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Abstract. We first establish weighted Ostrowski type inequalities for

bounded differentiable functions. This inequality is also obtained for

bounded above and bounded below differentiable functions. Some ap-

plications of the proposed results are presented to numerical standard

and non standard quadrature rules. We recapture known results as well

as obtain new results.
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1. Introduction

Our work mostly deals with integral inequalities. To highlight its impor-

tance we quote here from [20], “Among the many types of inequalities, integral
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inequalities are of supreme importance because over the last few decades this

field has proven to be an extensively applicable field. The integral inequalities

of various types have been widely studied in most subjects involving mathe-

matical analysis. These inequalities are particularly useful in approximation

theory and in numerical analysis where estimates of approximation errors are

involved.” Ostrowski inequality [25] is one of the most famous inequalities,

first presented by Alexander Markowich Ostrowski in 1938. It can be used

to determine absolute deviation of functional values from its mean values. It

is extremely important because of its wide range of applications in different

areas of mathematics such as numerical integration, integral operator theory,

probability theory and statistics. This inequality states that:

Proposition 1.1. Let ρ : I → R be a differentiable function on Io such that

ρ ∈ L[j, k] where j < k whose derivative ρ′ is bounded on interior of I, i.e.,

∥ρ′∥∞ := sup
t∈(j,k)

|ρ′(t)| < ∞. Then

∣∣∣∣∣ρ(θ)− 1

k − j

∫ k

j

ρ(t)dt

∣∣∣∣∣ ≤ (k − j)

1
4
+

(
θ − j+k

2

)2
(k − j)2

 ∥ρ′(x)∥∞. (1.1)

The constant 1
4 is the best possible constant that it cannot be replaced by smaller

one.

Ostrowski inequality for differentiable functions has been generalized many

times, as stated in [6, 18, 19, 27]. For latest work related to Ostrowski inequal-

ity, we refer the reader to following articles [1, 2, 3, 5, 8, 12, 13, 14, 15, 16, 17,

21, 22, 23, 24, 26]

To prove our main results, we need the following two lemmas from [7] and

[10].

Lemma 1.2. Let ρ: I → R, be a differentiable function in interior I0 of

interval I and also let [j, k] ⊂ I0. Then the following identity holds∫ k

j

K(θ, t)ρ′(t)dt = ρ(k)

∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ(θ)

∫ α+β
2

α

ω(t)dt

+ ρ(j + k − θ)

∫ β

α+β
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt, (1.2)

where K(θ, t) is defined as:

K(θ, t) =



∫ t

α

ω(t)dt, if t ∈ [j, θ];∫ t

α+β
2

ω(t)dt, if t ∈ (θ, j + k − θ];∫ t

β

ω(t)dt, if t ∈ (j + k − θ, k];

(1.3)
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where ∀ θ ∈ [j, k], α = j + λk−j
2 , β = k − λk−j

2 and λ ∈ [0, 1].

Lemma 1.3. Let ρ : [j, k] → R be a differentiable function such that γ(θ) ≤
ρ′(θ) ≤ Γ(θ) for any γ,Γ ∈ C[j, k] and θ ∈ [j, k]. Then we have∣∣∣∣ρ′(t)− γ(t) + Γ(t)

2

∣∣∣∣ ≤ Γ(t)− γ(t)

2
. (1.4)

We are ready to present our main theorem, which will be generalized in

two ways: first, by adding weights that are probability density functions, and

second, by adding a parameter. In this way, we will capture variety of results

from various articles as special cases.

2. Main results

Theorem 2.1. Let ρ: I → R, be a differentiable function in I0 and also let

γ(θ) ≤ ρ′(θ) ≤ Γ(θ) for any γ,Γ ∈ C[j, k] and θ ∈ [j, k]. Then

m(θ, λ) ≤ ρ(k)

∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ(θ)

∫ α+β
2

α

ω(t)dt

+ ρ(j + k − θ)

∫ β

α+β
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt ≤ M(θ, λ), (2.1)

where

m(θ, λ) =

∫ θ

j

((∫ t

α

ω(t)dt−
∣∣∣∣ ∫ t

α

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

α

ω(t)dt+

∣∣∣∣ ∫ t

α

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt

+

∫ j+k−θ

θ

((∫ t

α+β
2

ω(t)dt−
∣∣∣∣ ∫ t

α+β
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

α+β
2

ω(t)dt+

∣∣∣∣ ∫ t

α+β
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k

j+k−θ

((∫ t

β

ω(t)dt−
∣∣∣∣ ∫ t

β

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

β

ω(t)dt+

∣∣∣∣ ∫ t

β

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt

and

M(θ, λ) =

∫ θ

j

((∫ t

α

ω(t)dt+

∣∣∣∣ ∫ t

α

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

α

ω(t)dt−
∣∣∣∣ ∫ t

α

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt
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+

∫ j+k−θ

θ

((∫ t

α+β
2

ω(t)dt+

∣∣∣∣ ∫ t

α+β
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

α+β
2

ω(t)dt−
∣∣∣∣ ∫ t

α+β
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k

j+k−θ

((∫ t

β

ω(t)dt+

∣∣∣∣ ∫ t

β

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

β

ω(t)dt−
∣∣∣∣ ∫ t

β

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt.

Proof. Using (1.2) and (1.3), we obtain∫ k

j

K(θ, t)

(
ρ′(t)− γ(t) + Γ(t)

2

)
dt

=

∫ k

j

K(θ, t)ρ′(t)dt− 1

2

(∫ k

j

K(θ, t) (γ(t) + Γ(t)) dt

)

= ρ(k)

∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ(θ)

∫ α+β
2

α

ω(t)dt

+ ρ(j + k − θ)

∫ β

α+β
2

ω(t)dt−
∫ k

j

ω(t)ρ(t)dt

− 1

2

[∫ θ

j

∫ t

α

ω(t)dt (γ(t) + Γ(t)) dt+

∫ j+k−θ

θ

∫ t

α+β
2

ω(t)dt (γ(t) + Γ(t)) dt

+

∫ k

j+k−θ

∫ t

β

ω(t)dt (γ(t) + Γ(t)) dt

]
. (2.2)

Applying absolute value and using (1.4) we get∣∣∣∣∣
∫ k

β

ω(t)dtρ(k)− ρ(j)

∫ j

α

ω(t)dt+ ρ(θ)

∫ α+β
2

α

ω(t)dt+ ρ(j + k − θ)

×
∫ β

α+β
2

ω(t)dt−
∫ k

j

ω(t)ρ(t)dt− 1

2

[∫ θ

j

∫ t

α

ω(t)dt (γ(t) + Γ(t)) dt

+

∫ j+k−θ

θ

∫ t

α+β
2

ω(t)dt (γ(t) + Γ(t)) dt

+

∫ k

j+k−θ

∫ t

β

ω(t)dt (γ(t) + Γ(t)) dt

]∣∣∣∣∣
=

∣∣∣∣∣
∫ k

j

K(θ, t)

(
ρ′(t)− γ(t) + Γ(t)

2

)
dt

∣∣∣∣∣
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Generalization of weighted Ostrowski Inequality 213

≤
∫ k

j

|K(θ, t)|
∣∣∣∣(ρ′(t)− γ(t) + Γ(t)

2

)
dt

∣∣∣∣
≤
∫ k

j

|K(θ, t)|
(
Γ(t)− γ(t)

2

)
dt

=
1

2

[∫ θ

j

∣∣∣∣∫ t

α

ω(t)dt

∣∣∣∣ (Γ(t)− γ(t)) dt+

∫ j+k−θ

θ

∣∣∣∣∣
∫ t

α+β
2

ω(t)dt

∣∣∣∣∣
× (Γ(t)− γ(t)) dt+

∫ k

j+k−θ

∣∣∣∣∫ t

β

ω(t)dt

∣∣∣∣ (Γ(t)− γ(t)) dt

]
. (2.3)

After rearranging (2.3), we get the required result. □

Remark 2.2. It is worth mentioning that if we put ω(t) = 1
k−j in our main

result we will get the following result.

