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Abstract. A signed total double Roman k-dominating function

(STDRkDF) on an isolated-free graph G = (V,E) is a function f :

V (G) → {−1, 1, 2, 3} such that (i) every vertex v with f(v) = −1 has

at least two neighbors assigned 2 under f or at least one neighbor w with

f(w) = 3, (ii) every vertex v with f(v) = 1 has at least one neighbor

w with f(w) ≥ 2 and (iii)
∑

u∈N(v) f(u) ≥ k holds for any vertex v.

The weight of an STDRkDF is the value f(V (G)) =
∑

u∈V (G) f(u). The

signed total double Roman k-domination number γk
stdR(G) is the min-

imum weight among all signed total double Roman k-dominating func-

tions on G. In this paper we present sharp lower bounds for γ2
stdR(G)

and γ3
stdR(G) in terms of the order and the size of the graph G.

Keywords: Signed total double Roman k-dominating function, Signed total

double Roman k-domination number.

2000 Mathematics subject classification: 05C69, 05C05.

∗Corresponding Author

Received 21 November 2020; Accepted 25 May 2022

©2025 Academic Center for Education, Culture and Research TMU

63

 [
 D

O
I:

 1
0.

61
88

2/
ijm

si
.2

0.
2.

63
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
26

-0
1-

29
 ]

 

                             1 / 15

http://dx.doi.org/10.61882/ijmsi.20.2.63
http://ijmsi.ir/article-1-2018-en.html


64 L. Shahbazi, H. Abdollahzadeh Ahangar, R. Khoeilar, S. M. Sheikholeslami

1. Introduction

In this paper we only consider finite isolated free graphs without loops and

multiple edges. For notation and graph theory terminology we follow [15] in

general. Let G = (V,E) be a simple graphs without isolated vertices with

vertex set V = V (G) and edge set E = E(G). The order |V | of G is denoted

by n = n(G). For every vertex v ∈ V , the open neighborhood N(v) is the

set {u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood of v is the set

N [v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is degG(v) = |N(v)|. The

minimum degree and themaximum degree of a graphG are denoted by δ = δ(G)

and ∆ = ∆(G), respectively. For any set S of vertices of a graph G and any

vertex v ∈ V (G), we denoted degS(v), for the number of neighbors of v in S.

We write Pn for the path of order n, Cn for the cycle of length n and Kn for

the complete graph of order n. For two disjoint subsets S and T of V (G), we

write [S, T ] for the set of edges of G joining S to T . If K is a subset of Z and

f is a function from V (G) into K, then we write Vi = {v ∈ V (G) | f(v) = i}
for each i ∈ K.

In 2016, Beeler et al. [10] defined the double Roman domination as follows.

A function f : V → {0, 1, 2, 3} is a double Roman dominating function (DRDF)

on a graph G if the following conditions hold.

(i) If f(v) = 0, then v must have at least one neighbor in V3 or at least two

neighbors in V2.

(ii) If f(v) = 1, then v must have at least one neighbor in V2 ∪ V3.

The double Roman domination number γdR(G) equals the minimum weight

of a double Roman dominating function on G. The double Roman domination

has been studied by several authors [1, 2, 4, 5]. For further results on several

new variations of Roman domination see [6, 7, 8, 11, 14].

Amjadi et al. [9], introduced a new variation of double Roman domina-

tion as signed double Roman k-domination number. A signed double Ro-

man k-dominating function (SDRkDF) on a graph G = (V,E) is a function

f : V (G) → {−1, 1, 2, 3} such that (i) every vertex v with f(v) = −1 is ad-

jacent to at least two vertices assigned a 2 or to at least one vertex w with

f(w) = 3, (ii) every vertex v with f(v) = 1 is adjacent to at least one vertex w

with f(w) ≥ 2 and (iii) f(v) =
∑

u∈N [v] f(u) ≥ k holds for any vertex v. The

weight of an SDRkDF f is the value ω(f) =
∑

u∈V (G) f(u). The signed double

Roman k-domination number γk
sdR(G) is the minimum weight of an SDRkDF

on G. For further results on signed double Roman k-domination see [7, 16].

A signed total double Roman k-dominating function (STDRkDF) on a graph

G = (V,E) is a function f : V (G) → {−1, 1, 2, 3} such that (i) every vertex v

with f(v) = −1 is adjacent to at least two vertices assigned a 2 or to at least

one vertex w with f(w) = 3, (ii) every vertex v with f(v) = 1 is adjacent to at

least one vertex w with f(w) ≥ 2 and (iii) f(v) =
∑

u∈N(v) f(u) ≥ k holds for
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any vertex v. The weight of an STDRkDF f is the value ω(f) =
∑

u∈V (G) f(u).

