Iranian Journal of Mathematical Sciences and Informatics Vol. 19, No. 2 (2024), pp 189-194 DOI: 10.61186/ijmsi.19.2.189

# A Necessary Condition for Zero Divisors in Complex Group Algebra of Torsion-Free Groups

Alireza Abdollahi<sup>a</sup>, Meisam Soleimani Malekan<sup>b\*</sup>

<sup>a</sup>Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan, Iran 81746-73441
<sup>b</sup>Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher

Training University, Tehran, 16785-136, Iran

E-mail: a.abdollahi@math.ui.ac.ir E-mail: msmalekan@gmail.com

ABSTRACT. It is proved that if  $\sum_{g \in G} a_g g$  is a non-zero zero divisor element of the complex group algebra  $\mathbb{C}G$  of a torsion-free group G then  $2\sum_{g \in G} |a_g|^2 < (\sum_{g \in G} |a_g|)^2$ .

**Keywords:** Hilbert space  $\ell^2(G)$ , Complex group algebras, Zero divisor conjecture, Torsion-free groups.

# 2020 Mathematics subject classification: 46C07, 46L10, 20C07, 16S34.

# 1. INTRODUCTION AND RESULTS

Let G be any group and  $\mathbb{C}G$  be the complex group algebra of G, i.e. the set of finitely supported complex functions on G. We may represent an element  $\alpha$ in  $\mathbb{C}G$  as a formal sum  $\sum_{g \in G} a_g g$ , where  $a_g \in \mathbb{C}$  is the value of  $\alpha$  in g. The multiplication in  $\mathbb{C}G$  is defined by

$$\alpha\beta = \sum_{g,h\in G} a_g b_h g h = \sum_{g\in G} \left( \sum_{x\in G} a_{gx^{-1}} b_x \right) x$$

<sup>\*</sup>Corresponding Author

Received 2 January 2021; Accepted 15 February 2022 ©2024 Academic Center for Education, Culture and Research TMU

for  $\alpha = \sum_{g \in G} a_g g$  and  $\beta = \sum_{g \in G} b_g g$  in  $\mathbb{C}G$ . We shall say that  $\alpha$  is a zero divisor if there exists  $0 \neq \beta \in \mathbb{C}G$  such that  $\alpha\beta = 0$ . If there is a non-zero  $\beta \in \ell^2(G)$  such that  $\alpha\beta = 0$ , then we may say that  $\alpha$  is analytical zero divisor. If  $\alpha\beta \neq 0$  for all  $0 \neq \beta \in \mathbb{C}G$ , then we say that  $\alpha$  is regular. The following conjecture is called the zero divisor conjecture.

Conjecture 1.1. Let G be a torsion-free group. Then all elements in  $\mathbb{C}G$  are regular.

Conjecture 1.1 is still open; it has been proven affirmative when G belongs to special classes of groups; ordered groups ([11] and [12]), supersolvable groups [6], polycyclic-by-finite groups ([1] and [5]) and uniqe product groups [2]. Delzant [3] deals with group rings of word-hyperbolic groups and proves the conjecture for certain word-hyperbolic groups. Let C be the smallest class of groups which contains all free groups and is closed under directed unions and extensions with elementary amenable quotients. Let G be a torsion-free group in C then G satisfies Conjecture 1.1 [8].

The map  $\langle \cdot, \cdot \rangle : \mathbb{C}G \times \mathbb{C}G \to \mathbb{R}$  defined by

$$\langle \alpha, \beta \rangle := \sum_{g \in G} a_g \bar{b}_g \quad (\alpha, \beta \in \mathbb{C}G)$$

is an inner product on  $\mathbb{C}G$ , so  $\|\alpha\|_2 = \langle \alpha, \alpha \rangle^{\frac{1}{2}}$  becomes a norm, called 2-norm; the completion of  $\mathbb{C}G$  w.r.t. 2-norm is the Hilbert space  $\ell^2(G)$ . Indeed, we have

$$\ell^{2}(G) = \left\{ \alpha : G \to \mathbb{C} : \sum_{g \in G} \|\alpha(g)\|^{2} < \infty \right\}.$$

In [9], Linnell formulated an analytic version of the zero divisor conjecture.