Corollary 2.3. Let all the assumptions of Theorem 2.1 be valid. Then

m0(θ, λ) ≤ λ
ρ(j) + ρ(k)

2
+ (1− λ)

ρ(θ) + ρ(j + k − θ)

2
−
∫ k

j

ρ(t)d(t)

≤ M0(θ, λ),

where

m0(θ, λ) =
1

k − j

[∫ θ−(j+λ k−j
2 )

−λ k−j
2

(
η + |η|

2
Γ

(
η + j + λ

k − j

2

)
+

η − |η|
2

γ

(
η + j + λ

k − j

2

))
dη

+

∫ j+k
2 −θ

θ− j+k
2

(
η + |η|

2
Γ

(
η +

j + k

2

)
+

η − |η|
2

γ

(
η +

j + k

2

))
dη

+

∫ λ k−j
2

j+λ k−j
2 −θ

(
η + |η|

2
Γ

(
η + j − λ

k − j

2

)
+
η − |η|

2
γ

(
η + j − λ

k − j

2

))
dη

]
and

M0(θ, λ) =
1

k − j

[∫ θ−(j+λ k−j
2 )

−λ k−j
2

(
η − |η|

2
Γ

(
η + j + λ

k − j

2

)
+

η + |η|
2

γ

(
η + j + λ

k − j

2

))
dη
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+

∫ j+k
2 −θ

θ− j+k
2

(
η − |η|

2
Γ

(
η +

j + k

2

)
+

η + |η|
2

γ

(
η +

j + k

2

))
dη

+

∫ λ k−j
2

j+λ k−j
2 −θ

(
η − |η|

2
Γ

(
η + j − λ

k − j

2

)
+
η − |η|

2
γ

(
η + j − λ

k − j

2

))
dη

]
,

which is Theorem 2.3 of [8] and hence all its Corollaries and Remarks and

further consequences would become our special cases.

Throughout the section γ0, γ1, Γ0, Γ1 are real constants.

Remark 2.4. If we put λ = 1 in (2.1), we obtain following result.

Corollary 2.5. Let all the assumptions of Theorem 2.1 be valid. Then

m1 ≤ ρ(k)

∫ k

j+k
2

ω(t)dt+ ρ(j)

∫ j+k
2

j

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt ≤ M1, (2.4)

where

m1 =

∫ k

j

[((∫ t

j+k
2

ω(t)dt−
∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+k
2

ω(t)dt+

∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)]
dt

and

M1 =

∫ k

j

[((∫ t

j+k
2

ω(t)dt+

∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+k
2

ω(t)dt−
∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)]
dt.

Special Case 2.5.(a)If we take, γ(t) = γ0 ̸= 0, Γ(t) = Γ0 ̸= 0 and ω(t) =
1

k−j in (2.4), then

(k − j)

8
(γ0 − Γ0) ≤

ρ(j) + ρ(k)

2
− 1

k − j

∫ k

j

ρ(t)dt

≤ (k − j)

8
(Γ0 − γ0),

which is the Corollary 2 of [27] and Special Case 2.4.1 of [8].

Special Case 2.5.(b) If we take, γ(t) = γ1t+ γ0 ̸= 0, Γ(t) = Γ1t+ Γ0 ̸= 0

and ω(t) = 1
k−j in (2.4), then

m2 ≤ ρ(j) + ρ(k)

2
− 1

k − j

∫ k

j

ρ(t)dt ≤ M2,
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where

m2 =
(k − j)

8

[
(k − j)

3
(γ1 + Γ1) +

(j + k)

2
(γ1 − Γ1) + γ0 − Γ0

]
and

M2 =
(k − j)

8

[
(k − j)

3
(γ1 + Γ1) +

(j + k)

2
(Γ1 − γ1) + Γ0 − γ0

]
,

which is Special Case 2.4.2 of [8].

Remark 2.6. If we choose θ = j+k
2 in (2.1), we obtain the following result.

Corollary 2.7. Let all the assumptions of Theorem 2.1 be valid. Then

m3(λ) ≤ ρ(k)

∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ

(
k + j

2

)∫ β

α

ω(t)dt

−
∫ k

j

ρ(t)ω(t)dt ≤ M3(λ), (2.5)

where

m3(λ) =

∫ j+k
2

j

((∫ t

α

ω(t)dt−
∣∣∣∣ ∫ t

α

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

α

ω(t)dt+

∣∣∣∣ ∫ t

α

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt

+

∫ k

j+k
2

((∫ t

β

ω(t)dt−
∣∣∣∣ ∫ t

β

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

β

ω(t)dt+

∣∣∣∣ ∫ t

β

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt

and

M3(λ) =

∫ j+k
2

j

((∫ t

α

ω(t)dt+

∣∣∣∣ ∫ t

α

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

α

ω(t)dt−
∣∣∣∣ ∫ t

α

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt

+

∫ k

j+k
2

((∫ t

β

ω(t)dt+

∣∣∣∣ ∫ t

β

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

β

ω(t)dt−
∣∣∣∣ ∫ t

β

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt.

Remark 2.8. If we choose λ = 0 in (2.5), we obtain the following result.

Corollary 2.9. Let all the assumptions of Theorem 2.1 be valid. Then

m4 ≤ ρ

(
k + j

2

)
−
∫ k

j

ρ(t)ω(t)dt ≤ M4(t) (2.6)
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where

m4 =

∫ j+k
2

j

((∫ t

j

ω(t)dt−
∣∣∣∣ ∫ t

j

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

j

ω(t)dt+

∣∣∣∣ ∫ t

j

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt

+

∫ k

j+k
2

((∫ t

k

ω(t)dt−
∣∣∣∣ ∫ t

k

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

k

ω(t)dt+

∣∣∣∣ ∫ t

k

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt

and

M4 =

∫ j+k
2

j

((∫ t

j

ω(t)dt+

∣∣∣∣ ∫ t

j

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

j

ω(t)dt−
∣∣∣∣ ∫ t

j

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt

+

∫ k

j+k
2

((∫ t

k

ω(t)dt+

∣∣∣∣ ∫ t

k

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

k

ω(t)dt−
∣∣∣∣ ∫ t

k

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt.

Special Case 2.9.(a) If we take, γ(θ) = γ0 ̸= 0, Γ(θ) = Γ0 ̸= 0, θ = j+k
2

and ω(t) = 1
k−j , in (2.5), then

(k − j)

8
(γ0 − Γ0) ≤ ρ

(
j + k

2

)
− 1

k − j

∫ k

j

ρ(t)dt ≤ (k − j)

8
(Γ0 − γ0),

which is in fact the Special Case 1 of Theorem 1 presented in [18], Corollary 1

of [27] and Special Case 2.6.1 of [8].

Special Case 2.9.(b) If we take, γ(θ) = γ1θ+γ0 ̸= 0, Γ(θ) = Γ1θ+Γ0 ̸= 0

and ω(t) = 1
k−j in (2.5), then

m5 ≤ ρ

(
j + k

2

)
− 1

k − j

∫ k

j

ρ(t)dt ≤ M5,

where

m5 =
(k − j)

8

(
k − j

3
(γ1 + Γ1) + jγ1 − kΓ1 + γ0 − Γ0

)
and

M5 =
(k − j)

8

(
k − j

3
(γ1 + Γ1) + jΓ1 − kγ1 + Γ0 − γ0

)
,

which is example of Corollary 1 of [18] and Special Case 2.6.2 of [8].

Remark 2.10. By choosing λ = 1
3 in (2.5), then we get the following corollary.
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Corollary 2.11. Let all the assumptions of Theorem 2.1 be valid. Then

m6 ≤ ρ(k)

∫ k

j+5k
6

ω(t)dt− ρ(j)

∫ j

5j+k
6

ω(t)dt+ ρ

(
k + j

2

)∫ j+k
2

5j+k
6

ω(t)dt

+ρ

(
k + j

2

)∫ j+5k
6

j+k
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt ≤ M6, (2.7)

where

m6 =

∫ j+k
2

− k−j
6

((∫ t

5j+k
6

ω(t)dt−
∣∣∣∣ ∫ t

5j+k
6

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

5j+k
6

ω(t)dt+

∣∣∣∣ ∫ t

5j+k
6

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k−j
6

j+k
2

((∫ t

j+5k
6

ω(t)dt−
∣∣∣∣ ∫ t

j+5k
6

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+5k
6

ω(t)dt+

∣∣∣∣ ∫ t

j+5k
6

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

and

M6 =

∫ j+k
2

− k−j
6

((∫ t

5j+k
6

ω(t)dt+

∣∣∣∣ ∫ t

5j+k
6

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

5j+k
6

ω(t)dt−
∣∣∣∣ ∫ t

5j+k
6

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k−j
6

j+k
2

((∫ t

j+5k
6

ω(t)dt+

∣∣∣∣ ∫ t

j+5k
6

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+5k
6

ω(t)dt−
∣∣∣∣ ∫ t

j+5k
6

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt .

Special Case 2.11.(a) If we take, γ(t) = γ0 ̸= 0, Γ(t) = Γ0 ̸= 0 and

ω(t) = 1
k−j in (2.7) , then

(k − j)

72
(γ0 − Γ0) ≤

1

3

[
ρ(j) + ρ(k)

2
+ 2ρ

(
j + k

2

)]
− 1

k − j

∫ k

j

ρ(t)dt

≤ (k − j)

72
(Γ0 − γ0),

which is 1
3 Simpson’s rule and Corollary 4 of [27] and Special Case 2.7.1 of [8].
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Special Case 2.11.(b) If we take, γ(t) = γ1t+γ0 ̸= 0, Γ(t) = Γ1t+Γ0 ̸= 0

and ω(t) = 1
k−j in (2.7), then

m7 ≤ 1

3

[
ρ(j) + ρ(k)

2
+ 2ρ

(
j + k

2

)]
− 1

k − j

∫ k

j

ρ(t)dt ≤ M7,

where

m7 =
(k − j)

72

[
(k − j)(γ1 + Γ1) +

j

2
(7γ1 − 3Γ1) +

k

2
(3γ1 − 7Γ1) + 5(γ0 − Γ0)

]

and

M7 =
(k − j)

72

[
(k − j)(γ1 + Γ1) +

j

2
(7Γ1 − 3γ1) +

k

2
(3Γ1 − 7γ1)

+ 5(Γ0 − γ0)] ,

which is 1
3 Simpson’s rule and Special Case 2.7.2 of [8].

Remark 2.12. If we choose λ = 1
2 in (2.5), we get the following corollary.

Corollary 2.13. Let all the assumptions of Theorem 2.1 be valid. Then

m8 ≤ ρ(k)

∫ k

j+3k
4

ω(t)dt− ρ(j)

∫ j

3j+k
4

ω(t)dt+ ρ

(
k + j

2

)∫ j+k
2

3j+k
4

ω(t)dt

+ρ

(
k + j

2

)∫ j+3k
4

j+k
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt ≤ M8, (2.8)

where

m8 =

∫ j+k
2

− k−j
4

((∫ t

3j+k
4

ω(t)dt−
∣∣∣∣ ∫ t

3j+k
4

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

3j+k
4

ω(t)dt+

∣∣∣∣ ∫ t

3j+k
4

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k−j
4

j+k
2

((∫ t

j+3k
4

ω(t)dt−
∣∣∣∣ ∫ t

j+3k
4

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+3k
4

ω(t)dt+

∣∣∣∣ ∫ t

j+3k
4

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt
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and

M8 =

∫ j+k
2

− k−j
4

((∫ t

3j+k
4

ω(t)dt+

∣∣∣∣ ∫ t

3j+k
4

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

3j+k
4

ω(t)dt−
∣∣∣∣ ∫ t

3j+k
4

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k−j
4

j+k
2

((∫ t

j+3k
4

ω(t)dt+

∣∣∣∣ ∫ t

j+3k
4

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+3k
4

ω(t)dt−
∣∣∣∣ ∫ t

j+3k
4

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt.

Special Case 2.13.(a) If we take, γ(t) = γ0 ̸= 0, Γ(t) = Γ0 ̸= 0 and

ω(t) = 1
k−j in (2.8), then

(k − j)

16
(γ0 − Γ0) ≤

1

2

[
ρ(j) + ρ(k)

2
+ ρ

(
j + k

2

)]
− 1

k − j

∫ k

j

ρ(t)dt

≤ (k − j)

16
(Γ0 − γ0),

which is average midpoint and trapezoidal and Corollary 3 of [27] and Special

Case 2.8.1 of [8].

Special Case 2.13.(b) If we take, γ(t) = γ1t+γ0 ̸= 0, Γ(t) = Γ1t+Γ0 ̸= 0

and ω(t) = 1
k−j in (2.8), then

m9 ≤ 1

2

[
ρ(j) + ρ(k)

2
+ ρ

(
j + k

2

)]
− 1

k − j

∫ k

j

ρ(t)dt ≤ M9,

where

m9 =
(k − j)

16

[
(k − j)

6
(γ1 + Γ1) +

j

2
(γ1 − Γ1) +

k

2
(γ1 − Γ1) + γ0 − Γ0

]
and

M9 =
(k − j)

16

[
(k − j)

6
(γ1 + Γ1) +

j

2
(Γ1 − γ1) +

k

2
(Γ1 − γ1) + Γ0 − γ0

]
,

which is midpoint and trapezoidal rule and Special Case 2.8.2 of [8].

Remark 2.14. If we choose θ = j in (2.1), for any value of λ ∈ [0, 1] we obtain

the following result.

Corollary 2.15. Let all the assumptions of Theorem 2.1 be valid. Then

m10(λ) ≤ ρ(k)

∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ(p)

∫ α+β
2

α

ω(t)dt

+ρ(k)

∫ β

α+β
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt ≤ M10(λ), (2.9)
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where

m10(λ) =

∫ k

j

((∫ t

α+β
2

ω(t)dt−
∣∣∣∣ ∫ t

α+β
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

α+β
2

ω(t)dt+

∣∣∣∣ ∫ t

α+β
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

and

M10(λ) =

∫ k

j

((∫ t

α+β
2

ω(t)dt+

∣∣∣∣ ∫ t

α+β
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

α+β
2

ω(t)dt−
∣∣∣∣ ∫ t

α+β
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt.

Remark 2.16. (1) If we take Γ(t) = Γ0 ̸= 0, γ(t) = γ0 ̸= 0, and with

ω(t) = 1
k−j in (2.9), then we obtain results similar to Special Case

2.5.(a).

(2) Γ(t) = Γ1t+Γ0 ̸= 0,γ(t) = γ1t+ γ0 ̸= 0, and ω(t) = 1
k−j in (2.9), then

we obtain results similar to Special Case 2.5.(b).

Remark 2.17. If we choose θ = k, and λ = 0 in (2.1), we obtain the following

result.

Corollary 2.18. Let all the assumptions of Theorem 2.1 be valid. Then

m11 ≤ ρ(j) + ρ(k)

2
− 1

k − j

∫ k

j

ρ(t)dt ≤ M11, (2.10)

where

m11 =

∫ k

j

((∫ t

j

ω(t)dt−
∣∣∣∣ ∫ t

j

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

j

ω(t)dt+

∣∣∣∣ ∫ t

j

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt

+

∫ j

k

((∫ t

j+k
2

ω(t)dt−
∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+k
2

ω(t)dt+

∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k

j

((∫ t

k

ω(t)dt−
∣∣∣∣ ∫ t

k

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

k

ω(t)dt+

∣∣∣∣ ∫ t

k

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt.
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and

M11 =

∫ k

j

((∫ t

j

ω(t)dt+

∣∣∣∣ ∫ t

j

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

j

ω(t)dt−
∣∣∣∣ ∫ t

j

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt

+

∫ j

k

((∫ t

j+k
2

ω(t)dt+

∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+k
2

ω(t)dt−
∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k

j

((∫ t

k

ω(t)dt+

∣∣∣∣ ∫ t

k

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

k

ω(t)dt−
∣∣∣∣ ∫ t

k

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt.