The signed total double Roman k-domination number γk
stdR(G) is the minimum

weight of an STDRkDF on G. For an STDRkDF f , let Vi(f) = {v ∈ V |
f(v) = i}. In the context of a fixed STDRkDF, we suppress the argument and

simply write V−1, V1, V2 and V3. Since this partition determines f , we can

equivalently write f = (V−1, V1, V2, V3). The concept of signed total double

Roman k-domination was introduced and investigated by Shahbazi et al. [12].

The special case k = 1 is the usual signed total double Roman domination

which has been investigated in [13]. Shahbazi et al. [13] proved that for any

connected graph G of order n ≥ 3 and size m, γt
sdR(G) ≥ 11n−12m

3 .

Following the same idea, in this paper we present sharp lower bounds for

γ2
stdR(G) and γ3

stdR(G) in terms of the order and the size of the graph G.

We make use of the following results in this paper.

Propsition A. [12] For n ≥ 2,

γ2
stdR(Pn) =


4 if n = 2, 3

n if n ≡ 0 (mod 4)

n+ 2 if n ≡ 1, 3 (mod 4)

n+ 3 if n ≡ 2 (mod 4).

Propsition B. [12] For n ≥ 2,

γ3
stdR(Pn) =

{
3n
2 + 3 if n ≡ 2 (mod 4)

⌈ 3n
2 ⌉+ 2 otherwise.

Propsition C. [12] For n ≥ 3,

γ2
stdR(Cn) =


4 if n = 3

n if n ≡ 0 (mod 4)

n+ 2 if n = 6, n ≡ 1 or 3 (mod 4) and n ̸= 3

n+ 4 if n ≡ 2 (mod 4).

Propsition D. [12] If n ≥ 3, then

γ3
stdR(Cn) =

{
⌈ 3n

2 ⌉+ 1 if n ≡ 2 (mod 4)

⌈ 3n
2 ⌉ otherwise.

Propsition E. [12] For k ≥ 2 and n ≥ ⌈k
2 ⌉+ 1, γk

stdR(Kn) = k + 2.

We close this section with two simple results.

Lemma 1.1. If G is a connected graph of order 4 and size m, then γ2
stdR(G) ≥

92−24m
5 .

Proof. Let G be a connected graph of order 4. If ∆(G) = 2, then G ∈ {P4, C4}
and the result follows from Propositions A and C. Assume that ∆(G) = 3. If G

is the complete graph K4, then the result follows from Proposition E. Suppose

G is not the complete graph K4. Let V (G) = {v1, v2, v3, v4}, deg(v1) = 3 and
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f be a γ2
stdR(G)-function. If vi is a leaf for some i ∈ {2, 3, 4}, say i = 2, then

we have
γ2
stdR(G) = ω(f)

= f(v1) + f(N(v1))

= f(N(v2)) + f(N(v1))

≥ 4

≥ 92−24m
5 .

Hence, we assume that δ(G) ≥ 2. This implies that m ≥ 5 and so

γ2
stdR(G) = ω(f)

= f(v1) + f(N(v1))

≥ f(v1) + 2

≥ 1

> 92−24m
5 .

□

2. Lower bounds on γ2
stdR(G) and γ3

stdR(G)

In this section we provide sharp bounds on γk
stdR(G) for k = 2, 3, in terms

of the order and the size of G. To this end, we introduce some notation.

If f = (V−1, V1, V2, V3) is an STDRkDF of G, then for notational conve-

nience, we assume that V ′
−1 = {v ∈ V−1 | N(v)∩V3 ̸= ∅} and V ′′

−1 = V−1−V ′
−1.

Also, we let V12 = V1∪V2, V13 = V1∪V3, V123 = V1∪V2∪V3, |V12| = n12, |V13| =
n13, |V123| = n123, |V1| = n1, |V2| = n2, |V3| = n3 and |V−1| = n−1. Then

n123 = n1 + n2 + n3 and n−1 = n− n123. Let G123 = G[V123] be the subgraph

induced by the set V123 and let G123 have size m123. For i = 1, 2, 3, if Vi ̸= ∅,
let Gi = G[Vi] be the subgraph induced by the set Vi and let Gi have size mi.

Hence, m123 = m1 +m2 +m3 + |[V1, V2]|+ |[V1, V3]|+ |[V2, V3]|.

