defined as

E
[
X(t)

]
= X0e

−rt +X0e
−rt

n∑
k=1

erkτ Ukτ (t), (3.15)

and its variance

V ar
[
X(t)

]
= X2

0

{
e−2rt

(
ec

2t − 1
)

+ e−2(r− 1
2 c

2)t

(
n∑

k=1

(
2e(r−c2)kτ + e2(r−

1
2 c

2)kτ − e−c2t
(
2erkτ + e2rkτ

))
Ukτ (t)

+ 2

n∑
l=2

erlτ
(
e(r−c2)(l−1)τ − 1

1− e−(r−c2)τ
− e−c2t

[
er(l−1)τ − 1

1− e−rτ

])
Ulτ (t)

)}
. (3.16)

Proof. In this case, the expected value turns out to be

E
[
X(t)

]
= E

[
X0

(
e−(r+ 1

2
c2)t+cW (t) +

n∑
k=1

e−(r+ 1
2
c2)(t−kτ)+c(W (t)−W (kτ)) Ukτ (t)

)]

= X0

(
e−(r+ 1

2
c2)tE

[
ecW (t)

]
+

n∑
k=1

e−(r+ 1
2
c2)(t−kτ)E

[
ec(W (t)−W (kτ))

]
Ukτ (t)

)

= X0

(
e−(r+ 1

2
c2)te

1
2
c2t +

n∑
k=1

e−(r+ 1
2
c2)(t−kτ)e

1
2
c2(t−kτ) Ukτ (t)

)

= X0

(
e−rt +

n∑
k=1

e−r(t−kτ) Ukτ (t)

)
= X0e−rt +X0e−rt

n∑
k=1

erkτ Ukτ (t).

Derivation details of the variance (3.16) can be found in appendix B. □

Remark 3.8. Note that the first term in (3.15) shows the transient effect of the

first dose and the second term indicates the persistent behaviour of the drug

concentration.

3.3. Long-term drug concentration. Now, we consider the case when the

patient receive n doses of the drug and we are interested to determine the

long-term drug concentration in the body.

Proposition 3.9. Let X(t) be a stochastic process defined by (3.11) and t = nτ

with n ∈ N, then

lim
n→∞

E
[
X(nτ)

]
=

X0

1− e−rτ
, (3.17)
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and

lim
n→∞

V ar
[
X(nτ)

]
= X2

0

[
1

1− e−2(r− 1
2 c

2)τ
− 1 + e−rτ

(1− e−rτ )(1− e−2rτ )

+
2 e−(r−c2)τ

(1− e−(r−c2)τ )(1− e−2(r− 1
2 c

2)τ )

]
.

(3.18)

Proof. To determine the concentration of the drug in the body when the num-

ber of doses is large enough, we first assume that nτ ≤ t < (n + 1)τ . From

(3.15) and (3.16) we get

E
[
X(t)

]
= X0e

−rt

(
1 +

n∑
k=1

(erτ )k
)

= X0e
−rt

(
1 +

ernτ − 1

1− e−rτ

)
and substituting t = nτ and making n → ∞ in this expression we obtain (3.17).

Now

V ar
[
X(t)

]
=X2

0

{
e−2rt

(
ec

2t − 1
)
+ e−2(r− 1

2 c
2)t

(
2

[
e(r−c2)nτ − 1

1− e−(r−c2)τ

]

+

[
e2(r−

1
2 c

2)nτ − 1

1− e−2(r− 1
2 c

2)τ

]
− e−c2t

(
2

[
ernτ − 1

1− e−rτ

]
+

[
e2rnτ − 1

1− e−2rτ

])
+
( 2 erτ

1− e−(r−c2)τ

)[e2(r− 1
2 c

2)(n−1)τ − 1

1− e−2(r− 1
2 c

2)τ
− er(n−1)τ − 1

1− e−rτ

]
−
(2 erτ−c2t

1− e−rτ

)[e2r(n−1)τ − 1

1− e−2rτ
− er(n−1)τ − 1

1− e−rτ

])}
.