Special Case 2.18.(a) If we take, γ(t) = γ0 ̸= 0, Γ(t) = Γ0 ̸= 0 and

ω(t) = 1
k−j in (2.10), then

3(k − j)

8
(γ0 − Γ0) ≤

[
ρ(j) + ρ(k)

2

]
− 1

k − j

∫ k

j

ρ(t)dt

≤ 3(k − j)

8
(Γ0 − γ0),

which is Special Case 2.10.1 of [8].

Special Case 2.18.(b) If we take, γ(t) = γ1t+γ0 ̸= 0, Γ(t) = Γ1t+Γ0 ̸= 0

and ω(t) = 1
k−j in (2.10), then

m12 ≤
[
ρ(j) + ρ(k)

2

]
− 1

k − j

∫ k

j

ρ(t)dt ≤ M12,

where

m12 =
(k − j)

2

[
7(k − j)

12
(γ1 + Γ1) +

j

8
(7γ1 + Γ1)−

k

8
(γ1 + 7Γ1)

+
3

4
(γ0 − Γ0)

]
and

M12 =
(k − j)

2

[
7(k − j)

12
(γ1 + Γ1) +

j

8
(γ1 + 7Γ1)−

k

8
(7γ1 + Γ1)

+
3

4
(Γ0 − γ0)

]
,

which is Special Case 2.10.2 of [8].
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Remark 2.19. If we choose θ = k and λ = 1
2 in (2.1), we obtain the following

result.

Corollary 2.20. Let all the assumptions of Theorem 2.1 be valid. Then

m13 ≤ ρ(k)

∫ k

j+3k
4

ω(t)dt− ρ(j)

∫ j

3j+k
4

ω(t)dt+ ρ(k)

∫ j+k
2

3j+k
4

ω(t)dt

+ρ(j)

∫ j+3k
4

j+k
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt ≤ M13, (2.11)

where

m13 =

∫ k

j

((∫ t

3j+k
4

ω(t)dt−
∣∣∣∣ ∫ t

3j+k
4

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

3j+k
4

ω(t)dt+

∣∣∣∣ ∫ t

3j+k
4

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ j

k

((∫ t

j+k
2

ω(t)dt−
∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+k
2

ω(t)dt+

∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k

j

((∫ t

j+3k
4

ω(t)dt−
∣∣∣∣ ∫ t

j+3k
4

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+3k
4

ω(t)dt+

∣∣∣∣ ∫ t

j+3k
4

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

and

M13 =

∫ k

j

((∫ t

3j+k
4

ω(t)dt+

∣∣∣∣ ∫ t

3j+k
4

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

3j+k
4

ω(t)dt−
∣∣∣∣ ∫ t

3j+k
4

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ j

k

((∫ t

j+k
2

ω(t)dt+

∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+k
2

ω(t)dt−
∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k

j

((∫ t

j+3k
4

ω(t)dt+

∣∣∣∣ ∫ t

j+3k
4

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+3k
4

ω(t)dt−
∣∣∣∣ ∫ t

j+3k
4

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt .
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Special Case 2.20.(a) If we take, γ(t) = γ0 ̸= 0, Γ(t) = Γ0 ̸= 0 and

ω(t) = 1
k−j in (2.11), then

9(k − j)

32
(γ0−Γ0) ≤

[
ρ(j) + ρ(k)

2

]
− 1

k − j

∫ k

j

ρ(t)dt ≤ 9(k − j)

32
(Γ0−γ0),

which is Special Case 2.11.1 of [8].

Special Case 2.20.(b) If we take, γ(t) = γ1t+γ0 ̸= 0, Γ(t) = Γ1t+Γ0 ̸= 0

and ω(t) = 1
k−j in (2.11), then

m14 ≤
[
ρ(j) + ρ(k)

2

]
− 1

k − j

∫ k

j

ρ(t)dt ≤ M14,

where

m14 =
k − j

16

[
5(k − j)

3
(γ1 + Γ1) +

j

2
(5γ1 − Γ1)−

k

2
(γ1 − 5Γ1)

+ 3(γ0 − Γ0)]

and

M14 =
k − j

16

[
5(k − j)

3
(γ1 + Γ1) +

j

2
(5Γ1 − γ1)−

k

2
(Γ1 − 5γ1)

+ 3(Γ0 − γ0)] ,

which is Special Case 2.11.2 of [8].

Remark 2.21. If we choose θ = k and λ = 1
3 in (2.1), then we get the following

result.

Corollary 2.22. Let all the assumptions of Theorem 2.1 be valid. Then

m15 ≤ ρ(k)

∫ k

j+5k
6

ω(t)dt− ρ(j)

∫ j

5j+k
6

ω(t)dt+ ρ(k)

∫ j+k
2

5j+k
6

ω(t)dt

+ρ(j)

∫ j+5k
6

j+k
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt ≤ M15, (2.12)

where

m15 =

∫ k

j

((∫ t

5j+k
6

ω(t)dt−
∣∣∣∣ ∫ t

5j+k
6

ω(t)dt

∣∣∣∣
)

Γ(t)

2
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+

(∫ t

5j+k
6

ω(t)dt+

∣∣∣∣ ∫ t

5j+k
6

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ j

k

((∫ t

j+k
2

ω(t)dt−
∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+k
2

ω(t)dt+

∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k

j

((∫ t

j+5k
6

ω(t)dt−
∣∣∣∣ ∫ t

j+5k
6

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+5k
6

ω(t)dt+

∣∣∣∣ ∫ t

j+5k
6

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

and

M15 =

∫ k

j

((∫ t

5j+k
6

ω(t)dt+

∣∣∣∣ ∫ t

5j+k
6

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

5j+k
6

ω(t)dt−
∣∣∣∣ ∫ t

5j+k
6

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ j

k

((∫ t

j+k
2

ω(t)dt+

∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+k
2

ω(t)dt−
∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k

j

((∫ t

j+5k
6

ω(t)dt+

∣∣∣∣ ∫ t

j+5k
6

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+5k
6

ω(t)dt−
∣∣∣∣ ∫ t

j+5k
6

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt.

Special Case 2.22.(a) If we take, γ(t) = γ0 ̸= 0, Γ(t) = Γ0 ̸= 0 and

ω(t) = 1
k−j in (2.12), then

17(k − j)

72
(γ0 − Γ0) ≤

[
ρ(j) + ρ(k)

2

]
− 1

k − j

∫ k

j

ρ(t)dt

≤ 17(k − j)

72
(Γ0 − γ0),

which is Special Case 2.12.1 of [8].

 [
 D

O
I:

 1
0.

61
88

2/
ijm

si
.2

0.
2.

20
9 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
26

-0
1-

29
 ]

 

                            16 / 34

http://dx.doi.org/10.61882/ijmsi.20.2.209
http://ijmsi.ir/article-1-2009-en.html


Generalization of weighted Ostrowski Inequality 225

Special Case 2.22.(b) If we take, γ(t) = γ1t+γ0 ̸= 0, Γ(t) = Γ1t+Γ0 ̸= 0

and ω(t) = 1
k−j in (2.12), then

m16 ≤
[
ρ(j) + ρ(k)

2

]
− 1

k − j

∫ k

j

ρ(t)dt ≤ M16,

where

m16 =
(k − j)

72

[
11(k − j)(γ1 + Γ1) +

3j

2
(33γ1 − Γ1) +

3k

2
(γ1 − 33Γ1)

+17(γ0 − Γ0)]

and

M16 =
(k − j)

72

[
(k − j)(γ1 + Γ1) +

3j

2
(33Γ1 − γ1) +

3k

2
(Γ1 − 33γ1)

+ 17(Γ0 − γ0)] ,

which is Special Case 2.12.2 of [8].

Remark 2.23. If we choose θ = k, and λ = 1
4 in (2.1), we obtain a bound for

trapezoidal rule in the following result.