Theorem 2.1. Let G be a connected graph of order n ≥ 4 and size m. Then

γ2
stdR(G) ≥ 23n− 24m

5
.

Proof. Let f = (V−1, V1, V2, V3) be a γ3
stdR(G)-function such that (i) |V3| is

maximized and (ii) subject to (i), |V3 ∩L| is minimized where L = {v ∈ V (G) |
deg(v) = 1}. The result is immediate for n = 4 by Lemma 1.1. Assume that

n ≥ 5.

If V−1 = ∅, then clearly γ2
stdR(G) ≥ n + 1 ≥ 23n−24m

5 since n ≥ 5 and

m ≥ n− 1. Henceforth, we assume V−1 ̸= ∅. We consider the following cases.

Case 1. V3 ̸= ∅.
We distinguish the following situation.

Subcase 1.1. V2 ̸= ∅.
Since each vertex in V−1 is adjacent to at least one vertex in V3 or to at least
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two vertices in V2, we have

|[V−1, V3]|+ |[V−1, V2]| ≥ |V ′
−1|+ 2|V ′′

−1| ≥ |V ′
−1|+ |V ′′

−1| ≥ n−1.

Furthermore we have

2n−1 = 2|V ′
−1|+ 2|V ′′

−1| ≤ 2|[V−1, V3]|+|[V−1, V2]| = 2
∑
v∈V3

degV−1
(v)+

∑
u∈V2

degV−1
(u).

For each vertex v ∈ V2 ∪V3, we have that 3 degV3
(v)+2 degV2

(v)+degV1
(v)−

degV−1
(v) = f(N(v)) ≥ 2, and so

degV−1
(v) ≤ 3 degV3

(v) + 2 degV2
(v) + degV1

(v)− 2.

Now, we have

2n−1 ≤ 2
∑
v∈V3

degV−1
(v) +

∑
u∈V2

degV−1
(u)

≤ 2
∑
v∈V3

(3 degV3
(v) + 2 degV2

(v) + degV1
(v)− 2)

+
∑
u∈V2

(3 degV3
(u) + 2 degV2

(u) + degV1
(u)− 2)

= (12m3 + 4|[V2, V3]|+ 2|[V1, V3]| − 4n3) + (3|[V2, V3]|+ 4m2 + |[V1, V2]| − 2n2)

= 12m3 + 4m2 + 7|[V2, V3]|+ 2|[V1, V3]|+ |[V1, V2]| − 4n3 − 2n2

= 12m123 − 12m1 − 8m2 − 5|[V2, V3]| − 10|[V1, V3]| − 11|[V1, V2]| − 4n3 − 2n2,

and this implies that

m123 ≥ 1

12
(2n−1 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|+ 11|[V1, V2]|+ 4n3 + 2n2).

Therefore,

m ≥ m123 + |[V−1, V123]|+m−1

≥ m123 + |[V−1, V123]|

≥ 1

12
(2n−1 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|+ 11|[V1, V2]|+ 4n3 + 2n2)

+ |[V−1, V1]|+ n−1

=
1

12
(14n−1 + 4n123 − 4n1 − 2n2 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|

+ 11|[V1, V2]|+ 12|[V−1, V1]|)

=
1

12
(14n− 10n123 − 4n1 − 2n2 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|

+ 11|[V1, V2]|+ 12|[V−1, V1]|),

and so

n123 ≥ 1

10
(−12m+ 14n− 4n1 − 2n2 + 12m1 + 8m2 + 5|[V2, V3]|

+ 10|[V1, V3]|+ 11|[V1, V2]|+ 12|[V−1, V1]|).
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Now, we have

γ2
stdR(G) = 3n3 + 2n2 + n1 − n−1

= 4n3 + 3n2 + 2n1 − n

= 4n123 − n− n2 − 2n1

≥ 4

10
(−12m+ 14n− 4n1 − 2n2 + 12m1 + 8m2 + 5|[V2, V3]|

+ 10|[V1, V3]|+ 11|[V1, V2]|+ 12|[V−1, V1]|)− n− n2 − 2n1

=
2

5
(
23n

2
− 24m

2
) +

2

5
(−9n1 −

9

2
n2 + 12m1 + 8m2 + 5|[V2, V3]|

+ 10|[V1, V3]|+ 11|[V1, V2]|+ 12|[V−1, V1]|).