Again substituting t = nτ we take n → ∞ to obtain (3.18). □

Remark 3.10. If the duration of treatment with multiple doses is prolonged,
from expressions (3.17) and (3.18), it follows that the therapeutic range of the
drug must satisfy

Xmin ≤ lim
n→∞

(
E
[
X(nτ)

]
− 2σX(nτ)

)
≤ X(t) ≤ lim

n→∞

(
E
[
X(nτ)

]
+ 2σX(nτ)

)
≤ Xmax

where σX(nτ) =
√
V ar[X(nτ)].

4. Fitting an experimental data and simulations

In this section, we consider several empirical real data of drug concentrations

to identify the parameters of the model for different drug regimens. Once we

found them, we use these to perform some simulations to demonstrate the

usefulness of our approach.

For each regimen of drug administration, the identification problem is solved

by the method of moments. First, we compute the average mean m(t) and

variance v(t) over all individuals from the real drug concentration data. Then,

we estimate r and c by solving the following minimization problems

min
0<r<1

∥m(t)− E[X(t)]∥2 and min
c∈R+

∥v(t)− V ar[X(t)]∥2 . (4.1)
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Where, E[X(t)] is the expected value and V ar[X(t)] is the variance of the drug

concentration obtained in section 3. We solve the minimization problems using

an optimization MATLAB lsqnonlin routine.

4.1. Numerical approximation. Due to the Brownian motion in formula

(3.1), it can not be computed explicitly, then we approximate this solution

numerically. Let us denote by α := r + 1
2c

2, g(t) := X0e
−αt+cw(t) and h(t) :=

rXpe
−αt+cw(t), then the solution (3.1) can be written as follows:

X(t) = g(t) + h(t)

∫ t

0

eαue−cw(u)du. (4.2)

In order to evaluate X(t), we divide the interval [0, tmax] into N sub-intervals

of equal length ∆t := tmax/N . This defines a set of discrete times ti = i∆t, i =

0, ..., N . Next, we discretize the Brownian process with a time step ∆t and

interpolate linearly the term e−cw(u) on the interval (ti−1, ti]. Then, an ap-

proximation of X(tk) for k = 1, . . . , N is

X(tk) = g(tk) +
h(tk)

∆t

k∑
i=1

[
e−cw(ti−1)

∫ ti

ti−1

eαu(ti − u)du

+e−cw(ti)

∫ ti

ti−1

eαu(u− ti−1)du

]
(4.3)

where X(t0) = X(0) = 0 and the integrals are computed exactly. This formula

has the same order that the composite trapezoidal rule O(∆t2).

4.2. Single dosage administration. We consider the experimental data of

Theophylline concentrations (in mg/L) for 12 subjects following a single oral

dose of 320 mg. The data is reported in [1] and its time series graphs are

shown in Figure 1a. Since the one compartment model (2.1) assumes that the

drug distribution is instantaneous and its elimination is of first-order, we only

consider the data on the elimination phase to identify the parameters r and c

(see fig. 1a). We found that elimination rate and coefficient of variation are

r = 0.0776 and c = 0.1004 respectively. Figure 1b shows a simulation of the

drug concentration decay. As we can observe, computational simulations are

consistent with the experimental measurements.

4.3. Constant dosage of the drug. We will now study the Propofol con-

centration behavior during 60 minutes infusion dose administration with an

infusion rate of 25 µg kg−1 min−1 . Experimental data are taken from [18].

By solving the corresponding minimization problems given in (4.1), we find

that r = 0.3975 and c = 0.2609. From figure 2a we see that the average mean

of data (red curve) almost coincides with the expected value (blue curve). Fur-

thermore, the experimental data lie within a band around the expected value
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Figure 1. (a) Experimental data of the Theophylline concentrations

(b) Simulation of the decay of the Theophylline concentration after the

administration of a single dose. Five sample paths, expected value of

the process (2.1) and the graphs of E
[
X(t)

]
± 2σX(t). X0 = 9.5788, r =

0.0776, c = 0.1004, f(t) = 0.

with a width of two standard deviations. Figure 2b illustrates a simulation of

the drug concentration in five individuals when the dosage is constant. Here,

solution of the differential equation (2.1) with f(t) = rXp, was evaluated by

the numerical approximation (4.3).
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Figure 2. (a) Experimental data of the Propofol concentrations (b)

Simulation of the drug concentration under a constant dosage regimen.