Corollary 2.24. Let all the assumptions of Theorem 2.1 be valid. Then

m17 ≤ ρ(k)

∫ k

7j+k
8

ω(t)dt− ρ(j)

∫ j

7j+k
8

ω(t)dt+ ρ(k)

∫ j+k
2

7j+k
8

ω(t)dt

+ρ(j)

∫ β

j+k
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt ≤ M17, (2.13)

where

m17 =

∫ k

j

((∫ t

7j+k
8

ω(t)dt−
∣∣∣∣ ∫ t

7j+k
8

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

7j+k
8

ω(t)dt+

∣∣∣∣ ∫ t

7j+k
8

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ j

k

((∫ t

j+k
2

ω(t)dt−
∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+k
2

ω(t)dt+

∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k

j

((∫ t

β

ω(t)dt−
∣∣∣∣ ∫ t

β

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

β

ω(t)dt+

∣∣∣∣ ∫ t

β

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt.
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and

M17 =

∫ k

j

((∫ t

7j+k
8

ω(t)dt+

∣∣∣∣ ∫ t

7j+k
8

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

7j+k
8

ω(t)dt−
∣∣∣∣ ∫ t

7j+k
8

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ j

k

((∫ t

j+k
2

ω(t)dt+

∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+k
2

ω(t)dt−
∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k

j

((∫ t

β

ω(t)dt+

∣∣∣∣ ∫ t

β

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

β

ω(t)dt−
∣∣∣∣ ∫ t

β

ω(t)dt

∣∣∣∣) γ(t)

2

)
dt.

Special Case 2.24.(a) If we take, γ(t) = γ0 ̸= 0, Γ(t) = Γ0 ̸= 0 and

ω(t) = 1
k−j in (2.13), then

17(k − j)

64
(γ0 − Γ0) ≤

[
ρ(j) + ρ(k)

2

]
− 1

k − j

∫ k

j

ρ(t)dt

≤ 17(k − j)

64
(Γ0 − γ0),

which is Special Case 2.13.1 of [8].

Special Case 2.24.(b) If we take, γ(t) = γ1t+γ0 ̸= 0, Γ(t) = Γ1t+Γ0 ̸= 0

and ω(t) = 1
k−j in (2.13), then

m18 ≤
[
ρ(j) + ρ(k)

2

]
− 1

k − j

∫ k

j

ρ(t)dt ≤ M18,

where

m18 =
(k − j)

64

[
35

3
(k − j)(γ1 + Γ1) +

j

2
(35γ1 + Γ1)−

k

2
(γ1 + 35Γ1)

+17(γ0 − Γ0)]

and

M18 =
(k − j)

64

[
35

3
(k − j)(γ1 + Γ1) +

j

2
(35Γ1 + γ1+)− k

2
(Γ1 + 35γ1)

+17(Γ0 − γ0)] ,

which is Special Case 2.13.2 of [8].
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Remark 2.25. if we choose θ = 2j+k
3 and λ = 1

4 in (2.1), then we get the

following result.

Corollary 2.26. Let all the assumptions of Theorem 2.1 be valid. Then

m19 ≤ ρ(k)

∫ k

j+7k
8

ω(t)dt− ρ(j)

∫ j

7j+k
8

ω(t)dt+ ρ

(
2j + k

3

)∫ j+k
2

7j+k
8

ω(t)dt

+ρ

(
j + 2k

3

)∫ j+7k
8

j+k
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt ≤ M19, (2.14)

where

m19 =

∫ 2j+k
3

j

((∫ t

7j+k
8

ω(t)dt−
∣∣∣∣ ∫ t

7j+k
8

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

7j+k
8

ω(t)dt+

∣∣∣∣ ∫ t

7j+k
8

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ j+2k
3

2j+k
3

((∫ t

j+k
2

ω(t)dt−
∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+k
2

ω(t)dt+

∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k

j+2k
3

((∫ t

j+7k
8

ω(t)dt−
∣∣∣∣ ∫ t

j+7k
8

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+7k
8

ω(t)dt+

∣∣∣∣ ∫ t

j+7k
8

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt.

and

M19 =

∫ 2j+k
3

j

((∫ t

7j+k
8

ω(t)dt+

∣∣∣∣ ∫ t

7j+k
8

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

7j+k
8

ω(t)dt−
∣∣∣∣ ∫ t

7j+k
8

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ j+2k
3

2j+k
3

((∫ t

j+k
2

ω(t)dt+

∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+k
2

ω(t)dt−
∣∣∣∣ ∫ t

j+k
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt

+

∫ k

j+2k
3

((∫ t

j+7k
8

ω(t)dt+

∣∣∣∣ ∫ t

j+7k
8

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

j+7k
8

ω(t)dt−
∣∣∣∣ ∫ t

j+7k
8

ω(t)dt

∣∣∣∣
)

γ(t)

2

)
dt.
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Special Case 2.26.(a) If we take, γ(t) = γ0 ̸= 0, Γ(t) = Γ0 ̸= 0 and

ω(t) = 1
k−j in (2.14), then

25(k − j)

576
(Γ0 − γ0) ≤

3

8

[
ρ(j) + ρ(k)

3
+ ρ

(
2j + k

3

)
+ ρ

(
j + 2k

3

)]
− 1

k − j

∫ k

j

ρ(t)dt ≤ 25(k − j)

576
(γ0 − Γ0),

which is Special Case 2.15.1 of [8].

Special Case 2.26.(b) If we take, γ(t) = γ1t+γ0 ̸= 0, Γ(t) = Γ1t+Γ0 ̸= 0

and ω(t) = 1
k−j , in (2.14) then

m20 ≤ 3

8

[
ρ(j) + ρ(k)

3
+ ρ

(
2j + k

3

)
+ ρ

(
j + 2k

3

)]
− 1

k − j

∫ k

j

ρ(t)dt

≤ M20,

where

m20 =
(k − j)

192

[
(k − j)(γ1 + Γ1) +

31

6
(jγ1 − kΓ1) +

19

6
(kγ1 − jΓ1)

+
25

3
(γ0 − Γ0)

]
and

M20 =
(k − j)

192

[
(k − j)(γ1 + Γ1) +

31

6
(kΓ1 − jγ1) +

19

6
(jΓ1 − kγ1)

+
25

3
(Γ0 − γ0)

]
,

which is Special Case 2.15.2 of [8].

Now we state two results with their consequences for function ρ whose first

derivative is bounded below only and bounded above only respectively.

Theorem 2.27. Let ρ : I → R, be a differentiable function on I0 of I, and

let [j, k] ⊂ I0. If ρ′ is bounded below then γ(θ) ≤ ρ′(θ) for any γ ∈ C[j, k],

θ ∈ [j, k], then for all λ ∈ [0, 1] we have

m21(θ, λ) ≤ ρ(k)

∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ(θ)

∫ α+β
2

α

ω(t)dt

+ ρ(j + k − θ)

∫ β

α+β
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt ≤ M21(θ, λ), (2.15)
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where

m21(θ, λ) =

∫ k

j

(∫ t

α+β
2

ω(t)dt

)
γ(t)dt+

∫ θ

j

(∫ α+β
2

α

ω(t)dt

)
γ(t)dt

−
∫ k

j+k−θ

(∫ β

α+β
2

ω(t)dt

)
γ(t)dt

−max

{∫ θ

α

ω(t)dt,

∫ j+k−θ

α+β
2

ω(t)dt,

∫ k

β

ω(t)dt

}

×

(
ρ(k)− ρ(j)−

∫ k

j

γ(t)dt

)

and

M21(θ, λ) =

∫ k

j

(∫ t

α+β
2

ω(t)dt

)
γ(t)dt+

∫ θ

j

(∫ α+β
2

α

ω(t)dt

)
γ(t)dt

−
∫ k

j+k−θ

(∫ β

α+β
2

ω(t)dt

)
γ(t)dt

+max

{∫ θ

α

ω(t)dt,

∫ j+k−θ

α+β
2

ω(t)dt,

∫ k

β

ω(t)dt

}

×

(
ρ(k)− ρ(j)−

∫ k

j

γ(t)dt

)
.

Proof. Since

∫ k

j

K(θ, t) (ρ′(t)− γ(t)) dt

= ρ(k)

∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ(θ)

∫ α+β
2

α

ω(t)dt

+ρ(j + k − θ)

∫ β

α+β
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt−
∫ k

j

ω(t)ρ(t)dt

−
∫ k

j

K(θ, t)γ(t)dt

= ρ(k)

∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ(θ)

∫ α+β
2

α

ω(t)dt
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+ρ(j + k − θ)

∫ β

α+β
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt

−

[∫ θ

j

(∫ t

α

ω(t)dt

)
γ(t)dt +

∫ j+k−θ

θ

(∫ t

α+β
2

ω(t)dt

)
γ(t)dt

+

∫ k

j+k−θ

(∫ t

β

ω(t)dt

)
γ(t)dt

]
.