Let Θ = −9n1 − 9
2n2 + 12m1 + 8m2 + 5|[V2, V3]| + 10|[V1, V3]| + 11|[V1, V2]| +

12|[V−1, V1]|. We show that Θ ≥ 0. First let n1 = 0, then Θ = − 9
2n2 + 8m2 +

5|[V2, V3]|. Let V 1
2 be the set of vertices with label 2 having a neighbor in V3,

V 2
2 be the subset of V2 − V 1

2 with label 2 having a neighbor in V 1
2 , V

3
2 be the

subset of V2 − (V 1
2 ∪ V 2

2 ) and etc. Since any vertex in V2 have a neighbor in

V3∪V2, by repeating this process we obtain a partition V 1
2 ∪V 2

2 ∪ . . .∪V r
2 of V2

such that each vertex in V i
2 has a neighbor in V i−1

2 for each 2 ≤ i ≤ r − 1 and

that N(x)∩V2 ⊆ V r
2 for each x ∈ V r

2 . We claim that each vertex v ∈ V r
2 has at

least two neighbors in V r
2 . Suppose, to the contrary, that there exists a vertex

v ∈ V r
2 having exactly one neighbor u in V r

2 . Then degG(v) = 1 and since G

is connected and f is an STDR2DF of G we deduce that u has a neighbor in

V r
2 − {v}. But then the function g defined on G by g(v) = 1, g(u) = 3 and

g(x) = f(x) otherwise, is a γ2
stdR(G)-function which contradicts the choice of

f . Hence each vertex v ∈ V r
2 has at least two neighbors in V r

2 . Then

Θ = −9

2
n2 + 8m2 + 5|[V2, V3]|

≥ −9

2
n2 + 5|[V 1

2 , V3]|+ 8(

r−1∑
i=2

|[V i
2 , V

i−1
2 ]|) + 8|E(G[V r

2 ])|

≥ −9

2
n2 + 5|V 1

2 |+ 8(

r−1∑
i=2

|V i
2 |) + 8|V r

2 |

≥ −9

2
n2 + 5|V2|

> 0.

Therefore γ2
stdR(G) > 23n−24m

5 . Suppose now that n1 ≥ 1. Let V 1
1 be the set

of vertices with label 1 having a neighbor in V3 and V 1
2 be the set of vertices

with label 2 having a neighbor in V3∪V 1
1 . Suppose V

2
1 is the subset of V1−V 1

1

having a neighbor in V 1
1 ∪V 1

2 and V 2
2 is the subset of V2−V 1

2 having a neighbor
in V 2

1 ∪V 1
2 . Since V1 and V2 are finite sets, by repeating this process we obtain

disjoint subsets V 1
1 ∪ V 2

1 ∪ . . .∪ V r
1 of V1 (possibly some of V i

1 are empty) such

 [
 D

O
I:

 1
0.

61
88

2/
ijm

si
.2

0.
2.

63
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
26

-0
1-

29
 ]

 

                             6 / 15

http://dx.doi.org/10.61882/ijmsi.20.2.63
http://ijmsi.ir/article-1-2018-en.html


Lower Bounds on Signed Total Double Roman k-domination in Graphs 69

that each vertex in V i
1 has a neighbor in V i−1

1 ∪ V i−1
2 for each 2 ≤ i ≤ r, and

disjoint subsets V 1
2 ∪ V 2

2 ∪ . . . ∪ V r
2 of V2 (possibly some of V i

2 are empty) so
that every vertex in V i

2 has a neighbor in V i
1 ∪V i−1

2 for each 2 ≤ i ≤ r and that
V r
1 = V r

2 = ∅. Let V r+1
1 = V1 − (∪r

i=1V
r
1 ) and V r+1

2 = V2 − (∪r
i=1V

r
2 ). Clearly,

V 1
1 ∪V 2

1 ∪ . . .∪V r+1
1 is a weak partition of V1 and V 1

2 ∪V 2
2 ∪ . . .∪V r+1

2 is a weak
partition of V2. Note that N(x) ⊆ V r+1

1 ∪V r+1
2 ∪V−1 for each x ∈ V r+1

1 ∪V r+1
2 .