Samples of five paths, expected value of the process (2.1) and the graphs

of E
[
X(t)

]
± 2σX(t), X0 = 0, Xp = 0.02, r = 0.3975, c = 0.2609.

4.4. Repeated doses administration. We will consider the concentration

X(t) in (3.11) for multiple dosage. We use experimental data of Meclizine

hydrochloride [8], here a 25 mg tablet is administered orally to 6 subjects twice

a day every 10 hours. Recall that in (3.11), we assume that the elimination
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rate r and the coefficient of variation c are the same every time the drug

is administrated, then, to estimate X0, r and c, we only use the given data

for the first dosage period and the expectation value (3.15) and the variance

(3.16). The parameters values obtained were X0 = 173.4344, r = 0.2686 and

c = 0.2443.
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Figure 3. (a) Experimental data of the Meclizine concentrations (b)

Accumulation of the drug concentration after administration of 2 doses

every 10 hours. Five sample paths, expected value of the process (2.1)

and the graphs of E
[
X(t)

]
± 2σX(t), X0 = 173.4344, r = 0.2686, c =

0.2443.

We observe that the concentration curves of our model (fig. 3b) have similar

behavior to the concentration curves representing real data (fig. 3a). The shift

to the left (about 4 hours) of simulated curves is due to the assumption that

the drug is distributed instantly throughout the body at the time the dose is

administrated (i.e every 10 hours). However, equation (3.11) may be used to

ensure an exposure to the drug within the therapeutic range over a prolonged

time.

5. Conclusions

• We propose a SDE model for the concentration of a drug under a

multiple dosage regimens not previously considered in the literature.

• We studied three models based on SDE that describe three dosage

regimens and that consider the variability of both the patient and the

environment that are generally ignored in deterministic models.

• We obtained explicit formulas for the concentration of the drug, its

expected value and the variance. They allow to:

i) Predict the realistic path of the solution and the uncertainty of

the prediction.

ii) Formulate the therapeutic range of the drug in each dosage regi-

men.
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iii) Easily calculate the parameters of the models from observed data.

• From the real study cases, we observe that the concentration curves

of our model have similar behavior to the concentration curves repre-

senting real data. Moreover the experimental data lie within a band

around the expected value with a width of two standard deviations,

which is very important to establish an effective and safe treatment of

the drug administration. It is noteworthy that the model presented

here assumes that the drug is rapidly mixes with the blood supply and

produces a high concentration of the drug every where in the blood.

However, the absorption phenomena in the tissues was not considered,

the inclusion of such phenomena implies to pose a system of SDE that

will be study in a future work.
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Appendix A. Calculation of variance for a constant dose

From the equation (3.1) we get

E
[
X2(t)

]
= E

[
I2(t)

]
+2E

[
a(t) ecW (t)I(t)

]
+ E

[
a2(t) e2cW (t)

]
,

where

I(t) :=

∫ t

0

κ(t− u) ec(W (t)−W (u)) du

and a(t), κ(t−u) are given by the equations (3.2) and (3.3) respectively. Using

the identity (see [2])

n

∫ t

0

h(u)

(∫ u

0

h(v) dv

)n−1

du =

(∫ t

0

h(v) dv

)n
, (A.1)

with n = 2, we obtain

E
[
I2(t)

]
= E

[(∫ t

0

κ(t− u) ec(W (t)−W (u)) du

)2]
= E

[
2

∫ t

0

κ(t− u)ec(W (t)−W (u))

(∫ u

0

κ(t− v) ec(W (t)−W (v)) dv

)
du

]
= 2

∫ t

0

∫ u

0

κ(t− u)κ(t− v)E
[
ec[2(W (t)−W (u))+(W (u)−W (v))]

]
dv du

= 2

∫ t

0

∫ u

0

κ(t− u)κ(t− v)M
W̃ (u)

(2c)M
W̃ (v)

(c) dv du

 [
 D

O
I:

 1
0.

61
88

2/
ijm

si
.2

0.
2.