Using modulus property, we have∣∣∣∣∣ρ(k)
∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ(θ)

∫ α+β
2

α

ω(t)dt

+ ρ(j + k − θ)

∫ β

α+β
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt

−

[∫ θ

j

(∫ t

α

ω(t)dt

)
γ(t)dt+

∫ j+k−θ

θ

(∫ t

α+β
2

ω(t)dt

)
γ(t)dt

+

∫ k

j+k−θ

(∫ t

β

ω(t)dt

)
γ(t)dt

]∣∣∣∣∣
=

∣∣∣∣∣
∫ k

j

K(θ, t) (ρ′(t)− γ(t)) dt

∣∣∣∣∣ ≤
∫ k

j

|K(θ, t)| (ρ′(t)− γ(t)) dt

≤ max
t∈[j,k]

|K(θ, t)|
∫ k

j

(ρ′(t)− γ(t)) dt

= max

{∫ θ

α

ω(t)dt,

∫ j+k−θ

α+β
2

ω(t)dt,

∫ k

β

ω(t)dt

}

×

(
ρ(k)− ρ(j)−

∫ k

j

γ(t)dt

)
. (2.16)

After rearrangement of (2.16) we get required result. □

Remark 2.28. If we put ω(t) = 1
k−j in inequality (2.15), then we will get the

following result.

Corollary 2.29. Let all the assumptions of Theorem 2.27 be valid. Then

m22(θ, λ) ≤ λ
ρ(j) + ρ(k)

2
+ (1− λ)

ρ(θ) + ρ(j + k − θ)

2
−
∫ k

j

ρ(t)d(t)

≤ M22(θ, λ) (2.17)
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where

m22(λ) =
1

k − j

[∫ k

j

(
t− j + k

2

)
γ(t)dt +

k − j

2

(∫ θ

j

(1− λ) γ(t)dt

−
∫ k

j+k−θ

(1− λ) γ(t)dt

)
−max

{
λ
k − j

2
,

(
θ − (2− λ)j + λk

2

)
,

(
j + k

2
− θ

)}

×

(
ρ(k)− ρ(j)−

∫ k

j

γ(t)dt

)]

and

M22(λ) =
1

k − j

[∫ k

j

(
t− j + k

2

)
γ(t)dt +

k − j

2

(∫ j+k
2

j

(1− λ) γ(t)dt

−
∫ k

j+k
2

(1− λ) γ(t)dt

)
+max

{
λ
k − j

2
,

(
θ − (2− λ)j + λk

2

)
,

(
j + k

2
− θ

)}

×

(
ρ(k)− ρ(j)−

∫ k

j

γ(t)dt

)]
,

which is Theorem 2.8 of [8].

Remark 2.30. If we choose θ = j+k
2 in (2.15), we get the following result.

Corollary 2.31. Let all the assumptions of Theorem 2.1 be valid. Then

m23(λ) ≤ ρ(k)

∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ

(
j + k

2

)∫ β

α

ω(t)dt

−
∫ k

j

ρ(t)ω(t)dt ≤ M23(λ), (2.18)

where

m23(λ) =

∫ j+k
2

j

(∫ t

α

ω(t)dt

)
γ(t)dt+

∫ k

j+k
2

(∫ t

β

ω(t)dt

)
γ(t)dt

−max

{∫ j+k
2

α

ω(t)dt,

∫ j+k
2

α+β
2

ω(t)dt,

∫ k

β

ω(t)dt

}

×

(
ρ(k)− ρ(j)−

∫ k

j

γ(t)dt

)

and
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M23(λ) =

∫ j+k
2

j

∫ t

α

ω(t)dtγ(t)dt+

∫ k

j+k
2

∫ t

β

ω(t)dtγ(t)dt

+max

{∫ j+k
2

α

ω(t)dt,

∫ j+k
2

α+β
2

ω(t)dt,

∫ k

β

ω(t)dt

}

×

(
ρ(k)− ρ(j)−

∫ k

j

γ(t)dt

)
.

Special Case 2.31. If we choose ω(t) = 1
k−j in (2.18), we obtain the

following result.

m24(λ) ≤
[
λ
ρ(j) + ρ(k)

2
+ (1− λ)ρ

(
j + k

2

)]
− 1

k − j

∫ k

j

ρ(t)dt

≤ M24(λ), (2.19)

where

m24(λ) =
1

k − j

[∫ k

j

(
t− j + k

2

)
γ(t)dt +

k − j

2

(∫ j+k
2

j

(1− λ) γ(t)dt

−
∫ k

j+k
2

(1− λ) γ(t)dt

)
−max

{
λ
k − j

2
, (1− λ)

k − j

2

}

×

(
ρ(k)− ρ(j)−

∫ k

j

γ(t)dt

)]

and

M24(λ) =
1

k − j

[∫ k

j

(
t− j + k

2

)
γ(t)dt +

k − j

2

(∫ j+k
2

j

(1− λ) γ(t)dt

−
∫ k

j+k
2

(1− λ) γ(t)dt

)
+max

{
λ
k − j

2
, (1− λ)

k − j

2

}

×

(
ρ(k)− ρ(j)−

∫ k

j

γ(t)dt

)]
,

which is Corollary 2.9 of [8].

Theorem 2.32. Let ρ : I → R, be a differentiable function on I0 of I, and

let [j, k] ⊂ I0. If ρ′ is bounded above then ρ′(θ) ≤ Γ(θ) for any Γ ∈ C[j, k],

θ ∈ [j, k], then for all λ ∈ [0, 1] we have
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m25(θ, λ) ≤ ρ(k)

∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ(θ)

∫ α+β
2

α

ω(t)dt

+ ρ(j + k − θ)

∫ β

α+β
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt ≤ M25(θ, λ), (2.20)

where

m25(θ, λ) =

∫ k

j

(∫ t

α+β
2

ω(t)dt

)
Γ(t)dt+

∫ θ

j

(∫ α+β
2

α

ω(t)dt

)
Γ(t)dt

−
∫ k

j+k−θ

(∫ t

α+β
2

ω(t)dt

)
Γ(t)dt

−max

{∫ θ

α

ω(t)0dt,

∫ j+k−θ

α+β
2

ω(t)dt,

∫ k

β

ω(t)dt

}

×

(∫ k

j

Γ(t)dt− ρ(k) + ρ(j)

)

and

M25(θ, λ) =

∫ k

j

(∫ t

α+β
2

ω(t)dt

)
Γ(t)dt+

∫ θ

j

(∫ α+β
2

α

ω(t)dt

)
Γ(t)dt

−
∫ k

j+k−θ

(∫ t

α+β
2

ω(t)dt

)
Γ(t)dt

+max

{∫ θ

α

ω(t)dt,

∫ j+k−θ

α+β
2

ω(t)dt,

∫ k

β

ω(t)dt

}

×

(∫ k

j

Γ(t)dt− ρ(k) + ρ(j)

)
.