Conjecture 1.2. Let G be a torsion-free group. If  $0 \neq \alpha \in \mathbb{C}G$  and  $0 \neq \beta \in \ell^2(G)$ , then  $\alpha\beta \neq 0$ .

In [7], it is shown that Since  $\mathbb{C}G \subset \ell^2(G)$ , the second conjecture implies the first one. In [4], it is proved that for finitely generated amenable groups, the two conjectures are actually equivalent. We prove this is true for all amenable torsion-free groups.

The so-called 1-norm is defined on  $\mathbb{C}G$  by

$$\|\alpha\|_1 = \sum_{g \in G} |a_g|, \text{ for } \alpha = \sum_{g \in G} a_g g \text{ in } \mathbb{C}G.$$

The *adjoint* of an element  $\alpha = \sum_{g \in G} a_g g$  in  $\mathbb{C}G$ , denoted by  $\alpha^*$ , is  $\alpha^* = \sum_{g \in G} \bar{a}_g g^{-1}$ . We call an element  $\alpha \in \mathbb{C}G$  self-adjoint if  $\alpha^* = \alpha$ , and use  $(\mathbb{C}G)_{\mathbf{s}}$  to denote the set of self-adjoint elements of  $\mathbb{C}G$ . It is worthy of mention that

190

if  $\alpha = \sum_{g \in G} a_g g$  is self-adjoint then  $a_1$  should be a real number. For  $\alpha \in \mathbb{C}G$ ,  $\beta$  and  $\gamma$  in  $\ell^2(G)$ , the following equalities hold:

$$\langle \alpha \beta, \gamma \rangle = \langle \beta, \alpha^* \gamma \rangle.$$

The goal of this paper is to give a criterion for an element in a complex group algebra to be regular:

**Theorem 1.1.** Let G be a torsion free group. Then  $\alpha \in \mathbb{C}G$  is regular if  $2\|\alpha\|_2^2 \geq \|\alpha\|_1^2$ .

## 2. Preliminaries

In this section we provide some preliminaries needed in the following.

Let G be a group. The support of an element  $\alpha = \sum_{g \in G} a_g g$  in  $\mathbb{C}G$ , supp  $(\alpha)$ , is the finite subset  $\{g \in G : a_g \neq 0\}$  of G.

Let *H* be a subgroup of *G*, and *T* be a right transversal for *H* in *G*. Then every element  $\alpha \in \mathbb{C}G$  (resp.  $\alpha \in \ell^2(G)$ ) can be written uniquely as a finite sum of the form  $\sum_{t \in T} \alpha_t t$  with  $\alpha_t \in \mathbb{C}H$  (resp.  $\alpha_t \in \ell^2(H)$ ).

For  $S \subset G$ , we denote by  $\langle S \rangle$ , the subgroup of G generated by S. We have the following key lemma:

**Lemma 2.1.** Let G be a group,  $\alpha \in \mathbb{C}G$  and  $H = \langle supp(\alpha) \rangle$ . Then  $\alpha$  is regular in  $\mathbb{C}G$  iff  $\alpha$  is regular in  $\mathbb{C}H$ .

*Proof.* Suppose that  $\alpha$  is a zero divisor. Among elements  $0 \neq \gamma$  in  $\mathbb{C}G$  which satisfy  $\alpha \gamma = 0$  consider an element  $\beta$  such that  $1 \in \text{supp}(\beta)$  and  $|\text{supp}(\beta)|$  is minimal, then one can easily show that  $\beta \in \mathbb{C}H$ , and this proves the result of the lemma.

An immediate consequence of this lemma is:

**Corollary 2.2.** A group G satisfies Conjecture 1.1 iff all its finitely generated subgroups satisfy the Conjecture 1.1.

By Lemma 2.1 in hand, we can generalize the main theorem of [4]:

**Theorem 2.3.** Let G be an amenable group. If  $0 \neq \alpha \in \mathbb{C}G$ ,  $0 \neq \beta \in \ell^2(G)$ and  $\alpha\beta = 0$ , then there exists  $0 \neq \gamma \in \mathbb{C}G$  such that  $\alpha\gamma = 0$ .