41
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
25

-1
0-

16
 ]

 

                            15 / 22

http://dx.doi.org/10.61882/ijmsi.20.2.41
http://ijmsi.ir/article-1-2096-en.html


56 R. Cano, J. A. Jiménez, J. M. Ruiz

= 2

∫ t

0

∫ u

0

κ(t− u)κ(t− v) e
1
2 (2c)

2(t−u) e
1
2 c

2(u−v) dv du

= 2

∫ t

0

∫ u

0

κ(t− u)κ(t− v) e−2c2(u−t) e
1
2 c

2(u−v) dv du.

Substituting (3.3) in the above expression results

E
[
I2(t)

]
=2
(
rXp

)2 ∫ t

0

∫ u

0

er[2(u−t)+(v−u)] e−c2(u−t) dv du

=2
(
rXp

)2 ∫ t

0

∫ u

0

e−2(r− 1
2 c

2)t e(r−c2)u erv dv du

=2
(
rXp

)2
e−2(r− 1

2 c
2)t

∫ t

0

e(r−c2)u

(∫ u

0

erv dv

)
du

=2
(
rXp

)2
e−2(r− 1

2 c
2)t

∫ t

0

e(r−c2)u

(
erv

r

∣∣∣∣v=u

v=0

)
du

=2
(rXp)

2

r
e−2(r− 1

2 c
2)t

∫ t

0

e(r−c2)u (eru − 1) du

=

[
2

r

(rXp)
2

2r − c2
(
e2(r−

1
2 c

2)t − 1
)
−

rX2
p

r − c2
(
e(r−c2)t − 1

)]
e−2(r− 1

2 c
2)t

=
2

r

(rXp)
2

2r − c2

(
1− e−2(r− 1

2 c
2)t
)
−

rX2
p

r − c2
e−rt

(
1− e−(r−c2)t

)
. (A.2)

In addition,

2E
[
a(t) ecW (t)I(t)

]
= 2a(t)E[ecW (t)I(t)]

= 2a(t)E
[
ecW (t)

∫ t

0

κ(t− u) ec(W (t)−W (u)) du

]
= 2a(t)E

[∫ t

0

κ(t− u) e2cW (t)e−cW (u) du

]
= 2a(t)

∫ t

0

κ(t− u)E
[
e2c(W (t)−W (u))+c(W (u)−W (0))

]
du

= 2a(t)

∫ t

0

κ(t− u)M
W̃ (u)

(2c)MW (u)(c) du

= 2a(t)

∫ t

0

κ(t− u) e
1
2 (2c)

2(t−u) e
1
2 c

2u du.

Again substituting (3.2) and (3.3) in the above expression results

2E
[
a(t) ecW (t)I(t)

]
= 2rX0Xp e

−2(r+ 1
2 c

2)t

∫ t

0

e(r−c2)u e2c
2t du

= 2rX0Xp e
−2(r+ 1

2 c
2)t e2c

2t

(
e(r−c2)t − 1

r − c2

)
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=
2rX0Xp

r − c2

(
e−rt − e−2(r− 1

2 c
2)t
)
. (A.3)

Finally, we get

E
[
a2(t) e2cW (t)

]
= a2(t)E

[
e2cW (t)

]
= a2(t)MW (t)(2c)

= X2
0 e

−2(r+ 1
2 c

2)t e
1
2 (2c)

2t

= X2
0 e

−2(r− 1
2 c

2)t. (A.4)

Thus, from (3.5), (A.2), (A.3) and (A.4) we obtain

V ar
[
X(t)

]
=E
[
X2(t)

]
−
(
E
[
X(t)

])2
V ar

[
X(t)

]
=

2rX2
p

2r − c2

(
1− e−2(r− 1

2
c2)t
)
−

rX2
p

r − c2

(
1− e−(r−c2)t

)
e−rt

+
2rX0Xp

r − c2

(
e−rt − e−2(r− 1

2
c2)t
)
+X2

0 e
−2(r− 1

2
c2)t

−
(
Xp +

(
X0 −Xp

)
e−rt)2

=
2rX2

p

2r − c2
−

2rX2
p

2r − c2
e−2(r− 1

2
c2)t −

rX2
p

r − c2
e−rt

+
rX2

p

r − c2
e−2(r− 1

2
c2)t +

2rX0Xp

r − c2

(
e−rt − e−2(r− 1

2
c2)t
)