Proof. Since

∫ k

j

K(θ, t) (ρ′(t)− Γ(t)) dt

= ρ(k)

∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ(θ)

∫ α+β
2

α

ω(t)dt

+ρ(j + k − θ)

∫ β

α+β
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt−
∫ k

j

K(θ, t)Γ(t)dt
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= ρ(k)

∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ(θ)

∫ α+β
2

α

ω(t)dt

+ρ(j + k − θ)

∫ β

α+β
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt

−

[∫ θ

j

∫ t

α

ω(t)dtΓ(t)dt +

∫ j+k−θ

θ

∫ t

α+β
2

ω(t)dtΓ(t)dt

+

∫ k

j+k−θ

∫ t

β

ω(t)dtΓ(t)dt.

so we have ∣∣∣∣∣ρ(k)
∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ(θ)

∫ α+β
2

α

ω(t)dt

+ρ(j + k − θ)

∫ β

α+β
2

ω(t)dt−
∫ k

j

ρ(t)ω(t)dt

−

[∫ θ

j

∫ t

α

ω(t)dtΓ(t)dt +

∫ j+k−θ

θ

∫ t

α+β
2

ω(t)dtΓ(t)dt

+

∫ k

j+k−θ

∫ t

β

ω(t)dtΓ(t)dt

]∣∣∣∣∣
=

∣∣∣∣∣
∫ k

j

K(θ, t) (ρ′(t)− Γ(t)) dt

∣∣∣∣∣
≤
∫ k

j

|K(θ, t)| (Γ(t)− ρ′(t)) dt

≤ max
t∈[j,k]

|K(θ, t)|
∫ k

j

(Γ(t)− ρ′(t)) dt

= max

{∫ θ

α

ω(t)dt,

∫ j+k−θ

α+β
2

ω(t)dt,

∫ k

β

ω(t)dt

}

×

(∫ k

j

Γ(t)dt− ρ(k) + ρ(j)

)
, (2.21)

we get required result after some rearrangement. □

Remark 2.33. If we put ω(t) = 1
k−j in inequality (2.20) then we get Theorem

3 of [18] and Theorem 3 of [19].
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Corollary 2.34. Let all the assumptions of Theorem 2.32 be valid and if we

choose θ = j+k
2 in (2.20), then we get

m26(λ) ≤ ρ(k)

∫ k

β

ω(t)dt− ρ(j)

∫ j

α

ω(t)dt+ ρ

(
j + k

2

)∫ β

α

ω(t)dt

−
∫ k

j

ρ(t)ω(t)dt ≤ M26(λ), (2.22)

where

m26(λ) =

∫ j+k
2

j

∫ t

α

ω(t)dtΓ(t)dt+

∫ k

j+k
2

∫ t

β

ω(t)dtΓ(t)dt

−max

{∫ j+k
2

α

ω(t)dt,

∫ j+k
2

α+β
2

ω(t)dt,

∫ k

β

ω(t)dt

}(∫ k

j

Γ(t)dt− ρ(k) + ρ(j)

)

and

M26(λ) =

∫ j+k
2

j

∫ t

α

ω(t)dtΓ(t)dt+

∫ k

j+k
2

∫ t

β

ω(t)dtΓ(t)dt

+max

{∫ j+k
2

α

ω(t)dt,

∫ j+k
2

α+β
2

ω(t)dt,

∫ k

β

ω(t)dt

}(∫ k

j

Γ(t)dt− ρ(k) + ρ(j)

)
.

Special Case 2.34. If we choose ω(t) = 1
k−j in (2.22), we obtain the following

result.

m27(λ) ≤
[
λ
ρ(j) + ρ(k)

2
+ (1− λ)ρ

(
j + k

2

)]
− 1

k − j

∫ k

j

ρ(t)dt

≤ M27(λ),

where

m27(λ) =
1

k − j

[∫ k

j

(
t− j + k

2

)
Γ(t)dt

+
k − j

2

(∫ j+k
2

j

(1− λ) Γ(t)dt−
∫ k

j+k
2

(1− λ) Γ(t)dt

)

−max

{
λ
k − j

2
, (1− λ)

k − j

2

}(∫ k

j

Γ(t)dt− ρ(k) + ρ(j)

)]

and
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M27(λ) =
1

k − j

[∫ k

j

(
t− j + k

2

)
Γ(t)dt

+
k − j

2

(∫ j+k
2

j

(1− λ) Γ(t)dt−
∫ k

j+k
2

(1− λ) Γ(t)dt

)

+max

{
λ
k − j

2
, (1− λ)

k − j

2

}(∫ k

j

Γ(t)dt− ρ(k) + ρ(j)

)]
,

which is Corollary 2.11 of [8].

Remark 2.35. If γ(θ) ≤ ρ′(θ) ≤ Γ(θ) for any θ ∈ [j, k] and γ,Γ ∈ C[j, k], and if

one put λ = 0, then error bounds of non-standard quadrature are given as:

m29 ≤ 1

2

[
−ρ(j) + 2ρ

(
j + k

2

)
+ ρ(k)

]
− 1

k − j

∫ k

j

ρ(t)dt ≤ M29, (2.23)

where

m29 =
1

k − j

[∫ j+k
2

j

(t− j) γ(t)dt+

∫ k

j+k
2

(t− k)γ(t)dt

+
(k − j)

2

∫ k

j

γ(t)dt

]

and

M29 =
1

k − j

[∫ j+k
2

j

(t− j) Γ(t)dt+

∫ k

j+k
2

(t− k)Γ(t)dt

+
(k − j)

2

∫ k

j

Γ(t)dt

]
,

which is Corollary 3 of [18], Corollary 4 of [19] and Corollary 2.11 of [8].

Proof. To prove (2.23), we use Corollaries 2.31 and 2.34. First by putting λ = 0

and ω(t) = 1
k−j in (2.22), we get

1

k − j

[∫ k

j

(t− j) γ(t)dt+
k − j

2

(∫ j+k
2

j

γ(t)dt−
∫ k

j+k
2

γ(t)dt

)]

≤ 1

2

[
−ρ(j) + 2ρ

(
j + k

2

)
+ ρ(k)

]
− 1

k − j

∫ k

j

ρ(t)dt (2.24)

provided that γ(t) ≤ ρ′(t) ∀ t ∈ [j, k].
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On the other hand, by assuming λ = 0 and ω(t) = 1
b−a in (2.22), we obtain

1

2

[
−ρ(j) + 2ρ

(
j + k

2

)
+ ρ(k)

]
− 1

k − j

∫ k

j

ρ(t)dt

≤ 1

k − j

[∫ k

j

(t− j) Γ(t)dt+
k − j

2

(∫ j+k
2

j

Γ(t)dt−
∫ k

j+k
2

Γ(t)dt

)]
,(2.25)

provided that ρ′(t) ≤ Γ(t) ∀ t ∈ [j, k]. Combining the above two inequalities

obtain the required result. □

Remark 2.36. If γ(θ) ≤ ρ′(θ) ≤ Γ(θ) for any θ ∈ [j, k] and γ,Γ ∈ C[j, k], and if

we choose λ = 0, then error bound of non-standard quadrature would be

m30 ≤ 1

2

[
ρ(j) + 2ρ

(
j + k

2

)
− ρ(k)

]
− 1

k − j

∫ k

j

ρ(t)dt ≤ M30 (2.26)

where

m30 =
1

k − j

[∫ j+k
2

j

(t− j) Γ(t)dt+

∫ k

j+k
2

(t− k)Γ(t)dt

− (k − j)

2

∫ k

j

Γ(t)dt

]
and

M30 =
1

k − j

[∫ j+k
2

j

(t− j) γ(t)dt

+

∫ k

j+k
2

(t− k)γ(t)dt− (k − j)

2

∫ k

j

γ(t)dt

]
,

which is Corollary 4 of [18], Corollary 5 of [19] and Corollary 2.11 of [8].

Proof. Proof of (2.26) is similar to that of Remark 2.35, if one replaces λ = 0

and ω(t) = 1
k−j in (2.18) and (2.22), respectively, and combines them together.

□

Remark 2.37. If γ(θ) ≤ ρ′(θ) ≤ Γ(θ) for any θ ∈ [j, k] and γ,Γ ∈ C[j, k] then

by replacing θ = k, λ = 0 and ω(t) = 1
k−j in (2.18) and (2.22), respectively,

then error of non-standard quadrature is given as

m31 ≤ ρ(j)− 1

(k − j)

∫ k

j

ρ(t)dt ≤ M31,

where

m31 =
1

(k − j)

∫ k

j

(t− k)Γ(t)dt
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and

M31 =
1

(k − j)

∫ k

j

(t− k)γ(t)dt,

which is Corollary 5 of [18], Corollary 2 of [19] and Corollary 2.11.