Assume that H1, . . . ,Ht be the components of G[V r+1
1 ∪ V r+1

2 ]. Since G is
connected and f is a STDR2DF of G, we must have |V (Hi)| ≥ 3 for each
1 ≤ i ≤ t, if V r+1

1 ∪ V r+1
2 ̸= ∅. Then

Θ = −9n1 −
9

2
n2 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|+ 11|[V1, V2]|+ 12[|V−1, V1|]

≥
(
−9|V 1

1 |+ 10|[V 1
1 , V3]|

)
+

r∑
i=2

(
−9|V i

1 |+ 12|[V i
1 , V

i−1
1 ]|+ 11|[V i

1 , V
i−1
2 ]|

)
+(

−9

2
|V 1

2 |+ 5|[V 1
2 , V3]|+ 11|[V 1

1 , V
1
2 ]|

)
+

r∑
i=2

(
−9

2
|V i

2 |+ 8|[V i
2 , V

i−1
2 ]|+ 11|[V i

1 , V
i
2 ]|

)
+

t∑
i=1

(
−9

2
n(Hi) + 8m(Hi)

)

≥
t∑

i=1

(
−9

2
n(Hi) + 8(n(Hi)− 1)

)

≥
t∑

i=1

(
7

2
n(Hi)− 8

)
> 0.

Therefore γ2
stdR(G) > 23n−24m

5 .

Subcase 1.2. V2 = ∅.
By definition of STDR2DF, each vertex in V−1 is adjacent to one vertex in V3,

and so ∑
v∈V3

degV−1
(v) = |[V−1, V3]| ≥ |V−1| = n−1.

As in Subcase 1.1, for each v ∈ V3 we have 3 degV3
(v)+degV1

(v)−degV−1
(v) =

f(N(v)) ≥ 2, and so degV−1
(v) ≤ 3 degV3

(v) + degV1
(v)− 2. Now, we have

n−1 ≤
∑
v∈V3

degV−1
(v)

≤
∑
v∈V3

(3 degV3
(v) + degV1

(v)− 2)

= 6m3 + |[V1, V3]| − 2n3

= 6m13 − 6m1 − 5|[V1, V3]| − 2n3,
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which implies that m13 ≥ 1
6 (n−1 + 6m1 + 5|[V1, V3]|+ 2n3). Hence,

m = m13 + |[V−1, V3]|+ |[V−1, V1]|+m−1

≥ m13 + |[V−1, V3]|+ |[V−1, V1]|

≥ 1

6
(n−1 + 6m1 + 5|[V1, V2]|+ 2n3) + n−1 + |[V−1, V1]|

=
1

6
(7n−1 + 2n3 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|)

=
1

6
(7n−1 + 2n13 − 2n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|)

=
1

6
(7n− 5n13 − 2n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|),

and so

n13 ≥ 1

5
(−6m+ 7n− 2n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|).

Now, we have

γ2
stdR(G) = 3n3 + n1 − n−1

= 4n3 + 2n1 − n

= 4n13 − n− 2n1

≥ 4

5
(−6m+ 7n− 2n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|)− n− 2n1

=
4

5
(−6m+ 7n− 5

4
n− 2n1 −

5

2
n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|)

=
4

5
(
23

4
n− 6m) +

4

5
(−9

2
n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|).

Let Θ = − 9
2n1+6m1+5|[V1, V3]|+6|[V−1, V1]|. We show that Θ ≥ 0. If n1 = 0,

then Θ = 0. Suppose that n1 ≥ 1. Since each vertex of V1 is adjacent to a

vertex of V3, we have |[V1, V3]| ≥ n1. It follows that

Θ = −9

2
n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|

≥ −9

2
n1 + 6m1 + 5n1 + 6|[V−1, V1]|

> 0.

Therefore γ2
stdR(G) > 23n−24m

5 .

Case 2. V3 = ∅.
Since V−1 ̸= ∅, we conclude that V2 ̸= ∅. By definition of STDR2DF, each

vertex in V−1 is adjacent to at least two vertices in V2, and so∑
v∈V2

degV−1
(v) =|[V−1, V2]| ≥ 2|V−1| = 2n−1.

As in Subcase 1.1, for each v ∈ V2 we have that 2 degV2
(v) + degV1

(v) −
degV−1

(v) = f(N(v)) ≥ 2, and so degV−1
(v) ≤ 2 degV2

(v) + degV1
(v) − 2.
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Now, we have

2n−1 ≤
∑
v∈V2

degV−1
(v)

≤
∑
v∈V2

(2 degV2
(v) + degV1

(v)− 2)

= 4m2 + |[V1, V2]| − 2n2

= 4m12 − 4m1 − 3|[V1, V2]| − 2n2,

which implies that

m12 ≥ 1

4
(2n−1 + 4m1 + 3|[V1, V2]|+ 2n2).