The above theorem along with results in [10] provides another proof for [7, Theorem 2].

For a normal subgroup N of a group G, we denote the natural quotient map by  $q_N: G \to G/N$ . We continue to show that:

**Lemma 2.4.** Let N be a normal subgroup of a group G satisfying Conjecture 1.1. Consider a non-torsion element  $q_N(t)$ ,  $t \in G$ , in the quotient group. Then  $\alpha + \beta t$  is regular, for all  $\alpha, \beta \in \mathbb{C}N \setminus \{0\}$ . *Proof.* Suppose that  $\alpha + \beta t$  is a zero divisor for non zero elements  $\alpha, \beta \in \mathbb{C}N$ . Applying Lemma 2.1 and multiplying by a suitable power of t, we can assume that there are non zero elements  $\gamma_k$ ,  $k = 0, 1, \ldots, n$ , such that

$$(\alpha + \beta t) \sum_{k=0}^{n} \gamma_k t^k = 0.$$

In particular,  $0 = \beta t \gamma t^n = (\beta t \gamma_n t^{-1}) t^{n+1}$ , whence  $\beta t \gamma_n t^{-1} = 0$ , a contradiction, because  $t \gamma_n t^{-1}$  is a non zero element of  $\mathbb{C}N$ .

**Proposition 2.5.** Let N be an amenable normal subgroup of a group G satisfying Conjecture 1.1. Consider a non-torsion element  $q_N(t)$ ,  $t \in G$ , in the quotient group. Then there is no  $0 \neq \gamma \in \ell^2(G)$  such that  $(\alpha + \beta t)\gamma = 0$ . In particular, a + bg is an analytical zero divisor, for all non-torsion element  $g \in G$  and non zero complex numbers a, b.

*Proof.* The group  $\langle N, t \rangle$  is amenable. Hence Lemma 2.4 together with Theorem 2.3 yields the result.

#### 3. A CONE OF REGULAR ELEMENTS

The result of the Proposition 2.5 is true if we replace  $\mathbb{C}$  by an arbitrary field  $\mathbb{F}$ . The field of complex numbers allows us to define inner product on the group algebra; with the help of inner product, we can construct new regular elements from the ones we have:

**Proposition 3.1.** Let G be a group and  $\mathcal{F}$  be a finite non-empty subset of  $\mathbb{C}G$ . If  $\sum_{\alpha \in \mathcal{F}} \alpha^* \alpha$  is an analytical zero divisor then all elements of  $\mathcal{F}$  are analytical zero divisors. In particular,  $\alpha \in \mathbb{C}G$  is an analytical zero divisor if and only if  $\alpha^* \alpha$  is an analytical zero divisor.

*Proof.* Let  $\tilde{\alpha} := \sum_{\alpha \in \mathcal{F}} \alpha^* \alpha$  and  $\tilde{\alpha} \beta = 0$  for some  $\beta \in \ell^2(G)$ . Then

$$0 = \langle \tilde{\alpha}\beta, \beta \rangle = \sum_{\alpha \in \mathcal{F}} \langle \alpha^* \alpha \beta, \beta \rangle = \sum_{\alpha \in \mathcal{F}} \langle \alpha \beta, \alpha \beta \rangle = \sum_{\alpha \in \mathcal{F}} \|\alpha \beta\|_2^2,$$

whence  $\alpha\beta = 0$  for all  $\alpha \in \mathcal{F}$ . This completes the proof.

A cone in a vector space  $\mathfrak{X}$  is a subset  $\mathfrak{K}$  of  $\mathfrak{X}$  such that  $\mathfrak{K} + \mathfrak{K} \subset \mathfrak{K}$  and  $\mathbb{R}_+ \mathfrak{K} \subset \mathfrak{K}$ . We proceed by introducing a cone of regular elements in  $\mathbb{C}G$ . First a definition:

**Definition 3.2.** Let G be a group and  $(\mathbb{C}G)_s$  be the set of self adjoint elements  $\alpha \in \mathbb{C}G$ , we define a function  $\Upsilon : (\mathbb{C}G)_s \to \mathbb{R}$  by

$$\Upsilon(\alpha) := a_1 - \sum_{g \neq 1} |a_g|.$$

We call an element  $\alpha \in (\mathbb{C}G)_s$  golden if  $\Upsilon(\alpha) \geq 0$ . The set of all golden elements in  $(\mathbb{C}G)_s$  is denoted by  $(\mathbb{C}G)_{gold}$ .