+X2
0 e

−2(r− 1
2
c2)t −

(
Xp +

(
X0 −Xp

)
e−rt)2

= e−2(r− 1
2
c2)t

(
X2

0 +
rX2

p

r − c2
− 2rX0Xp

r − c2
−

2rX2
p

2r − c2

)
+

2rX2
p

2r − c2
−

rX2
p

r − c2
e−rt +

2rX0Xp

r − c2
e−rt

−X2
p + 2Xp

(
Xp −X0

)
e−rt −

(
Xp −X0

)2
e−2rt

= e−2(r− 1
2
c2)t

(
X2

0 +
2rXp

r − c2

(
Xp −X0

)
−

2rX2
p

2r − c2

)
− 2Xp

(
rXp

r − c2
− rX0

r − c2
−
(
Xp −X0

))
e−rt

+
2rX2

p

2r − c2
−X2

p −
(
Xp −X0

)2
e−2rt

=

(
X2

0 +
2rXp

(
Xp −X0

)
r − c2

−
(2r − c2 + c2)X2

p

2r − c2

)
e−2(r− 1

2
c2)t +

c2X2
p

2r − c2

− 2c2Xp

r − c2
(
Xp −X0

)
e−rt −

(
Xp −X0

)2e−2rt

=

(
X2

0 +
2rXp

r − c2
(
Xp −X0

)
−X2

p −
c2X2

p

2r − c2

)
e−2(r− 1

2
c2)t +

c2X2
p

2r − c2

− 2c2Xp

r − c2
(
Xp −X0

)
e−rt −

(
Xp −X0

)2e−2rt
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=

(
2rXp

r − c2
(
Xp −X0

)
− (X2

p −X2
0 )−

c2X2
p

2r − c2

)
e−2(r− 1

2
c2)t +

c2X2
p

2r − c2

− 2c2Xp

r − c2
(
Xp −X0

)
e−rt −

(
Xp −X0

)2e−2rt

=

((
Xp −X0

)( 2rXp

r − c2
− (Xp +X0)

)
−

c2X2
p

2r − c2

)
e−(2r−c2)t +

c2X2
p

2r − c2

− 2c2Xp

r − c2
(
Xp −X0

)
e−rt −

(
Xp −X0

)2e−2rt

=

((
Xp −X0

)(2(r − c2 + c2)Xp

r − c2
− (Xp +X0)

)
−

c2X2
p

2r − c2

)
e−(2r−c2)t

+
c2X2

p

2r − c2
− 2c2Xp

r − c2
(
Xp −X0

)
e−rt −

(
Xp −X0

)2e−2rt

=

((
Xp −X0

)(
(Xp −X0) +

2c2Xp

r − c2

)
−

c2X2
p

2r − c2

)
e−(2r−c2)t +

c2X2
p

2r − c2

− 2c2Xp

r − c2
(
Xp −X0

)
e−rt −

(
Xp −X0

)2e−2rt

=

((
Xp −X0

)2
+

2c2Xp

r − c2
(Xp −X0)−

c2X2
p

2r − c2

)
e−(2r−c2)t +

c2X2
p

2r − c2

− 2c2Xp

r − c2
(
Xp −X0

)
e−rt −

(
Xp −X0

)2e−2rt

=
(
Xp −X0

)2e−(2r−c2)t +

(
2c2Xp

r − c2
(Xp −X0)−

c2X2
p

2r − c2

)
e−(2r−c2)t

+
c2X2

p

2r − c2
− 2c2Xp

r − c2
(
Xp −X0

)
e−rt −

(
Xp −X0

)2e−2rt

=

(
2c2Xp

r − c2
(Xp −X0)−

c2X2
p

2r − c2

)
e−(2r−c2)t +

(
Xp −X0

)2e−2rt(ec2t − 1
)

+
c2X2

p

2r − c2
− 2c2Xp

r − c2
(
Xp −X0

)
e−rt.