Hence,

m = m12 + |[V−1, V12]|+m−1

≥ m12 + |[V−1, V12]|

≥ 1

4
(2n−1 + 4m1 + 3|[V1, V2]|+ 2n2) + 2n−1 + |[V1, V−1]|

=
1

4
(10n−1 + 2n12 − 2n1 + 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|)

=
1

4
(10n− 8n12 − 2n1 + 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|)

and so n12 ≥ 1
8 (−4m + 10n − 2n1 + 4m1 + 3|[V1, V2]| + 4|[V1, V−1]|). Now, we

have

γ2
stdR(G) = 2n2 + n1 − n−1

= 3n2 + 2n1 − n

= 3n12 − n− n1

≥ 3

8
(−4m+ 10n− 2n1 + 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|)− n− n1

=
3

8
(−4m+ 10n− 8

3
n) +

3

8
(−14

3
n1 + 4m1 + 3|[V1, V2]|

+ 4|[V1, V−1]|)

≥ 3

8
(−4m+

22

3
n)− 5

8
m+

5

8
m+

3

8
(−14

3
n1 + 4m1 + 3|[V1, V2]|

+ 4|[V1, V−1]|)

=
1

8
(−17m+ 22n) +

3

8
(−14

3
n1 + 4m1 +

5

3
m+ 3|[V1, V2]|

+ 4|[V1, V−1]|).
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Let Θ = − 14
3 n1 + 4m1 +

5
3m+ 3|[V1, V2]|+ 4|[V1, V−1]|. If n1 = 0, then Θ > 0.

Suppose that n1 ≥ 1. Since any vertex in V1 is adjacent to a vertex in V2, we

have

Θ = −14

3
n1 + 4m1 +

5

3
m+ 3|[V1, V2]|+ 4|[V1, V−1]|

≥ −14

3
n1 +

17

3
m1 +

14

3
|[V1, V2]|.

≥ 0

Therefore γ2
stdR(G) ≥ 1

8 (22n − 17m) > 1
5 (23n − 24m). This completes the

proof. □

In the next example, we present an infinite family of graphs that attain the

bound of Theorem 2.1.

Example 2.2. For any connected graph F of order t ≥ 2, let Ft be the graph

obtained from F by adding 3 degF (v)− 2 pendant edges to each vertex v of F .

Then

n(Ft) = n(F ) +
∑

v∈V (F )

(3 degF (v)− 2) = 6m(F )− n(F )

and

m(Ft) = m(F ) +
∑

v∈V (F )

(3 degF (v)− 2) = 7m(F )− 2n(F ).

Assigning a 3 to every vertex in V (F ) and a -1 to every vertex in V (Ft)−V (F )

produces an STDR2DF of weight

3n(F )−
∑

v∈V (F )

(3 degF (v)− 2) = 5n(F )− 6m(F ) =
23n(Ft)− 24m(Ft)

5
,

and so γ2
stdR(Ft) ≤ 23n(Ft)−24m(Ft)

5 . Applying Theorem 2.1, we have γ2
stdR(Ft) =

23n(Ft)−24m(Ft)
5 .

Next we present a sharp lower bound on γ3
stdR(G).

Theorem 2.3. Let G be a connected graph of order n ≥ 5 and size m. Then

γ3
stdR(G) ≥ 6n− 6m.

Furthermore, this bound is sharp.

Proof. Let f = (V−1, V1, V2, V3) be a γ2
stdR(G)-function such that (i) |V3| is

maximized and (ii) subject to (i), |V3 ∩L| is minimized where L = {v ∈ V (G) |
deg(v) = 1}. If V−1 = ∅, then γ3

stdR(G) ≥ n + 1 > 6n − 6m. Suppose that

V−1 ̸= ∅. Consider the following cases.

Case 1. V3 ̸= ∅.
First let V2 ̸= ∅. As in the proof of Theorem 2.1, we have∑
v∈V3

degV−1
(v) +

1

2

∑
u∈V2

degV−1
(u) = |[V−1, V3]|+

1

2
|[V−1, V2]| ≥ |V ′

−1|+ |V ′′
−1|= n−1,
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and for each vertex v ∈ V2∪V3, degV−1
(v) ≤ 3 degV3

(v)+2 degV2
(v)+degV1

(v)−
3. Now, we have

3n−1 ≤ 3
∑
v∈V3

degV−1
(v) +

3

2

∑
u∈V2

degV−1
(u)

≤ 3
∑
v∈V3

(3 degV3
(v) + 2 degV2

(v) + degV1
(v)− 3)