A Necessary Condition for Zero Divisors in Complex Group Algebra of Torsion-Free Group 493

What is important about golden elements is:

**Proposition 3.3.** For a torsion free group G,  $(\mathbb{C}G)_{gold}$  is a cone of regular elements.

*Proof.* It is obvious that if  $\alpha$  is golden then so is  $r\alpha$  for any r > 0. The triangle inequality for  $\mathbb{C}$  shows that if  $\alpha$  and  $\gamma$  are golden then so is  $\alpha + \gamma$ . For  $\alpha \in (\mathbb{C}G)_s$ , we have

$$\begin{aligned} \alpha &= \frac{1}{2} (\alpha + \alpha^*) \\ &= a_1 + \frac{1}{2} \sum_{g \neq 1} \left( \bar{a}_g g^{-1} + a_g g \right) \\ &= \Upsilon(\alpha) + \frac{1}{2} \sum_{g \neq 1} \left( 2|a_g| + \bar{a}_g g^{-1} + a_g g \right) \\ &= \Upsilon(\alpha) + \frac{1}{2} \sum_{g \neq 1} |a_g| \left( \frac{\bar{a}_g}{|a_g|} + g \right)^* \left( \frac{a_g}{|a_g|} + g \right) \end{aligned}$$

Hence, by Lemma 2.5 and Proposition 3.1,  $\alpha$  is regular.

Now, we are ready to prove our main result:

Proof of Theorem 1.1. For  $\alpha = \sum_{g \in G} a_g g$  in  $\mathbb{C}G$ ,  $\alpha^* \alpha$  is self-adjoint, and one can easily show that

$$\Upsilon(\alpha^*\alpha) \ge 2\|\alpha\|_2^2 - \|\alpha\|_1^2.$$

Hence, by Proposition 3.3, the result of the Theorem is proved.

#### Acknowledgments

The author wish to thank the referee for the helpful suggestions and comments.

### References

- K. A. Brown, On Zero Divisors in Group Rings, Bull. Lond. Math. Soc., 8, (1976), 251-256.
- 2. J. M. Cohen, Zero Divisors in Group Rings, Comm. Algebra, 2, (1974), 1-14.
- T. Delzant, Sur lanneau Dun Groupe Hyperbolique, C. R. Acad. Sci. Paris Ser. I Math, 324(4), (1997), 381-384.
- G. Elek, On the Analytic Zero Divisor Conjecture of Linnell, Bulletin of the London Mathematical Society, 35(2), (2003), 236-238.
- D. R. Farkas, R. L. Snider, K<sub>0</sub> and Noetherian Group Rings, J. Algebra, 42, (1976), 192-198.
- E. Formanek, The Zero Divisor Question for Supersolvable Groups, Bull. Aust. Math. Soc., 73c, (1973), 67-71.
- P. A. Linnell, Zero Divisors and Group von Neumann Algebras, *Pacific J. Math.*, 149, (1991), 349-363.
- P. A. Linnell, Division Rings and Group von Neumann Algebras, Forum Math., 5(6), (1993), 561-576.

- P. A. Linnell, Analytic Versions of the Zero Divisor Conjecture, In Geometry and cohomology in group theory (Durham 1994), 252. London Math. Soc. Lecture Note, 1998.
- P. A. Linnell, P. H. Kropholler, J. A. Moody, Applications of a New K-theoretic Theorem to Soluble Group Rings, Proc. Amer. Math. Soc., 104, (1988), 675-684.
- A. I. Malcev, On Embedding of Group Algebras in a Division Algebra (in russian), *Dokl. Akad. Nauk.*, **60**, 1948, 1499-1501.
- B. H. Neumann, On Ordered Division Rings, Trans. Amer. Math. Soc., 66, (1949), 202-252.