After some calculations and simplifying we have

V ar
[
X(t)

]
=
(
Xp −X0

)2e−2rt(ec2t − 1
)
− 2c2Xp

c2 − r

(
Xp −X0

)
e−rt(e(c2−r)t − 1

)
+

c2X2
p

c2 − 2r

(
e(c

2−2r)t − 1
)
.

Appendix B. Variance calculation for n+ 1 doses

From equation (3.11) and applying the formula of the square of the sum of N real

numbers (
N∑

k=1

ak

)2

=

N∑
k=1

a2
k + 2

N−1∑
j=1

N∑
i=j+1

aiaj .

We obtain

X2(t) =X2
0

[
e−2αt+2cW (t) +

( n∑
k=1

e−α(t−kτ)+c(W (t)−w(kτ)) Ukτ (t)

)2
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+ 2e−αt+cW (t)
n∑

k=1

e−α(t−kτ)+c(W (t)+W (kτ)) Ukτ (t)

]

=X2
0

[
e−2αt+2cW (t) + 2

n∑
k=1

e−2αt+αkτ+2cW (t)−cW (kτ) Ukτ (t)

+

n∑
k=1

e−2α(t−kτ)+2c(W (t)−W (kτ)) Ukτ (t)

+ 2

n−1∑
l=1

n∑
k=l+1

e−α(2t−(l+k)τ)+2cW (t)−c(W (lτ)+W (kτ)) Ulτ (t)Ukτ (t)

]
,

and the expected value is

E
[
X2(t)

]
=X2

0

[
e−2αtE

[
e2cW (t)

]
+ 2

n∑
k=1

e−α(2t−kτ)E
[
e2c(W (t)−W (kτ))+c(W (kτ)−W (0))

]
Ukτ (t)

+

n∑
k=1

e−2α(t−kτ)E
[
e2c(W (t)−W (kτ))

]
Ukτ (t)

+ 2

n−1∑
k=1

n∑
l=k+1

e−α(2t−(l+k)τ)E
[
e2c(W (t)−W (kτ))+c(W (kτ)−W (lτ))

]
Ukτ (t)Ulτ (t)

]

=X2
0

[
e−2αtMW (t)(2c) + 2

n∑
k=1

e−α(2t−kτ)MW (t)−W (kτ)(2c)MW (kτ)(c)Ukτ (t)

+

n∑
k=1

e−2α(t−kτ)MW (t)−W (kτ)(2c)Ukτ (t)

+ 2

n−1∑
k=1

n∑
l=k+1

e−α(2t−(l+k)τ)MW (t)−W (kτ)(2c)MW (kτ)−W (lτ)(c)Ukτ (t)Ulτ (t)

]

=X2
0

[
e−2αte2c

2t + 2
n∑

k=1

e−α(2t−kτ)e2c
2(t−kτ)e

1
2
c2kτ Ukτ (t)

+

n∑
k=1

e−2α(t−kτ)e2c
2(t−kτ) Ukτ (t)

+ 2

n−1∑
k=1

n∑
l=k+1

e−α(2t−(l+k)τ)e2c
2(t−kτ)e

1
2
c2(kτ−lτ) Ulτ (t)

]
.

Replacing α = r + 1
2
c2, we get

E
[
X2(t)

]
=X2

0

[
e−2(r− 1

2
c2)t + 2e−2(r− 1

2
c2)t

n∑
k=1

e(r−c2)kτ Ukτ (t)

+ e−2(r− 1
2
c2)t

n∑
k=1

e2(r−
1
2
c2)kτ Ukτ (t)

+ 2e−2(r− 1
2
c2)t

n−1∑
k=1

n∑
l=k+1

er(l+k)τ−c2kτ Ulτ (t)

]

=X2
0e

−2(r− 1
2
c2)t

[
1 +

n∑
k=1

(
2e(r−c2)kτ + e2(r−

1
2
c2)kτ

)
Ukτ (t)
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+ 2

n−1∑
k=1

n∑
l=k+1

er(l+k)τ−c2kτ Ulτ (t)

]
. (B.1)

Thus, from (3.15) and (B.1) we have

V ar
[
X(t)