+
3

2

∑
u∈V2

(3 degV3
(u) + 2 degV2

(u) + degV1
(u)− 3)

= (18m3 + 6|[V2, V3]|+ 3|[V1, V3]| − 9n3) + (
9

2
|[V2, V3]|+ 6m2 +

3

2
|[V1, V2]−

9

2
n2)

= 18m3 + 6m2 +
21

2
|[V2, V3]|+ 3|[V1, V3]|+

3

2
|[V1, V2]| − 9n3 −

9

2
n2

= 18m123 − 18m1 − 12m2 −
15

2
|[V2, V3]| − 15|[V1, V3]| −

33

2
|[V1, V2]| − 9n3 −

9

2
n2,

and so

m123 ≥ 1

18
(3n−1+18m1+12m2+

15

2
|[V2, V3]|+15|[V1, V3]|+

33

2
|[V1, V2]|+9n3+

9

2
n2).

Using an argument similar to that described in the proof of Theorem 2.1, we
obtain

n123 ≥ 1

12
(−18m+ 21n− 9n1 −

9

2
n2 + 18m1 + 12m2 +

15

2
|[V2, V3]|+ 15|[V1, V3]|

+
33

2
|[V1, V2]|+ 18|[V−1, V1]|).

Now, we have

γ3
stdR(G) = 3n3 + 2n2 + n1 − n−1

= 4n3 + 3n2 + 2n1 − n

= 4n123 − n− n2 − 2n1

≥ 4

12
(−18m+ 21n− 9n1 −

9

2
n2 + 18m1 + 12m2 +

15

2
|[V2, V3]|

+ 15|[V1, V3]|+
33

2
|[V1, V2]|+ 18|[V−1, V1]|)− n− n2 − 2n1

=
1

3
(−18m+ 18n− 15n1 −

15

2
n2 + 18m1 + 12m2 +

15

2
|[V2, V3]|

+ 15|[V1, V3]|+
33

2
|[V1, V2]|+ 18|[V−1, V1]|)

= 6n− 6m+
1

3
(−15n1 −

15

2
n2 + 18m1 + 12m2 +

15

2
|[V2, V3]|

+ 15|[V1, V3]|+
33

2
|[V1, V2]|+ 18|[V−1, V1]|).

Let Θ = −15n1− 15
2 n2+18m1+12m2+

15
2 |[V2, V3]|+15|[V1, V3]|+ 33

2 |[V1, V2]|+
18|[V−1, V1]|. We show that Θ ≥ 0. If n1 = 0, then Θ = − 15

2 n2 + 12m2 +
15
2 |[V2, V3]| and as in the proof of Theorem 2.1 we can see that Θ > 0 implying

that γt
sdR(G) > 6n− 6m. Suppose now that n1 ≥ 1.

Now we use the notations defined in the proof of Theorem 2.1 (Subcase 1.1).
Since G is connected and f is a STDR3DF of G, we must have |V (Hi)| ≥ 3
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and δ(Hi) ≥ 2 for each 1 ≤ i ≤ t. It follows that |E(Hi)| ≥ |V (Hi)| for each
1 ≤ i ≤ t. Thus

Θ = −15n1 −
15

2
n2 + 18m1 + 12m2 +

15

2
|[V2, V3]|+ 15|[V1, V3]|

+
33

2
|[V1, V2]|+ 18|[V−1, V1]|

≥
(
−15|V 1

1 |+ 15([V 1
1 , V3]|)

)
+

r∑
i=2

(
−15|V i

1 |+ 18|[V i
1 , V

i−1
1 ]|+ 33

2
|[V i

1 , V
i−1
2 ]|

)
+

(
−15

2
|V 1

2 |+
15

2
|[V 1

2 , V3]|+
33

2
|[V 1

1 , V
1
2 ]|

)
+

r+1∑
i=2

(
−15

2
|V i

2 |+ 12|[V i
2 , V

i−1
2 ]|+ 33

2
|[V i

1 , V
i
2 ]|

)
+

t∑
i=1

(
−15

2
n(Hi) + 12m(Hi)

)

≥
t∑

i=1

(
−15

2
n(Hi) + 12n(Hi)

)
> 0.

Therefore γ3
stdR(G) ≥ 6n− 6m.