Remark 2.38. If γ(θ) ≤ ρ′(θ) ≤ Γ(θ) for any θ ∈ [j, k] and γ,Γ ∈ C[j, k] then

by replacing θ = j, λ = 0 and ω(t) = 1
k−j in (2.18) and (2.22), respectively,

one gets error bounds of non-standard quadrature as follows:

m32 ≤ ρ(k)− 1

(k − j)

∫ k

j

ρ(t)dt ≤ M32,

where

m32 =
1

(k − j)

∫ k

j

(t− j)γ(t)dt (2.27)

and

M32 =
1

(k − j)

∫ k

j

(t− j)Γ(t)dt.

The inequality presented above is same as the Corollary 6 of [18], Corollary 3

of [19] and Corollary 2.11 of [8].

3. Applications to Numerical Quadrature Rules

Let In : j = z0 < z1 < · · · < zn = k be a partition of interval [j, k] and let

hi = zi+1 − zi, i ∈ {0, 1, 2, . . . , n− 1}. Then∫ k

j

ω(t)ρ(t)dt = Qn(ρ, ω, λ) +Rn(ρ, ω, λ). (3.1)

Consider a general quadrature rule

Qn(ρ, ω, λ) =

n−1∑
i=0

[
ρ(zi+1)

∫ zi+1

βi

ω(t)dt− ρ(zi)

∫ zi

αi

ω(t)dt

+ ρ(θi)

∫ αi+βi
2

αi

ω(t)dt+ ρ(zi + zi+1 − θi)

∫ βi

αi+βi
2

ω(t)dt

]
,(3.2)

where λ ∈ [0, 1] and θi ∈ [zi, zi+1]. Then we get following result:

Theorem 3.1. Let all the assumptions of Theorem 2.1 be valid. Then (3.1)

holds where Qn(ρ, ω, λ) is given by formula (3.2) and remainder Rn(In, ρ, ω)

satisfies estimates

|Rn(ρ, ω, λ)| ≤
n−1∑
i=0

sup {|R1| , |R2|} , (3.3)

where
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R1 =

∫ θi

zi

((∫ t

αi

ω(t)dt−
∣∣∣∣ ∫ t

αi

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

αi

ω(t)dt+

∣∣∣∣ ∫ t

αi

ω(t)dt

∣∣∣∣) γ(t)

2

))
dt

+

∫ zi+zi+1−θi

θi

((∫ t

αi+βi
2

ω(t)dt−
∣∣∣∣ ∫ t

αi+βi
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

αi+βi
2

ω(t)dt+

∣∣∣∣ ∫ t

αi+βi
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

))
dt

+

∫ zi+1

zi+zi+1−θi

((∫ t

βi

ω(t)dt−
∣∣∣∣ ∫ t

βi

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

βi

ω(t)dt+

∣∣∣∣ ∫ t

βi

ω(t)dt

∣∣∣∣) γ(t)

2

))
dt

and

R2 =

∫ θi

zi

((∫ t

αi

ω(t)dt+

∣∣∣∣ ∫ t

αi

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

αi

ω(t)dt−
∣∣∣∣ ∫ t

αi

ω(t)dt

∣∣∣∣) γ(t)

2

))
dt

+

∫ zi+zi+1−θi

θi

((∫ t

αi+βi
2

ω(t)dt+

∣∣∣∣ ∫ t

αi+βi
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

αi+βi
2

ω(t)dt−
∣∣∣∣ ∫ t

αi+βi
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

))
dt

+

∫ zi+1

zi+zi+1−θi

((∫ t

βi

ω(t)dt+

∣∣∣∣ ∫ t

βi

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

βi

ω(t)dt−
∣∣∣∣ ∫ t

βi

ω(t)dt

∣∣∣∣) γ(t)

2

))
dt,

∀ θi ∈ [zi, zi+1].

Proof. Applying inequality (2.1) on the intervals [zi, zi+1] for r ∈ {1, 2, . . . , n−
1}, and using (3.3), we get

Ri(ρ, ω, λ) =

∫ zi+1

zi

ω(t)ρ(t)dt−
[
ρ(zi+1)

∫ zi+1

βi

ω(t)dt− ρ(zi)

∫ zi

αi

ω(t)dt

+ ρ(θi)

∫ αi+βi
2

αi

ω(t)dt+ ρ(zi + zi+1 − θi)

∫ βi

αi+βi
2

ω(t)dt

]
.

 [
 D

O
I:

 1
0.

61
88

2/
ijm

si
.2

0.
2.

20
9 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
26

-0
1-

29
 ]

 

                            31 / 34

http://dx.doi.org/10.61882/ijmsi.20.2.209
http://ijmsi.ir/article-1-2009-en.html


240 Nazia Irshad, Asif R. Khan, Muhammad Awais Shaikh

Summing it over i from 0 to n− 1 we get

Rn(ρ, ω, λ) =

∫ k

j

ρ(t)ω(t)dt−
n−1∑
i=0

[
ρ(zi+1)

∫ zi+1

βi

ω(t)dt −

ρ(zi)

∫ zi

αi

ω(t)dt+ ρ(θi)

∫ αi+βi
2

αi

ω(t)dt+ ρ(zi + zi+1 − θi)

∫ βi

αi+βi
2

ω(t)dt

]
.

It follows from (2.1) that

|Rn(ρ, ω, λ)| =

∣∣∣∣∣
∫ k

j

ρ(t)ω(t)dt

−
n−1∑
i=0

[
ρ(zi+1)

∫ zi+1

βi

ω(t)dt− ρ(zi)

∫ zi

αi

ω(t)dt

+ ρ(θi)

∫ αi+βi
2

αi

ω(t)dt+ ρ(zi + zi+1 − θi)

∫ βi

αi+βi
2

ω(t)dt

]∣∣∣∣∣
≤

n−1∑
i=0

sup

{∣∣∣∣∣
[∫ θi

zi

((∫ t

αi

ω(t)dt−
∣∣∣∣ ∫ t

αi

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

αi

ω(t)dt+

∣∣∣∣ ∫ t

αi

ω(t)dt

∣∣∣∣) γ(t)

2

))
dt

+

∫ zi+zi+1−θi

θi

((∫ t

αi+βi
2

ω(t)dt−
∣∣∣∣ ∫ t

αi+βi
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

αi+βi
2

ω(t)dt+

∣∣∣∣ ∫ t

αi+βi
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

))
dt

+

∫ zi+1

zi+zi+1−θi

((∫ t

βi

ω(t)dt−
∣∣∣∣ ∫ t

βi

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

βi

ω(t)dt+

∣∣∣∣ ∫ t

βi

ω(t)dt

∣∣∣∣) γ(t)

2

))
dt

]∣∣∣∣ ,∣∣∣∣∣
∫ θi

zi

((∫ t

αi

ω(t)dt+

∣∣∣∣ ∫ t

αi

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

αi

ω(t)dt−
∣∣∣∣ ∫ t

αi

ω(t)dt

∣∣∣∣) γ(t)

2

))
dt

+

∫ zi+zi+1−θi

θi

((∫ t

αi+βi
2

ω(t)dt+

∣∣∣∣ ∫ t

αi+βi
2

ω(t)dt

∣∣∣∣
)

Γ(t)

2

+

(∫ t

αi+βi
2

ω(t)dt−
∣∣∣∣ ∫ t

αi+βi
2

ω(t)dt

∣∣∣∣
)

γ(t)

2

))
dt

 [
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+

∫ zi+1

zi+zi+1−θi

((∫ t

βi

ω(t)dt+

∣∣∣∣ ∫ t

βi

ω(t)dt

∣∣∣∣) Γ(t)

2

+

(∫ t

βi

ω(t)dt−
∣∣∣∣ ∫ t

βi

ω(t)dt

∣∣∣∣) γ(t)

2

))
dt

]∣∣∣∣} .

□

Remark 3.2. Similarly, we can state applications of other results and their cases

as given in Section 2.

4. Conclusion

In this paper, weighted Ostrowski type inequality is discussed for func-

tion differentiable functions with variable bounds. Applications to solve er-

ror bounds of midpoint, trapezoidal, Simpson’s and Simpson’s quadrature and

some non-standard quadrature rules are presented. We also have many proven

results as our special cases. In particularly our results would generalization of

[8, 18, 19, 27].
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