]
=E
[
X

2
(t)
]
−
(
E
[
X(t)

])2
=X

2
0e−2(r− 1

2
c2)t

[
1 +

n∑
k=1

(
2e
(
r−c2

)
kτ

+ e2(r− 1
2
c2)kτ

)
Ukτ (t)

+ 2

n−1∑
k=1

n∑
l=k+1

er(l+k)τ−c2kτ
Ulτ (t)

]

− X
2
0e−2rt

[
1 + 2

n∑
k=1

erkτ
Ukτ (t) +

( n∑
k=1

erkτ
Ukτ (t)

)2]

=X
2
0e−2rt(ec2t − 1

)
+ 2X

2
0e−2(r− 1

2
c2)t

[n−1∑
k=1

n∑
l=k+1

er(l+k)τ (e−c2kτ − e−c2t)
Ulτ (t)

+ X
2
0e−2(r− 1

2
c2)t

[ n∑
k=1

(
2e
(
r−c2

)
kτ

+ e2(r− 1
2
c2)kτ − e−c2t(

2erkτ
+ e2rkτ ))

Ukτ (t)

]]

=X
2
0

[
e−2rt(ec2t − 1

)
+ 2

n−1∑
k=1

n∑
l=k+1

er(l+k)τ (e−c2kτ − e−c2t)
Ulτ (t)

)

+ e−2(r− 1
2
c2)t

( n∑
k=1

(
2e
(
r−c2

)
kτ

+ e2(r− 1
2
c2)kτ − e−c2t(

2erkτ
+ e2rkτ ))

Ukτ (t)

]
.

Exchanging sums results in

V ar
[
X(t)

]
=X

2
0

{
e−2rt(ec2t − 1

)
+ 2

n∑
l=2

l−1∑
k=1

erlτerkτ (e−c2kτ − e−c2t)
Ulτ (t)

)

+ e−2(r− 1
2
c2)t

(
n∑

k=1

(
2e(r−c2)kτ

+ e2(r− 1
2
c2)kτ − e−c2t(

2erkτ
+ e2rkτ ))

Ukτ (t)

}

=X
2
0

{
e−2rt(ec2t − 1

)
+ 2

n∑
l=2

erlτ
(e(r−c2)(l−1)τ − 1

1 − e−(r−c2)τ
− e−c2t

[er(l−1)τ − 1

1 − e−rτ

])
Ulτ (t)

)

+ e−2(r− 1
2
c2)t

(
n∑

k=1

(
2e(r−c2)kτ

+ e2(r− 1
2
c2)kτ − e−c2t(

2erkτ
+ e2rkτ ))

Ukτ (t)

}
.

If nτ ≤ t ≤ (n+ 1)τ and using the sum of the first n terms of a geometric series, it

results

V ar
[
X(t)

]
=X2

0

{
e−2rt(ec2t − 1

)
+ e−2(r− 1

2
c2)t

(
2

[
e(r−c2)nτ − 1

1− e−(r−c2)τ

]

+

[
e2(r−

1
2
c2)nτ − 1

1− e−2(r− 1
2
c2)τ

]
− e−c2t

(
2

[
ernτ − 1

1− e−rτ

]
+

[
e2rnτ − 1

1− e−2rτ

])
+
( 2 erτ

1− e−(r−c2)τ

)[e2(r− 1
2
c2)(n−1)τ − 1

1− e−2(r− 1
2
c2)τ

− er(n−1)τ − 1

1− e−rτ

]
−
(2 erτ−c2t

1− e−rτ

)[e2r(n−1)τ − 1

1− e−2rτ
− er(n−1)τ − 1

1− e−rτ

])}
.
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23. O. Vasicek, An Equilibrium Characterization of the Term Structure, Journal of Financial

Economics, 5(2), (1977), 177–188.

 [
 D

O
I:

 1
0.

61
88

2/
ijm

si
.2

0.
2.

41
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
25

-1
0-

16
 ]

 

Powered by TCPDF (www.tcpdf.org)

                            22 / 22

http://dx.doi.org/10.61882/ijmsi.20.2.41
http://ijmsi.ir/article-1-2096-en.html
http://www.tcpdf.org