Now let V2 = ∅. As above, we have
∑

v∈V3
degV−1

(v) = |[V−1, V3]| ≥ n−1

and degV−1
(v) ≤ 3 degV3

(v) + degV1
(v) − 3 for each vertex v ∈ V3. Now, we

have

n−1 ≤
∑
v∈V3

degV−1
(v)

≤
∑
v∈V3

(3 degV3
(v) + degV1

(v)− 3)

= 6m3 + |[V1, V3]− 3n3

= 6m13 − 6m1 − 5|[V1, V3]| − 3n3,

which implies that m13 ≥ 1
6 (n−1 + 6m1 + 5|[V1, V3]|+ 3n3). Hence,

m = m13 + |[V−1, V3]|+ |[V−1, V1]|+m−1

≥ m13 + |[V−1, V3]|+ |[V−1, V1]|

≥ 1

6
(n−1 + 6m1 + 5|[V1, V3]|+ 3n3) + n−1 + |[V−1, V1]|

=
1

6
(7n−1 + 3n3 + 6m1 + 5|[V1, V3]|+ 6|V−1, V1|)

=
1

6
(7n−1 + 3n13 − 3n1 + 6m1 + 5|[V1, V3]|+ 6|V−1, V1|)

=
1

6
(7n− 4n13 − 3n1 + 6m1 + 5|[V1, V3]|+ 6|V−1, V1|)

and this implies that

n13 ≥ 1

4
(−6m+ 7n− 3n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1|]).
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Now, we have

γ3
stdR(G) = 3n3 + n1 − n−1

= 4n3 + 2n1 − n

= 4n13 − n− 2n1

≥ 4

4
(−6m+ 7n− 3n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|)− n− 2n1

= (−6m+ 6n) + (−5n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1|])
> (−6m+ 6n).

Case 2. V3 = ∅.
Since f is a STDR3DF of G, we conclude that δ(G) ≥ 2 and so m ≥ n. Now

V−1 ̸= ∅ implies that V2 ̸= ∅. By definition of STDR3DF, each vertex in V−1

is adjacent to at least two vertices in V2, and so

|[V−1, V12]| ≥ |[V−1, V2]| ≥ 2|V−1| = 2n−1.

As above, we have 2n−1 ≤ 4m12 − 4m1 − 3|[V1, V2]| − 3n2 and hence

m12 ≥ 1

4
(2n−1 + 4m1 + 3|[V1, V2]|+ 3n2).

Now we have

m = m12 + |[V−1, V12]|+m−1

≥ m12 + |[V−1, V12]|

≥ 1

4
(2n−1 + 4m1 + 3|[V1, V2]|+ 3n2) + 2n−1 + |[V1, V−1]|

≥ 1

4
(10n−1 + 3n12 + 4m1 + 3|[V1, V2]| − 3n1 + 4|[V1, V−1]|)

=
1

4
(10n− 7n12 + 4m1 + 3|[V1, V2]| − 3n1 + 4|[V1, V−1]|)

and so

n12 ≥ 1

7
(−4m+ 10n+ 4m1 + 3|[V1, V2]| − 3n1 + 4|[V1, V−1]|).
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Thus

γ3
stdR(G) = 2n2 + n1 − n−1

= 3n2 + 2n1 − n

= 3n12 − n− n1

≥ 3

7
(−4m+ 10n+ 4m1 + 3|[V1, V2]| − 3n1 + 4|[V1, V−1]|)− n− n1

=
3

7
(−4m+

23

3
n− 16

3
n1 + 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|)

≥ 3

7
(−4m+

23

3
n) +

3

7
(−16

3
n1 + 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|)

=
−12m+ 23n

7
+

3

7
(−16

3
n1 + 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|)

≥ −12m+ 23n

7
> −6m+ 6n.

To prove the sharpness, let Ht (t ≥ 2) be the graph obtained from a connected

graph H of order t by adding 3 degH(v)− 3 pendant edges to each vertex v of

H. Then

n(Ht) = n(H) +
∑

v∈V (H)

(3 degH(v)− 3) = 6m(H)− 2n(H)

and

m(Ht) = m(H) +
∑

v∈V (H)

(3 degH(v)− 3) = 7m(H)− 3n(H).

Assigning a 3 to every vertex in V (H) and a -1 to every vertex in V (Ht)−V (H)

produces an STDR3DF f of weight

ω(f) = 3n(H)−
∑

v∈V (H)

(3 degH(v)− 3) = 6n(H)− 6m(H) = 6n(Ht)− 6m(Ht),

and hence γ3
stdR(Ht) ≤ 6n(Ht)− 6m(Ht). Thus γ

3
stdR(Ht) = 6n(Ht)− 6m(Ht)

and the proof is complete. □
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